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Introduction



CTL

CTL = Computation Tree Logic

Introduced by Edmund M. Clarke and E. Allen Emerson in 1981

A temporal logic for reasoning about transition systems

An alternative to LTL
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Syntax



CTL Syntax – Definition

Assume some set Atoms of atomic propositions (atoms), ranged over by

a, b, c .

CTL formulas, usually denoted ϕ,ψ, etc., are defined by:

ϕ ::= a | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ |

∀©ϕ | ∃©ϕ | ∀♦ϕ | ∃♦ϕ | ∀�ϕ | ∃�ϕ | ϕ∀Uψ | ϕ∃Uψ

Each temporal connective is a pair of a path quantifier:

• ∀ – for all paths

• ∃ – there exists a path

and an LTL-like temporal operator © , ♦, �, U.

Precedence: As usual, unary connectives bind more strongly than binary ones.
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CTL Syntax – Examples

The following are CTL formulas:

∀� (b → ∃�c)

(∃♦a)∃U b

a ∀U (∃♦b)

(∃♦∃�a)→ (∀♦b)

The following are not CTL formulas:

∃♦�b

∀¬�¬a
♦(aU b)

∃♦ (aU b)
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Semantics



Labeled Transition Systems and Paths Recalled

(These are the same as for LTL.)

A labeled transition system (LTS for short) is a triple M = (S ,→, L)

consisting of:

• S a finite set of states

• → ⊆ S × S a transition relation

• L : S → P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s1 ∈ S there exists

s2 ∈ S with s1 → s2.

A path π in an LTS M = (S ,→, L) is an infinite sequence of states s0s1s2 . . .

such that for all i ≥ 0, si → si+1.

Given s ∈ S , we write Pathss(M) for the set of all paths in M that start

from s.
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Towards Defining the CTL Semantics

Recall:

• LTL satisfaction is first defined on linear structures, i.e., on infinite

sequences of states π = s0s1 . . . (given L : S → P(Atoms)): π |=L ϕ

• . . . and later extended to branching structures, i.e., to LTSs

M = (S ,→, L), by quantifying universally over all paths:

M, s |= ϕ defined as π |=L ϕ for all π ∈ Pathss(M)

By contrast, for CTL:

• satisfaction will be defined directly on the branching structures, i.e., on

LTSs

• . . . and it is most intuitive to think in terms of the unwinding tree, a.k.a.

computation tree, of an LTS
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Recall: The Unwinding (Computation) Tree of an LTS

An LTS (on the left) and its unwinding tree starting in s0 (on the right):

s0

a, b

s1

b, c

s2

c

s0 a, b

s1 b, c s2 c

s0 a, b s2 c s2 c

s1 b, c s2 c s2 c . . .

...
. . .

. . .
. . .

Note: The LTS and its unwinding tree have the same paths.
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CTL Semantics in Pictures

In the following illustrations:

• we consider specific CTL formulas

• we draw part of a sample unwinding tree of an LTS

• using color coding when necessary, we highlight states where subformulas

of the formula are supposed to hold according to the intended semantics

• by “a current or future state” we mean

“the current state or a future state”

• by “all current and future states” we mean

“the current state and all the future states”
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CTL Semantics in Pictures

“For All Eventually”

∀♦ϕ
For all paths, ϕ eventually holds.

(I.e., every path has a state where ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. . . . . . . . . . . . . . . . . . . . . . . .
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CTL Semantics in Pictures

“There Exists Eventually”

∃♦ϕ
There exists a path on which ϕ eventually holds.

(I.e., there exists a current or future state where ϕ holds.)
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CTL Semantics in Pictures

“For All Next”

∀©ϕ
For all paths, ϕ holds next.

(I.e., on all next states, ϕ holds.)
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CTL Semantics in Pictures

“For All Until”

ϕ∀Uψ

For all paths, ϕ until ψ holds.

(I.e., for all paths, ψ eventually holds and ϕ holds in the meantime.)

(I.e., every path starts with a (possibly empty) sequence

of states where ϕ holds, followed by a state where ψ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. . . . . . . . . . . . . . . . . . . . . . . .

Note: It is not forbidden that ψ also holds in a state where ϕ holds.
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CTL Semantics in Pictures – Combining Connectives

In what follows:

• “further up in all possible futures” will mean

“on the current state and on all future states from there”

• “further up in a possible future” will mean

“on the current state or on some future state form there”
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CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds
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“For All Always” followed by “Something Implies For All Always”

∀� (ϕ→ ∀�ψ)

for all current and future states were ϕ holds,
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Formal Semantics – The Satisfaction Relation

Given an LTS M = (S ,→, L), a state s ∈ S and a CTL formula ϕ, we define

”M in state s satisfies ϕ” or ”ϕ holds for M in state s”

M, s |= ϕ

by structural recursion on ϕ:

M, s |= a iff a ∈ L(s)

M, s |= ¬ ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ
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Formal Semantics – The Satisfaction Relation

Assume that paths π have the form s0s1s2 . . .

M, s |= ∀♦ϕ iff for all paths π such that s0 = s

there exists i such that M, si |= ϕ

M, s |= ∃♦ϕ iff there exists a path π such that s0 = s and

there exists i such that M, si |= ϕ

M, s |= ∀�ϕ iff for all paths π such that s0 = s

for all i , M, si |= ϕ

M, s |= ∃�ϕ iff there exists a path π such that s0 = s and

for all i , M, si |= ϕ
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Formal Semantics – The Satisfaction Relation

Assume that paths π have the form s0s1s2 . . .

M, s |= ϕ ∀U ψ iff for all paths π such that s0 = s

there exists i such that M, si |= ψ and

for all j < i , M, sj |= ϕ

M, s |= ϕ ∃U ψ iff there exists a path π such that s0 = s and

there exists i such that M, si |= ψ and

for all j < i , M, sj |= ϕ
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Formula Equivalence in CTL

Two CTL formulas ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if they are

satisfied by (i.e., hold for) exactly the same LTSs in the same states

:

Given any LTS M = (S ,→, L) and any s ∈ S , we have that

M, s |= ϕ iff M, s |= ψ.
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Some CTL Formula Equivalences

Just like for LTL, > (read “True”) abbreviates a→ a for some atom a.

∃�∀�ϕ ≡ ∀�∀�ϕ ≡ ∀�ϕ
¬∃©ϕ ≡ ∀©¬ϕ
¬∃♦ϕ ≡ ∀�¬ϕ
¬∃�ϕ ≡ ∀♦¬ϕ
∀♦ϕ ≡ > ∀U ϕ

∃♦ϕ ≡ > ∃U ϕ

ϕ ∀U ψ ≡ ¬((¬ψ ∃U (¬ϕ ∧ ¬ψ)) ∨ ∃�¬ψ)

Homework Exercise. Apply the CTL semantics to prove the above

equivalences.
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Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

Let M = (S ,→, L) be an LTS and s0 ∈ S . We must prove

M, s0 |= ∃�∀�ϕ iff M, s0 |= ∀�ϕ

To this end, we rewrite both sides applying the semantics of CTL connectives.

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∃�∀�ϕ
iff (by the semantics of ∃� )

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

M, si |= ∀�ϕ
iff (by the semantics of ∀� )

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ
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Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

First, assume (1) and let’s prove (2):

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M) (so s ′0 = s0) and j . We must prove M, s ′j |= ϕ.

Let π = s0s1s2 . . . ∈ Pathss0 (M) be the path obtained from (1).

Applying (1) to 0, π′ and j , we obtain M, s ′j |= ϕ, as desired.
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We know:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s

′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ
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We show:

(2) for all π′ = s ′0s
′
1s

′
2 . . . ∈ Pathss0 (M), for all j , M, s ′j |= ϕ
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Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ
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We show:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s

′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

This concludes our proof of (2) implies (1),

and also our entire proof of ∃�∀�ϕ ≡ ∀�ϕ.
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CTL Versus LTL



Differences between LTL and CTL

LTL is limited to questions of the form:

• For all paths, does the LTL formula ϕ hold?

• Does there exist a path on which the LTL formula ϕ holds?

(by asking the opposite: whether ¬ϕ holds on all paths)

By contrast, CTL allows mixing in path quantifiers. For example:

∀� (a→ ∃�b)

(For all paths, if a is true on some state then there is a path starting

from that state on which b is always true.) This is not expressible in LTL.

In particular, the LTL formula �(a→ �b) does not express the same

thing. (As we’ll see, the latter is equivalent to ∀� (a→ ∀�b).)
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Differences between LTL and CTL

On the other hand, some path properties are impossible to express in CTL.

Intuitively, in CTL we cannot fix a path π and talk about it.

The following formulas do not express the same thing:

• LTL: (�♦a)→ (�♦b)

for all paths π, if a holds infinitely often on π, then b holds infinitely

often on the same π

• CTL: (∀�∀♦a)→ (∀�∀♦b)

if a holds infinitely often on all paths, then b holds infinitely often on all

paths.

Neither CTL can express the first, nor LTL can express the second property.
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Differences between LTL and CTL

Consider an LTS describing two parallel processes, where, for i ∈ {1, 2}:
ni denotes “process i not in critical section”; ri denotes “process i requesting

to enter critical section”; ci denotes “process i in critical section”

Consider the following properties (which may or may not hold for that LTS):

• The safety property: Only one process at a time may execute critical section

code.

� (¬(c1 ∧ c2))

• The liveness property: Whenever a process, say process 1, requests to enter its

critical section, it will eventually be allowed to do so.

� (r1 → ♦c1)

• The non-blocking property: A process, say process 1, can always request to

enter its critical section

, i.e.: For all states s reachable from the initial state

such that c1 6∈ L(s), there exists a state t reachable from s such that r1 ∈ L(t).

Recall: The first two properties are expressible in LTL whereas the third is not.

But can the third be expressed in CTL? Yes, it can: ∀� (¬ c1 → ∃♦ r1).

How about the other two properties – can they be expressed in CTL?

Yes, they can.

For safety: the CTL ∀� (¬(c1 ∧ c2)) is equivalent to the LTL � (¬(c1 ∧ c2)).

For liveness: the CTL ∀� (r1 → ∀♦c1) is equivalent to the LTL � (r1 → ♦c1).
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Equivalence Relation between CTL and LTL Formulas

Defined similarly to CTL formula equivalence.

Let ϕ be a CTL formula, and let ψ be an LTL formula.

ϕ and ψ are said to

be equivalent if they are satisfied by (i.e., hold for) exactly the same LTSs in

the same states: Given any LTS M = (S ,→, L) and any s ∈ S , we have that

M, s |= ϕ (in CTL) iff M, s |= ψ (in LTL).
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M, s |= ϕ (in CTL) iff M, s |= ψ (in LTL).
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Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (¬(c1 ∧ c2)) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (¬(c1 ∧ c2)).

Let M = (S ,→, L) be an LTS and s0 ∈ S . We have the following chain of

equivalent statements:

M, s0 |= ∀� (¬(c1 ∧ c2)) in CTL

iff (by the CTL semantics of ∀� )

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ¬(c1 ∧ c2) in CTL

iff (by the CTL semantics of ¬, ∧ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , not [c1 ∈ L(si ) and c2 ∈ L(si )]

iff (by the LTL semantics of ¬, ∧ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L ¬(c1 ∧ c2) in LTL

iff (by the LTL semantics of �, on sequences)Remember: πi is the i ’th suffix of π.

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (¬(c1 ∧ c2)) in LTL

iff (by the LTL semantics on LTSs)

M, s0 |= � (¬(c1 ∧ c2)) in LTL
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Proving CTL–LTL Formula Equivalence

Now let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is

satisfied by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∀� (r1 → ∀♦c1) in CTL

iff (by the CTL semantics of ∀� )

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= r1 → ∀♦c1 in CTL

iff (by the CTL semantics of → and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si ) then M, si |= ∀♦c1 in CTL

iff (by the CTL semantics of ∀♦ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si ) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j )
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Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si ) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j )

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si ) then

there exists j such that c1 ∈ L(si+j)

First, assume (1) and let’s prove (2):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si ).

Take π′ = s ′0s
′
1s
′
2 . . . to be πi . Then π′ ∈ Pathssi (M) and, for all j , s ′j = si+j .

By (1) applied to π, i and π′, we obtain j such that c1 ∈ L(s ′j ), i.e., c1 ∈ L(si+j).
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We know:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si ) then

for all π′ = s ′0s
′
1s

′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j )
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We show:

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si ) then

there exists j such that c1 ∈ L(si+j) 43



Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si ) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j )

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si ) then

there exists j such that c1 ∈ L(si+j)

Finally, assume (2) and let’s prove (1):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si ).

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M). (Note that s ′0 = si .)

Take π′′ = s ′′0 s
′′
1 s
′′
2 . . . to be s0s1 . . . si−1s

′
0s
′
1s
′
2 . . .

Then π′′ ∈ Pathss0 (M), r1 ∈ L(s ′′i ) and, for all j , s ′′i+j = s ′j .

By (2) applied to π′′ and i , we obtain j such that c1 ∈ L(s ′′i+j) , i.e., c1 ∈ L(s ′j ).
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1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j )
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′
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We know:
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CTL Model Checking

(Very Briefly)



CTL Model Checking Problem

Let M = (S ,→, L) be an LTS, s0 ∈ S , and ϕ a CTL formula.

The CTL model checking problem is to determine whether M, s0 |= ϕ, i.e., whether

M satisfies ϕ in state s0.

Theorem. The CTL model checking problem is algorithmically decidable in time and

space complexity O(|M| × |ϕ|), where |M| is defined as |S | + |→|.

Idea: Traverse the formula ϕ by structural recursion, labeling with ϕ all the states s
for which ϕ holds (i.e., M, s |= ϕ). For example:

• If ϕ is an atom a, then we label s with ϕ just in case a ∈ L(s).

• If ϕ has the form ϕ1 ∧ ϕ2, then we label s with ϕ just in case s is already labeled with

both ϕ1 and ϕ2.

• If ϕ has the form ∃�ϕ, then, by fixpoint iteration, we label all states that belong to

the largest subset T of S with the following properties:

• all states in T are already labeled with ϕ;

• if s ∈ T , then there exists s ′ such as s → s ′ and s ′ ∈ T .

Main lemma: Characterization of the CTL connectives’ semantics by means of least

and greatest fixpoints of suitable operators on P(S).

Not covered in these lectures – see Section 6.4 of Baier & Katoen’s “Principles of

Model Checking” (MIT Press 2008). Simpler than LTL model checking!
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Ending



Summary of the Discussed Concepts

• CTL = Computation Tree Logic

• Syntax = formulas built from

• atoms

• propositional connectives

• CTL connectives, each consisting of a path quantifier and a temporal

operator

• Semantics = the satisfaction relation defined on LTSs

• Formula equivalence

• CTL versus LTL

• Brief sketch of CTL model checking
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Further Reading

Section 6 of Baier & Katoen’s “Principles of Model Checking” (MIT Press 2008)

Distinguishes state formulas from path formulas

Writes ∀(ϕUψ) instead of ϕ ∀Uψ, and ∃(ϕUψ) instead of ϕ ∃Uψ

Section 3.4 of Huth & Ryan’s “Logic in Computer Science: Modelling and Reasoning

about Systems” (Cambridge University Press 2004)

Uses different notations for the CTL connectives:

X instead of © , F instead of ♦, G instead of � (just like it does for LTL)

A instead of ∀, E instead of ∃
Hence writes AF instead of ∀♦ , EG instead of ∃� , etc.

Also, A(ϕUψ) instead of ϕ ∀Uψ, and E(ϕUψ) instead of ϕ ∃Uψ
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