
4507/6507 Software and Hardware Verification

Computation Tree Logic (CTL)

Andrei Popescu

University of Sheffield

These slides contain material from Denisa Diaconescu and Traian Florin S, erbănut, ă

Introduction

CTL

CTL = Computation Tree Logic

Introduced by Edmund M. Clarke and E. Allen Emerson in 1981

A temporal logic for reasoning about transition systems

An alternative to LTL

1

Syntax

CTL Syntax – Definition

Assume some set Atoms of atomic propositions (atoms), ranged over by

a, b, c .

CTL formulas, usually denoted ϕ,ψ, etc., are defined by:

ϕ ::= a | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ |

∀©ϕ | ∃©ϕ | ∀♦ϕ | ∃♦ϕ | ∀�ϕ | ∃�ϕ | ϕ∀Uψ | ϕ∃Uψ

Each temporal connective is a pair of a path quantifier:

• ∀ – for all paths

• ∃ – there exists a path

and an LTL-like temporal operator © , ♦, �, U.

Precedence: As usual, unary connectives bind more strongly than binary ones.

2

CTL Syntax – Definition

Assume some set Atoms of atomic propositions (atoms), ranged over by

a, b, c .

CTL formulas, usually denoted ϕ,ψ, etc., are defined by:

ϕ ::= a | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ |

∀©ϕ | ∃©ϕ | ∀♦ϕ | ∃♦ϕ | ∀�ϕ | ∃�ϕ | ϕ∀Uψ | ϕ∃Uψ

Each temporal connective is a pair of a path quantifier:

• ∀ – for all paths

• ∃ – there exists a path

and an LTL-like temporal operator © , ♦, �, U.

Precedence: As usual, unary connectives bind more strongly than binary ones.

2

CTL Syntax – Definition

Assume some set Atoms of atomic propositions (atoms), ranged over by

a, b, c .

CTL formulas, usually denoted ϕ,ψ, etc., are defined by:

ϕ ::= a

| ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ |

∀©ϕ | ∃©ϕ | ∀♦ϕ | ∃♦ϕ | ∀�ϕ | ∃�ϕ | ϕ∀Uψ | ϕ∃Uψ

Each temporal connective is a pair of a path quantifier:

• ∀ – for all paths

• ∃ – there exists a path

and an LTL-like temporal operator © , ♦, �, U.

Precedence: As usual, unary connectives bind more strongly than binary ones.

2

CTL Syntax – Definition

Assume some set Atoms of atomic propositions (atoms), ranged over by

a, b, c .

CTL formulas, usually denoted ϕ,ψ, etc., are defined by:

ϕ ::= a | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ |

∀©ϕ | ∃©ϕ | ∀♦ϕ | ∃♦ϕ | ∀�ϕ | ∃�ϕ | ϕ∀Uψ | ϕ∃Uψ

Each temporal connective is a pair of a path quantifier:

• ∀ – for all paths

• ∃ – there exists a path

and an LTL-like temporal operator © , ♦, �, U.

Precedence: As usual, unary connectives bind more strongly than binary ones.

2

CTL Syntax – Definition

Assume some set Atoms of atomic propositions (atoms), ranged over by

a, b, c .

CTL formulas, usually denoted ϕ,ψ, etc., are defined by:

ϕ ::= a | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ |

∀©ϕ | ∃©ϕ | ∀♦ϕ | ∃♦ϕ | ∀�ϕ | ∃�ϕ | ϕ∀Uψ | ϕ∃Uψ

Each temporal connective is a pair of a path quantifier:

• ∀ – for all paths

• ∃ – there exists a path

and an LTL-like temporal operator © , ♦, �, U.

Precedence: As usual, unary connectives bind more strongly than binary ones.

2

CTL Syntax – Definition

Assume some set Atoms of atomic propositions (atoms), ranged over by

a, b, c .

CTL formulas, usually denoted ϕ,ψ, etc., are defined by:

ϕ ::= a | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ |

∀©ϕ | ∃©ϕ | ∀♦ϕ | ∃♦ϕ | ∀�ϕ | ∃�ϕ | ϕ∀Uψ | ϕ∃Uψ

Each temporal connective is a pair of a path quantifier:

• ∀ – for all paths

• ∃ – there exists a path

and an LTL-like temporal operator © , ♦, �, U.

Precedence: As usual, unary connectives bind more strongly than binary ones.

2

CTL Syntax – Definition

Assume some set Atoms of atomic propositions (atoms), ranged over by

a, b, c .

CTL formulas, usually denoted ϕ,ψ, etc., are defined by:

ϕ ::= a | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ |

∀©ϕ | ∃©ϕ | ∀♦ϕ | ∃♦ϕ | ∀�ϕ | ∃�ϕ | ϕ∀Uψ | ϕ∃Uψ

Each temporal connective is a pair of a path quantifier:

• ∀ – for all paths

• ∃ – there exists a path

and an LTL-like temporal operator © , ♦, �, U.

Precedence: As usual, unary connectives bind more strongly than binary ones.

2

CTL Syntax – Examples

The following are CTL formulas:

∀� (b → ∃�c)

(∃♦a)∃U b

a ∀U (∃♦b)

(∃♦∃�a)→ (∀♦b)

The following are not CTL formulas:

∃♦�b

∀¬�¬a
♦(aU b)

∃♦ (aU b)

3

CTL Syntax – Examples

The following are CTL formulas:

∀� (b → ∃�c)

(∃♦a)∃U b

a ∀U (∃♦b)

(∃♦∃�a)→ (∀♦b)

The following are not CTL formulas:

∃♦�b

∀¬�¬a
♦(aU b)

∃♦ (aU b)

3

Semantics

Labeled Transition Systems and Paths Recalled

(These are the same as for LTL.)

A labeled transition system (LTS for short) is a triple M = (S ,→, L)

consisting of:

• S a finite set of states

• → ⊆ S × S a transition relation

• L : S → P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s1 ∈ S there exists

s2 ∈ S with s1 → s2.

A path π in an LTS M = (S ,→, L) is an infinite sequence of states s0s1s2 . . .

such that for all i ≥ 0, si → si+1.

Given s ∈ S , we write Pathss(M) for the set of all paths in M that start

from s.

4

Labeled Transition Systems and Paths Recalled

(These are the same as for LTL.)

A labeled transition system (LTS for short) is a triple M = (S ,→, L)

consisting of:

• S a finite set of states

• → ⊆ S × S a transition relation

• L : S → P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s1 ∈ S there exists

s2 ∈ S with s1 → s2.

A path π in an LTS M = (S ,→, L) is an infinite sequence of states s0s1s2 . . .

such that for all i ≥ 0, si → si+1.

Given s ∈ S , we write Pathss(M) for the set of all paths in M that start

from s.

4

Towards Defining the CTL Semantics

Recall:

• LTL satisfaction is first defined on linear structures, i.e., on infinite

sequences of states π = s0s1 . . . (given L : S → P(Atoms)): π |=L ϕ

• . . . and later extended to branching structures, i.e., to LTSs

M = (S ,→, L), by quantifying universally over all paths:

M, s |= ϕ defined as π |=L ϕ for all π ∈ Pathss(M)

By contrast, for CTL:

• satisfaction will be defined directly on the branching structures, i.e., on

LTSs

• . . . and it is most intuitive to think in terms of the unwinding tree, a.k.a.

computation tree, of an LTS

5

Towards Defining the CTL Semantics

Recall:

• LTL satisfaction is first defined on linear structures, i.e., on infinite

sequences of states π = s0s1 . . . (given L : S → P(Atoms)): π |=L ϕ

• . . . and later extended to branching structures, i.e., to LTSs

M = (S ,→, L), by quantifying universally over all paths:

M, s |= ϕ defined as π |=L ϕ for all π ∈ Pathss(M)

By contrast, for CTL:

• satisfaction will be defined directly on the branching structures, i.e., on

LTSs

• . . . and it is most intuitive to think in terms of the unwinding tree, a.k.a.

computation tree, of an LTS

5

Towards Defining the CTL Semantics

Recall:

• LTL satisfaction is first defined on linear structures, i.e., on infinite

sequences of states π = s0s1 . . . (given L : S → P(Atoms)): π |=L ϕ

• . . . and later extended to branching structures, i.e., to LTSs

M = (S ,→, L), by quantifying universally over all paths:

M, s |= ϕ defined as π |=L ϕ for all π ∈ Pathss(M)

By contrast, for CTL:

• satisfaction will be defined directly on the branching structures, i.e., on

LTSs

• . . . and it is most intuitive to think in terms of the unwinding tree, a.k.a.

computation tree, of an LTS

5

Towards Defining the CTL Semantics

Recall:

• LTL satisfaction is first defined on linear structures, i.e., on infinite

sequences of states π = s0s1 . . . (given L : S → P(Atoms)): π |=L ϕ

• . . . and later extended to branching structures, i.e., to LTSs

M = (S ,→, L), by quantifying universally over all paths:

M, s |= ϕ defined as π |=L ϕ for all π ∈ Pathss(M)

By contrast, for CTL:

• satisfaction will be defined directly on the branching structures, i.e., on

LTSs

• . . . and it is most intuitive to think in terms of the unwinding tree, a.k.a.

computation tree, of an LTS

5

Recall: The Unwinding (Computation) Tree of an LTS

An LTS (on the left) and its unwinding tree starting in s0 (on the right):

s0

a, b

s1

b, c

s2

c

s0 a, b

s1 b, c s2 c

s0 a, b s2 c s2 c

s1 b, c s2 c s2 c . . .

...
. . .

. . .
. . .

Note: The LTS and its unwinding tree have the same paths.

6

Recall: The Unwinding (Computation) Tree of an LTS

An LTS (on the left) and its unwinding tree starting in s0 (on the right):

s0

a, b

s1

b, c

s2

c

s0 a, b

s1 b, c s2 c

s0 a, b s2 c s2 c

s1 b, c s2 c s2 c . . .

...
. . .

. . .
. . .

Note: The LTS and its unwinding tree have the same paths.

6

CTL Semantics in Pictures

In the following illustrations:

• we consider specific CTL formulas

• we draw part of a sample unwinding tree of an LTS

• using color coding when necessary, we highlight states where subformulas

of the formula are supposed to hold according to the intended semantics

• by “a current or future state” we mean

“the current state or a future state”

• by “all current and future states” we mean

“the current state and all the future states”

7

CTL Semantics in Pictures

In the following illustrations:

• we consider specific CTL formulas

• we draw part of a sample unwinding tree of an LTS

• using color coding when necessary, we highlight states where subformulas

of the formula are supposed to hold according to the intended semantics

• by “a current or future state” we mean

“the current state or a future state”

• by “all current and future states” we mean

“the current state and all the future states”

7

CTL Semantics in Pictures

“For All Eventually”

∀♦ϕ
For all paths, ϕ eventually holds.

(I.e., every path has a state where ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

8

CTL Semantics in Pictures

“For All Eventually”

∀♦ϕ
For all paths, ϕ eventually holds.

(I.e., every path has a state where ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

8

CTL Semantics in Pictures

“For All Eventually”

∀♦ϕ
For all paths, ϕ eventually holds.

(I.e., every path has a state where ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

8

CTL Semantics in Pictures

“There Exists Eventually”

∃♦ϕ
There exists a path on which ϕ eventually holds.

(I.e., there exists a current or future state where ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

9

CTL Semantics in Pictures

“There Exists Eventually”

∃♦ϕ
There exists a path on which ϕ eventually holds.

(I.e., there exists a current or future state where ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

9

CTL Semantics in Pictures

“There Exists Eventually”

∃♦ϕ
There exists a path on which ϕ eventually holds.

(I.e., there exists a current or future state where ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

9

CTL Semantics in Pictures

“For All Next”

∀©ϕ
For all paths, ϕ holds next.

(I.e., on all next states, ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

10

CTL Semantics in Pictures

“For All Next”

∀©ϕ
For all paths, ϕ holds next.

(I.e., on all next states, ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

10

CTL Semantics in Pictures

“For All Next”

∀©ϕ
For all paths, ϕ holds next.

(I.e., on all next states, ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

10

CTL Semantics in Pictures

“There Exists Next”

∃©ϕ
There exists a path on which ϕ holds next.

(I.e., on some next state, ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

11

CTL Semantics in Pictures

“There Exists Next”

∃©ϕ
There exists a path on which ϕ holds next.

(I.e., on some next state, ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

11

CTL Semantics in Pictures

“There Exists Next”

∃©ϕ
There exists a path on which ϕ holds next.

(I.e., on some next state, ϕ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

11

CTL Semantics in Pictures

“For All Always”

∀�ϕ
For all paths, ϕ always holds.

(I.e., ϕ holds on all current and future states.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

12

CTL Semantics in Pictures

“For All Always”

∀�ϕ
For all paths, ϕ always holds.

(I.e., ϕ holds on all current and future states.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

12

CTL Semantics in Pictures

“For All Always”

∀�ϕ
For all paths, ϕ always holds.

(I.e., ϕ holds on all current and future states.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

12

CTL Semantics in Pictures

“There Exists Always”

∃�ϕ
There exists a path on which ϕ always holds.

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

13

CTL Semantics in Pictures

“There Exists Always”

∃�ϕ
There exists a path on which ϕ always holds.

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

13

CTL Semantics in Pictures

“There Exists Always”

∃�ϕ
There exists a path on which ϕ always holds.

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

13

CTL Semantics in Pictures

“For All Until”

ϕ∀Uψ

For all paths, ϕ until ψ holds.

(I.e., for all paths, ψ eventually holds and ϕ holds in the meantime.)

(I.e., every path starts with a (possibly empty) sequence

of states where ϕ holds, followed by a state where ψ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

Note: It is not forbidden that ψ also holds in a state where ϕ holds.

14

CTL Semantics in Pictures

“For All Until”

ϕ∀Uψ

For all paths, ϕ until ψ holds.

(I.e., for all paths, ψ eventually holds and ϕ holds in the meantime.)

(I.e., every path starts with a (possibly empty) sequence

of states where ϕ holds, followed by a state where ψ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

Note: It is not forbidden that ψ also holds in a state where ϕ holds.

14

CTL Semantics in Pictures

“For All Until”

ϕ∀Uψ

For all paths, ϕ until ψ holds.

(I.e., for all paths, ψ eventually holds and ϕ holds in the meantime.)

(I.e., every path starts with a (possibly empty) sequence

of states where ϕ holds, followed by a state where ψ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

Note: It is not forbidden that ψ also holds in a state where ϕ holds.

14

CTL Semantics in Pictures

“For All Until”

ϕ∀Uψ

For all paths, ϕ until ψ holds.

(I.e., for all paths, ψ eventually holds and ϕ holds in the meantime.)

(I.e., every path starts with a (possibly empty) sequence

of states where ϕ holds, followed by a state where ψ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

Note: It is not forbidden that ψ also holds in a state where ϕ holds. 14

CTL Semantics in Pictures

“There Exists Until”

ϕ∃Uψ

For some path, ϕ until ψ holds.

(I.e., for some path, ψ eventually holds and ϕ holds in the meantime.)

(I.e., there exists a path that starts with a (possibly empty) sequence

of states where ϕ holds, followed by a state where ψ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

Note: Again, it is not forbidden that ψ also holds in a state where ϕ holds.

15

CTL Semantics in Pictures

“There Exists Until”

ϕ∃Uψ

For some path, ϕ until ψ holds.

(I.e., for some path, ψ eventually holds and ϕ holds in the meantime.)

(I.e., there exists a path that starts with a (possibly empty) sequence

of states where ϕ holds, followed by a state where ψ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

Note: Again, it is not forbidden that ψ also holds in a state where ϕ holds.

15

CTL Semantics in Pictures

“There Exists Until”

ϕ∃Uψ

For some path, ϕ until ψ holds.

(I.e., for some path, ψ eventually holds and ϕ holds in the meantime.)

(I.e., there exists a path that starts with a (possibly empty) sequence

of states where ϕ holds, followed by a state where ψ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

Note: Again, it is not forbidden that ψ also holds in a state where ϕ holds.

15

CTL Semantics in Pictures

“There Exists Until”

ϕ∃Uψ

For some path, ϕ until ψ holds.

(I.e., for some path, ψ eventually holds and ϕ holds in the meantime.)

(I.e., there exists a path that starts with a (possibly empty) sequence

of states where ϕ holds, followed by a state where ψ holds.)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

Note: Again, it is not forbidden that ψ also holds in a state where ϕ holds. 15

CTL Semantics in Pictures – Combining Connectives

In what follows:

• “further up in all possible futures” will mean

“on the current state and on all future states from there”

• “further up in a possible future” will mean

“on the current state or on some future state form there”

16

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Eventually”

∀�∃♦ϕ
for all current and future states,

there exists a state further up in a possible future from there where ϕ holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

17

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “There Exists Always”

∀�∃�ϕ
for all current and future states,

there exists a path starting there on which ϕ always holds

•
~~
•

~~

•

•
~~

•
��

•
��

•
��

•
��

•
��

•
��

•
��

• • • • • • • •

. .

18

CTL Semantics in Pictures – Combining Connectives

“There Exists Eventually” followed by “For All Always”

∃♦∀�ϕ
there exists a current or future state

such that ϕ holds on all states further up in all possible futures from there

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

19

CTL Semantics in Pictures – Combining Connectives

“There Exists Eventually” followed by “For All Always”

∃♦∀�ϕ
there exists a current or future state

such that ϕ holds on all states further up in all possible futures from there

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

19

CTL Semantics in Pictures – Combining Connectives

“There Exists Eventually” followed by “For All Always”

∃♦∀�ϕ
there exists a current or future state

such that ϕ holds on all states further up in all possible futures from there

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

19

CTL Semantics in Pictures – Combining Connectives

“There Exists Eventually” followed by “For All Always”

∃♦∀�ϕ
there exists a current or future state

such that ϕ holds on all states further up in all possible futures from there

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

19

CTL Semantics in Pictures – Combining Connectives

“There Exists Eventually” followed by “For All Eventually”

∃♦∀♦ϕ
there exists a current or future state such that,

for all paths starting there, ϕ eventually holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

20

CTL Semantics in Pictures – Combining Connectives

“There Exists Eventually” followed by “For All Eventually”

∃♦∀♦ϕ
there exists a current or future state such that,

for all paths starting there, ϕ eventually holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

20

CTL Semantics in Pictures – Combining Connectives

“There Exists Eventually” followed by “For All Eventually”

∃♦∀♦ϕ
there exists a current or future state such that,

for all paths starting there, ϕ eventually holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

20

CTL Semantics in Pictures – Combining Connectives

“There Exists Eventually” followed by “For All Eventually”

∃♦∀♦ϕ
there exists a current or future state such that,

for all paths starting there, ϕ eventually holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

20

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies For All Always”

∀� (ϕ→ ∀�ψ)

for all current and future states were ϕ holds,

ψ holds on all states further up in all possible futures from there

•
|| ""
•

|| ""

•
""

•
|| ""

•
��

•
�� !!

•
�� ""

•
��

•
�� ""

•
��

•
�� !!

• • • • • • • •

. .

21

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies For All Always”

∀� (ϕ→ ∀�ψ)

for all current and future states were ϕ holds,

ψ holds on all states further up in all possible futures from there

•
|| ""
•

|| ""

•
""

•
|| ""

•
��

•
�� !!

•
�� ""

•
��

•
�� ""

•
��

•
�� !!

• • • • • • • •

. .

21

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies For All Always”

∀� (ϕ→ ∀�ψ)

for all current and future states were ϕ holds,

ψ holds on all states further up in all possible futures from there

•
|| ""
•

|| ""

•
""

•
|| ""

•
��

•
�� !!

•
�� ""

•
��

•
�� ""

•
��

•
�� !!

• • • • • • • •

. .

21

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies For All Always”

∀� (ϕ→ ∀�ψ)

for all current and future states were ϕ holds,

ψ holds on all states further up in all possible futures from there

•
|| ""
•

|| ""

•
""

•
|| ""

•
��

•
�� !!

•
�� ""

•
��

•
�� ""

•
��

•
�� !!

• • • • • • • •

. .

21

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies For All Always”

∀� (ϕ→ ∀�ψ)

for all current and future states were ϕ holds,

ψ holds on all states further up in all possible futures from there

•
|| ""
•

|| ""

•
""

•
|| ""

•
��

•
�� !!

•
�� ""

•
��

•
�� ""

•
��

•
�� !!

• • • • • • • •

. .

21

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies For All Always”

∀� (ϕ→ ∀�ψ)

for all current and future states were ϕ holds,

ψ holds on all states further up in all possible futures from there

•
|| ""
•

|| ""

•
""

•
|| ""

•
��

•
�� !!

•
�� ""

•
��

•
�� ""

•
��

•
�� !!

• • • • • • • •

. .

21

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies There Exists Always”

∀� (ϕ→ ∃�ψ)

for all current and future states were ϕ holds,

there exists a path starting from there on which ψ always holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ""

•
�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

22

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies There Exists Always”

∀� (ϕ→ ∃�ψ)

for all current and future states were ϕ holds,

there exists a path starting from there on which ψ always holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ""

•
�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

22

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies There Exists Always”

∀� (ϕ→ ∃�ψ)

for all current and future states were ϕ holds,

there exists a path starting from there on which ψ always holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ""

•
�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

22

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies There Exists Always”

∀� (ϕ→ ∃�ψ)

for all current and future states were ϕ holds,

there exists a path starting from there on which ψ always holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ""

•
�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

22

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies There Exists Always”

∀� (ϕ→ ∃�ψ)

for all current and future states were ϕ holds,

there exists a path starting from there on which ψ always holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ""

•
�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

22

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies There Exists Always”

∀� (ϕ→ ∃�ψ)

for all current and future states were ϕ holds,

there exists a path starting from there on which ψ always holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ""

•
�� ""

•
��

•
�� ##

•
��

•
�� !!

• • • • • • • •

. .

22

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies For All Eventually”

∀� (ϕ→ ∀♦ψ)

for all current and future states were ϕ holds

and for all paths starting from there, ψ eventually holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

23

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies For All Eventually”

∀� (ϕ→ ∀♦ψ)

for all current and future states were ϕ holds

and for all paths starting from there, ψ eventually holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

23

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies For All Eventually”

∀� (ϕ→ ∀♦ψ)

for all current and future states were ϕ holds

and for all paths starting from there, ψ eventually holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

23

CTL Semantics in Pictures – Combining Connectives

“For All Always” followed by “Something Implies For All Eventually”

∀� (ϕ→ ∀♦ψ)

for all current and future states were ϕ holds

and for all paths starting from there, ψ eventually holds

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

23

Formal Semantics – The Satisfaction Relation

Given an LTS M = (S ,→, L), a state s ∈ S and a CTL formula ϕ, we define

”M in state s satisfies ϕ” or ”ϕ holds for M in state s”

M, s |= ϕ

by structural recursion on ϕ:

M, s |= a iff a ∈ L(s)

M, s |= ¬ ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= ϕ→ ψ iff M, s |= ϕ implies M, s |= ψ

M, s |= ∀© ϕ iff for all s ′ ∈ S such that s → s ′ we have M, s ′ |= ϕ

M, s |= ∃© ϕ iff there exists s ′ ∈ S such that s → s ′ and M, s ′ |= ϕ

24

Formal Semantics – The Satisfaction Relation

Given an LTS M = (S ,→, L), a state s ∈ S and a CTL formula ϕ, we define

”M in state s satisfies ϕ” or ”ϕ holds for M in state s”

M, s |= ϕ

by structural recursion on ϕ:

M, s |= a iff a ∈ L(s)

M, s |= ¬ ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= ϕ→ ψ iff M, s |= ϕ implies M, s |= ψ

M, s |= ∀© ϕ iff for all s ′ ∈ S such that s → s ′ we have M, s ′ |= ϕ

M, s |= ∃© ϕ iff there exists s ′ ∈ S such that s → s ′ and M, s ′ |= ϕ

24

Formal Semantics – The Satisfaction Relation

Given an LTS M = (S ,→, L), a state s ∈ S and a CTL formula ϕ, we define

”M in state s satisfies ϕ” or ”ϕ holds for M in state s”

M, s |= ϕ

by structural recursion on ϕ:

M, s |= a iff a ∈ L(s)

M, s |= ¬ ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= ϕ→ ψ iff M, s |= ϕ implies M, s |= ψ

M, s |= ∀© ϕ iff for all s ′ ∈ S such that s → s ′ we have M, s ′ |= ϕ

M, s |= ∃© ϕ iff there exists s ′ ∈ S such that s → s ′ and M, s ′ |= ϕ

24

Formal Semantics – The Satisfaction Relation

Given an LTS M = (S ,→, L), a state s ∈ S and a CTL formula ϕ, we define

”M in state s satisfies ϕ” or ”ϕ holds for M in state s”

M, s |= ϕ

by structural recursion on ϕ:

M, s |= a iff a ∈ L(s)

M, s |= ¬ ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= ϕ→ ψ iff M, s |= ϕ implies M, s |= ψ

M, s |= ∀© ϕ iff for all s ′ ∈ S such that s → s ′ we have M, s ′ |= ϕ

M, s |= ∃© ϕ iff there exists s ′ ∈ S such that s → s ′ and M, s ′ |= ϕ

24

Formal Semantics – The Satisfaction Relation

Given an LTS M = (S ,→, L), a state s ∈ S and a CTL formula ϕ, we define

”M in state s satisfies ϕ” or ”ϕ holds for M in state s”

M, s |= ϕ

by structural recursion on ϕ:

M, s |= a iff a ∈ L(s)

M, s |= ¬ ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= ϕ→ ψ iff M, s |= ϕ implies M, s |= ψ

M, s |= ∀© ϕ iff for all s ′ ∈ S such that s → s ′ we have M, s ′ |= ϕ

M, s |= ∃© ϕ iff there exists s ′ ∈ S such that s → s ′ and M, s ′ |= ϕ
24

Formal Semantics – The Satisfaction Relation

Assume that paths π have the form s0s1s2 . . .

M, s |= ∀♦ϕ iff for all paths π such that s0 = s

there exists i such that M, si |= ϕ

M, s |= ∃♦ϕ iff there exists a path π such that s0 = s and

there exists i such that M, si |= ϕ

M, s |= ∀�ϕ iff for all paths π such that s0 = s

for all i , M, si |= ϕ

M, s |= ∃�ϕ iff there exists a path π such that s0 = s and

for all i , M, si |= ϕ

25

Formal Semantics – The Satisfaction Relation

Assume that paths π have the form s0s1s2 . . .

M, s |= ∀♦ϕ iff for all paths π such that s0 = s

there exists i such that M, si |= ϕ

M, s |= ∃♦ϕ iff there exists a path π such that s0 = s and

there exists i such that M, si |= ϕ

M, s |= ∀�ϕ iff for all paths π such that s0 = s

for all i , M, si |= ϕ

M, s |= ∃�ϕ iff there exists a path π such that s0 = s and

for all i , M, si |= ϕ

25

Formal Semantics – The Satisfaction Relation

Assume that paths π have the form s0s1s2 . . .

M, s |= ∀♦ϕ iff for all paths π such that s0 = s

there exists i such that M, si |= ϕ

M, s |= ∃♦ϕ iff there exists a path π such that s0 = s and

there exists i such that M, si |= ϕ

M, s |= ∀�ϕ iff for all paths π such that s0 = s

for all i , M, si |= ϕ

M, s |= ∃�ϕ iff there exists a path π such that s0 = s and

for all i , M, si |= ϕ

25

Formal Semantics – The Satisfaction Relation

Assume that paths π have the form s0s1s2 . . .

M, s |= ∀♦ϕ iff for all paths π such that s0 = s

there exists i such that M, si |= ϕ

M, s |= ∃♦ϕ iff there exists a path π such that s0 = s and

there exists i such that M, si |= ϕ

M, s |= ∀�ϕ iff for all paths π such that s0 = s

for all i , M, si |= ϕ

M, s |= ∃�ϕ iff there exists a path π such that s0 = s and

for all i , M, si |= ϕ

25

Formal Semantics – The Satisfaction Relation

Assume that paths π have the form s0s1s2 . . .

M, s |= ϕ ∀U ψ iff for all paths π such that s0 = s

there exists i such that M, si |= ψ and

for all j < i , M, sj |= ϕ

M, s |= ϕ ∃U ψ iff there exists a path π such that s0 = s and

there exists i such that M, si |= ψ and

for all j < i , M, sj |= ϕ

26

Formal Semantics – The Satisfaction Relation

Assume that paths π have the form s0s1s2 . . .

M, s |= ϕ ∀U ψ iff for all paths π such that s0 = s

there exists i such that M, si |= ψ and

for all j < i , M, sj |= ϕ

M, s |= ϕ ∃U ψ iff there exists a path π such that s0 = s and

there exists i such that M, si |= ψ and

for all j < i , M, sj |= ϕ

26

Formula Equivalence in CTL

Two CTL formulas ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if they are

satisfied by (i.e., hold for) exactly the same LTSs in the same states

:

Given any LTS M = (S ,→, L) and any s ∈ S , we have that

M, s |= ϕ iff M, s |= ψ.

27

Formula Equivalence in CTL

Two CTL formulas ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if they are

satisfied by (i.e., hold for) exactly the same LTSs in the same states:

Given any LTS M = (S ,→, L) and any s ∈ S , we have that

M, s |= ϕ iff M, s |= ψ.

27

Some CTL Formula Equivalences

Just like for LTL, > (read “True”) abbreviates a→ a for some atom a.

∃�∀�ϕ ≡ ∀�∀�ϕ ≡ ∀�ϕ
¬∃©ϕ ≡ ∀©¬ϕ
¬∃♦ϕ ≡ ∀�¬ϕ
¬∃�ϕ ≡ ∀♦¬ϕ
∀♦ϕ ≡ > ∀U ϕ

∃♦ϕ ≡ > ∃U ϕ

ϕ ∀U ψ ≡ ¬((¬ψ ∃U (¬ϕ ∧ ¬ψ)) ∨ ∃�¬ψ)

Homework Exercise. Apply the CTL semantics to prove the above

equivalences.

28

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

Let M = (S ,→, L) be an LTS and s0 ∈ S . We must prove

M, s0 |= ∃�∀�ϕ iff M, s0 |= ∀�ϕ

To this end, we rewrite both sides applying the semantics of CTL connectives.

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∃�∀�ϕ
iff (by the semantics of ∃�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

M, si |= ∀�ϕ
iff (by the semantics of ∀�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

29

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

Let M = (S ,→, L) be an LTS and s0 ∈ S . We must prove

M, s0 |= ∃�∀�ϕ iff M, s0 |= ∀�ϕ

To this end, we rewrite both sides applying the semantics of CTL connectives.

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∃�∀�ϕ
iff (by the semantics of ∃�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

M, si |= ∀�ϕ
iff (by the semantics of ∀�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

29

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

Let M = (S ,→, L) be an LTS and s0 ∈ S . We must prove

M, s0 |= ∃�∀�ϕ iff M, s0 |= ∀�ϕ

To this end, we rewrite both sides applying the semantics of CTL connectives.

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∃�∀�ϕ
iff (by the semantics of ∃�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

M, si |= ∀�ϕ
iff (by the semantics of ∀�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

29

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

Let M = (S ,→, L) be an LTS and s0 ∈ S . We must prove

M, s0 |= ∃�∀�ϕ iff M, s0 |= ∀�ϕ

To this end, we rewrite both sides applying the semantics of CTL connectives.

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∃�∀�ϕ

iff (by the semantics of ∃�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

M, si |= ∀�ϕ
iff (by the semantics of ∀�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

29

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

Let M = (S ,→, L) be an LTS and s0 ∈ S . We must prove

M, s0 |= ∃�∀�ϕ iff M, s0 |= ∀�ϕ

To this end, we rewrite both sides applying the semantics of CTL connectives.

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∃�∀�ϕ
iff (by the semantics of ∃�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

M, si |= ∀�ϕ

iff (by the semantics of ∀�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

29

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

Let M = (S ,→, L) be an LTS and s0 ∈ S . We must prove

M, s0 |= ∃�∀�ϕ iff M, s0 |= ∀�ϕ

To this end, we rewrite both sides applying the semantics of CTL connectives.

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∃�∀�ϕ
iff (by the semantics of ∃�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

M, si |= ∀�ϕ
iff (by the semantics of ∀�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

29

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

Let M = (S ,→, L) be an LTS and s0 ∈ S . We must prove

M, s0 |= ∃�∀�ϕ iff M, s0 |= ∀�ϕ

To this end, we rewrite both sides applying the semantics of CTL connectives.

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∃�∀�ϕ
iff (by the semantics of ∃�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

M, si |= ∀�ϕ
iff (by the semantics of ∀�)

there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

29

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

Let M = (S ,→, L) be an LTS and s0 ∈ S . We must prove

M, s0 |= ∃�∀�ϕ iff M, s0 |= ∀�ϕ

To this end, we rewrite both sides applying the semantics of CTL connectives.

On the one hand, we have the following equivalent statements:

M, s0 |= ∀�ϕ
iff (by the semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

30

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

Let M = (S ,→, L) be an LTS and s0 ∈ S . We must prove

M, s0 |= ∃�∀�ϕ iff M, s0 |= ∀�ϕ

To this end, we rewrite both sides applying the semantics of CTL connectives.

On the one hand, we have the following equivalent statements:

M, s0 |= ∀�ϕ

iff (by the semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

30

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

Let M = (S ,→, L) be an LTS and s0 ∈ S . We must prove

M, s0 |= ∃�∀�ϕ iff M, s0 |= ∀�ϕ

To this end, we rewrite both sides applying the semantics of CTL connectives.

On the one hand, we have the following equivalent statements:

M, s0 |= ∀�ϕ
iff (by the semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

30

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

First, assume (1) and let’s prove (2):

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M) (so s ′0 = s0) and j . We must prove M, s ′j |= ϕ.

Let π = s0s1s2 . . . ∈ Pathss0 (M) be the path obtained from (1).

Applying (1) to 0, π′ and j , we obtain M, s ′j |= ϕ, as desired.

31

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

First, assume (1) and let’s prove (2):

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M) (so s ′0 = s0) and j . We must prove M, s ′j |= ϕ.

Let π = s0s1s2 . . . ∈ Pathss0 (M) be the path obtained from (1).

Applying (1) to 0, π′ and j , we obtain M, s ′j |= ϕ, as desired.

31

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

First, assume (1) and let’s prove (2):

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M) (so s ′0 = s0) and j . We must prove M, s ′j |= ϕ.

Let π = s0s1s2 . . . ∈ Pathss0 (M) be the path obtained from (1).

Applying (1) to 0, π′ and j , we obtain M, s ′j |= ϕ, as desired.

31

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

First, assume (1) and let’s prove (2):

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M) (so s ′0 = s0) and j . We must prove M, s ′j |= ϕ.

Let π = s0s1s2 . . . ∈ Pathss0 (M) be the path obtained from (1).

Applying (1) to 0, π′ and j , we obtain M, s ′j |= ϕ, as desired.

31

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M), for all j , M, s ′j |= ϕ

First, assume (1) and let’s prove (2):

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M) (so s ′0 = s0) and j . We must prove M, s ′j |= ϕ.

Let π = s0s1s2 . . . ∈ Pathss0 (M) be the path obtained from (1).

Applying (1) to 0, π′ and j , we obtain M, s ′j |= ϕ, as desired.

31

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M), for all j , M, s ′j |= ϕ

First, assume (1) and let’s prove (2):

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M) (so s ′0 = s0) and j . We must prove M, s ′j |= ϕ.

Let π = s0s1s2 . . . ∈ Pathss0 (M) be the path obtained from (1).

Applying (1) to 0, π′ and j , we obtain M, s ′j |= ϕ, as desired.

31

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M), for all j , M, s ′j |= ϕ

First, assume (1) and let’s prove (2):

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M) (so s ′0 = s0) and j . We must prove M, s ′j |= ϕ.

Let π = s0s1s2 . . . ∈ Pathss0 (M) be the path obtained from (1).

Applying (1) to 0, π′ and j , we obtain M, s ′j |= ϕ, as desired.

31

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M), for all j , M, s ′j |= ϕ

First, assume (1) and let’s prove (2):

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathss0 (M) (so s ′0 = s0) and j . We must prove M, s ′j |= ϕ.

Let π = s0s1s2 . . . ∈ Pathss0 (M) be the path obtained from (1).

Applying (1) to 0, π′ and j , we obtain M, s ′j |= ϕ, as desired.

31

We know:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s

′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

We show:

(2) for all π′ = s ′0s
′
1s

′
2 . . . ∈ Pathss0 (M), for all j , M, s ′j |= ϕ

32

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

Finally, assume (2) and let’s prove (1):

Take π = s0s1s2 . . . ∈ Pathss0 (M) to be any path starting in s0 (such a path exists

because every state has an outward transition).

Let i , π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M) and j . (Note that s ′0 = si .)

We must prove M, s ′j |= ϕ.

To this end, we apply (2) to the path π′′ = s ′′0 s
′′
1 s
′′
2 . . . ∈ Pathss0 (M) defined as

s0s1 . . . si−1s
′
0s
′
1s
′
2 . . . and to the number i + j , obtaining M, s ′′i+j |= ϕ.

And since s ′′i+j = s ′j , we obtain M, s ′j |= ϕ, as desired.

33

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

Finally, assume (2) and let’s prove (1):

Take π = s0s1s2 . . . ∈ Pathss0 (M) to be any path starting in s0 (such a path exists

because every state has an outward transition).

Let i , π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M) and j . (Note that s ′0 = si .)

We must prove M, s ′j |= ϕ.

To this end, we apply (2) to the path π′′ = s ′′0 s
′′
1 s
′′
2 . . . ∈ Pathss0 (M) defined as

s0s1 . . . si−1s
′
0s
′
1s
′
2 . . . and to the number i + j , obtaining M, s ′′i+j |= ϕ.

And since s ′′i+j = s ′j , we obtain M, s ′j |= ϕ, as desired.

33

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

Finally, assume (2) and let’s prove (1):

Take π = s0s1s2 . . . ∈ Pathss0 (M) to be any path starting in s0 (such a path exists

because every state has an outward transition).

Let i , π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M) and j . (Note that s ′0 = si .)

We must prove M, s ′j |= ϕ.

To this end, we apply (2) to the path π′′ = s ′′0 s
′′
1 s
′′
2 . . . ∈ Pathss0 (M) defined as

s0s1 . . . si−1s
′
0s
′
1s
′
2 . . . and to the number i + j , obtaining M, s ′′i+j |= ϕ.

And since s ′′i+j = s ′j , we obtain M, s ′j |= ϕ, as desired.

33

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

Finally, assume (2) and let’s prove (1):

Take π = s0s1s2 . . . ∈ Pathss0 (M) to be any path starting in s0 (such a path exists

because every state has an outward transition).

Let i , π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M) and j . (Note that s ′0 = si .)

We must prove M, s ′j |= ϕ.

To this end, we apply (2) to the path π′′ = s ′′0 s
′′
1 s
′′
2 . . . ∈ Pathss0 (M) defined as

s0s1 . . . si−1s
′
0s
′
1s
′
2 . . . and to the number i + j , obtaining M, s ′′i+j |= ϕ.

And since s ′′i+j = s ′j , we obtain M, s ′j |= ϕ, as desired.

33

Proving CTL Formula Equivalence

For example, let’s prove ∃�∀�ϕ ≡ ∀�ϕ.

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

Finally, assume (2) and let’s prove (1):

Take π = s0s1s2 . . . ∈ Pathss0 (M) to be any path starting in s0 (such a path exists

because every state has an outward transition).

Let i , π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M) and j . (Note that s ′0 = si .)

We must prove M, s ′j |= ϕ.

To this end, we apply (2) to the path π′′ = s ′′0 s
′′
1 s
′′
2 . . . ∈ Pathss0 (M) defined as

s0s1 . . . si−1s
′
0s
′
1s
′
2 . . . and to the number i + j , obtaining M, s ′′i+j |= ϕ.

And since s ′′i+j = s ′j , we obtain M, s ′j |= ϕ, as desired.

33

We know:

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

We show:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s

′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

This concludes our proof of (2) implies (1),

and also our entire proof of ∃�∀�ϕ ≡ ∀�ϕ.

34

We know:

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ϕ

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

We show:

(1) there exists π = s0s1s2 . . . ∈ Pathss0 (M) such that, for all i ,

for all π′ = s ′0s
′
1s

′
2 . . . ∈ Pathssi (M), for all j , M, s ′j |= ϕ

This concludes our proof of (2) implies (1),

and also our entire proof of ∃�∀�ϕ ≡ ∀�ϕ.
34

CTL Versus LTL

Differences between LTL and CTL

LTL is limited to questions of the form:

• For all paths, does the LTL formula ϕ hold?

• Does there exist a path on which the LTL formula ϕ holds?

(by asking the opposite: whether ¬ϕ holds on all paths)

By contrast, CTL allows mixing in path quantifiers. For example:

∀� (a→ ∃�b)

(For all paths, if a is true on some state then there is a path starting

from that state on which b is always true.) This is not expressible in LTL.

In particular, the LTL formula �(a→ �b) does not express the same

thing. (As we’ll see, the latter is equivalent to ∀� (a→ ∀�b).)

35

Differences between LTL and CTL

LTL is limited to questions of the form:

• For all paths, does the LTL formula ϕ hold?

• Does there exist a path on which the LTL formula ϕ holds?

(by asking the opposite: whether ¬ϕ holds on all paths)

By contrast, CTL allows mixing in path quantifiers. For example:

∀� (a→ ∃�b)

(For all paths, if a is true on some state then there is a path starting

from that state on which b is always true.) This is not expressible in LTL.

In particular, the LTL formula �(a→ �b) does not express the same

thing. (As we’ll see, the latter is equivalent to ∀� (a→ ∀�b).)

35

Differences between LTL and CTL

LTL is limited to questions of the form:

• For all paths, does the LTL formula ϕ hold?

• Does there exist a path on which the LTL formula ϕ holds?

(by asking the opposite: whether ¬ϕ holds on all paths)

By contrast, CTL allows mixing in path quantifiers. For example:

∀� (a→ ∃�b)

(For all paths, if a is true on some state then there is a path starting

from that state on which b is always true.) This is not expressible in LTL.

In particular, the LTL formula �(a→ �b) does not express the same

thing.

(As we’ll see, the latter is equivalent to ∀� (a→ ∀�b).)

35

Differences between LTL and CTL

LTL is limited to questions of the form:

• For all paths, does the LTL formula ϕ hold?

• Does there exist a path on which the LTL formula ϕ holds?

(by asking the opposite: whether ¬ϕ holds on all paths)

By contrast, CTL allows mixing in path quantifiers. For example:

∀� (a→ ∃�b)

(For all paths, if a is true on some state then there is a path starting

from that state on which b is always true.) This is not expressible in LTL.

In particular, the LTL formula �(a→ �b) does not express the same

thing. (As we’ll see, the latter is equivalent to ∀� (a→ ∀�b).)

35

Differences between LTL and CTL

On the other hand, some path properties are impossible to express in CTL.

Intuitively, in CTL we cannot fix a path π and talk about it.

The following formulas do not express the same thing:

• LTL: (�♦a)→ (�♦b)

for all paths π, if a holds infinitely often on π, then b holds infinitely

often on the same π

• CTL: (∀�∀♦a)→ (∀�∀♦b)

if a holds infinitely often on all paths, then b holds infinitely often on all

paths.

Neither CTL can express the first, nor LTL can express the second property.

36

Differences between LTL and CTL

On the other hand, some path properties are impossible to express in CTL.

Intuitively, in CTL we cannot fix a path π and talk about it.

The following formulas do not express the same thing:

• LTL: (�♦a)→ (�♦b)

for all paths π, if a holds infinitely often on π, then b holds infinitely

often on the same π

• CTL: (∀�∀♦a)→ (∀�∀♦b)

if a holds infinitely often on all paths, then b holds infinitely often on all

paths.

Neither CTL can express the first, nor LTL can express the second property.

36

Differences between LTL and CTL

On the other hand, some path properties are impossible to express in CTL.

Intuitively, in CTL we cannot fix a path π and talk about it.

The following formulas do not express the same thing:

• LTL: (�♦a)→ (�♦b)

for all paths π, if a holds infinitely often on π, then b holds infinitely

often on the same π

• CTL: (∀�∀♦a)→ (∀�∀♦b)

if a holds infinitely often on all paths, then b holds infinitely often on all

paths.

Neither CTL can express the first, nor LTL can express the second property.

36

Differences between LTL and CTL

On the other hand, some path properties are impossible to express in CTL.

Intuitively, in CTL we cannot fix a path π and talk about it.

The following formulas do not express the same thing:

• LTL: (�♦a)→ (�♦b)

for all paths π, if a holds infinitely often on π, then b holds infinitely

often on the same π

• CTL: (∀�∀♦a)→ (∀�∀♦b)

if a holds infinitely often on all paths, then b holds infinitely often on all

paths.

Neither CTL can express the first, nor LTL can express the second property.

36

Differences between LTL and CTL

Consider an LTS describing two parallel processes, where, for i ∈ {1, 2}:
ni denotes “process i not in critical section”; ri denotes “process i requesting

to enter critical section”; ci denotes “process i in critical section”

Consider the following properties (which may or may not hold for that LTS):

• The safety property: Only one process at a time may execute critical section

code.

� (¬(c1 ∧ c2))

• The liveness property: Whenever a process, say process 1, requests to enter its

critical section, it will eventually be allowed to do so.

� (r1 → ♦c1)

• The non-blocking property: A process, say process 1, can always request to

enter its critical section

, i.e.: For all states s reachable from the initial state

such that c1 6∈ L(s), there exists a state t reachable from s such that r1 ∈ L(t).

Recall: The first two properties are expressible in LTL whereas the third is not.

But can the third be expressed in CTL? Yes, it can: ∀� (¬ c1 → ∃♦ r1).

How about the other two properties – can they be expressed in CTL?

Yes, they can.

For safety: the CTL ∀� (¬(c1 ∧ c2)) is equivalent to the LTL � (¬(c1 ∧ c2)).

For liveness: the CTL ∀� (r1 → ∀♦c1) is equivalent to the LTL � (r1 → ♦c1).

37

Differences between LTL and CTL

Consider an LTS describing two parallel processes, where, for i ∈ {1, 2}:
ni denotes “process i not in critical section”; ri denotes “process i requesting

to enter critical section”; ci denotes “process i in critical section”

Consider the following properties (which may or may not hold for that LTS):

• The safety property: Only one process at a time may execute critical section

code.

� (¬(c1 ∧ c2))

• The liveness property: Whenever a process, say process 1, requests to enter its

critical section, it will eventually be allowed to do so.

� (r1 → ♦c1)

• The non-blocking property: A process, say process 1, can always request to

enter its critical section

, i.e.: For all states s reachable from the initial state

such that c1 6∈ L(s), there exists a state t reachable from s such that r1 ∈ L(t).

Recall: The first two properties are expressible in LTL whereas the third is not.

But can the third be expressed in CTL? Yes, it can: ∀� (¬ c1 → ∃♦ r1).

How about the other two properties – can they be expressed in CTL?

Yes, they can.

For safety: the CTL ∀� (¬(c1 ∧ c2)) is equivalent to the LTL � (¬(c1 ∧ c2)).

For liveness: the CTL ∀� (r1 → ∀♦c1) is equivalent to the LTL � (r1 → ♦c1).

37

Differences between LTL and CTL

Consider an LTS describing two parallel processes, where, for i ∈ {1, 2}:
ni denotes “process i not in critical section”; ri denotes “process i requesting

to enter critical section”; ci denotes “process i in critical section”

Consider the following properties (which may or may not hold for that LTS):

• The safety property: Only one process at a time may execute critical section

code. � (¬(c1 ∧ c2))

• The liveness property: Whenever a process, say process 1, requests to enter its

critical section, it will eventually be allowed to do so. � (r1 → ♦c1)

• The non-blocking property: A process, say process 1, can always request to

enter its critical section

, i.e.: For all states s reachable from the initial state

such that c1 6∈ L(s), there exists a state t reachable from s such that r1 ∈ L(t).

Recall: The first two properties are expressible in LTL whereas the third is not.

But can the third be expressed in CTL? Yes, it can: ∀� (¬ c1 → ∃♦ r1).

How about the other two properties – can they be expressed in CTL?

Yes, they can.

For safety: the CTL ∀� (¬(c1 ∧ c2)) is equivalent to the LTL � (¬(c1 ∧ c2)).

For liveness: the CTL ∀� (r1 → ∀♦c1) is equivalent to the LTL � (r1 → ♦c1).

37

Differences between LTL and CTL

Consider an LTS describing two parallel processes, where, for i ∈ {1, 2}:
ni denotes “process i not in critical section”; ri denotes “process i requesting

to enter critical section”; ci denotes “process i in critical section”

Consider the following properties (which may or may not hold for that LTS):

• The safety property: Only one process at a time may execute critical section

code. � (¬(c1 ∧ c2))

• The liveness property: Whenever a process, say process 1, requests to enter its

critical section, it will eventually be allowed to do so. � (r1 → ♦c1)

• The non-blocking property: A process, say process 1, can always request to

enter its critical section

, i.e.: For all states s reachable from the initial state

such that c1 6∈ L(s), there exists a state t reachable from s such that r1 ∈ L(t).

Recall: The first two properties are expressible in LTL whereas the third is not.

But can the third be expressed in CTL?

Yes, it can: ∀� (¬ c1 → ∃♦ r1).

How about the other two properties – can they be expressed in CTL?

Yes, they can.

For safety: the CTL ∀� (¬(c1 ∧ c2)) is equivalent to the LTL � (¬(c1 ∧ c2)).

For liveness: the CTL ∀� (r1 → ∀♦c1) is equivalent to the LTL � (r1 → ♦c1).

37

Differences between LTL and CTL

Consider an LTS describing two parallel processes, where, for i ∈ {1, 2}:
ni denotes “process i not in critical section”; ri denotes “process i requesting

to enter critical section”; ci denotes “process i in critical section”

Consider the following properties (which may or may not hold for that LTS):

• The safety property: Only one process at a time may execute critical section

code. � (¬(c1 ∧ c2))

• The liveness property: Whenever a process, say process 1, requests to enter its

critical section, it will eventually be allowed to do so. � (r1 → ♦c1)

• The non-blocking property: A process, say process 1, can always request to

enter its critical section, i.e.: For all states s reachable from the initial state

such that c1 6∈ L(s), there exists a state t reachable from s such that r1 ∈ L(t).

Recall: The first two properties are expressible in LTL whereas the third is not.

But can the third be expressed in CTL?

Yes, it can: ∀� (¬ c1 → ∃♦ r1).

How about the other two properties – can they be expressed in CTL?

Yes, they can.

For safety: the CTL ∀� (¬(c1 ∧ c2)) is equivalent to the LTL � (¬(c1 ∧ c2)).

For liveness: the CTL ∀� (r1 → ∀♦c1) is equivalent to the LTL � (r1 → ♦c1).

37

Differences between LTL and CTL

Consider an LTS describing two parallel processes, where, for i ∈ {1, 2}:
ni denotes “process i not in critical section”; ri denotes “process i requesting

to enter critical section”; ci denotes “process i in critical section”

Consider the following properties (which may or may not hold for that LTS):

• The safety property: Only one process at a time may execute critical section

code. � (¬(c1 ∧ c2))

• The liveness property: Whenever a process, say process 1, requests to enter its

critical section, it will eventually be allowed to do so. � (r1 → ♦c1)

• The non-blocking property: A process, say process 1, can always request to

enter its critical section, i.e.: For all states s reachable from the initial state

such that c1 6∈ L(s), there exists a state t reachable from s such that r1 ∈ L(t).

Recall: The first two properties are expressible in LTL whereas the third is not.

But can the third be expressed in CTL? Yes, it can: ∀� (¬ c1 → ∃♦ r1).

How about the other two properties – can they be expressed in CTL?

Yes, they can.

For safety: the CTL ∀� (¬(c1 ∧ c2)) is equivalent to the LTL � (¬(c1 ∧ c2)).

For liveness: the CTL ∀� (r1 → ∀♦c1) is equivalent to the LTL � (r1 → ♦c1).

37

Differences between LTL and CTL

Consider an LTS describing two parallel processes, where, for i ∈ {1, 2}:
ni denotes “process i not in critical section”; ri denotes “process i requesting

to enter critical section”; ci denotes “process i in critical section”

Consider the following properties (which may or may not hold for that LTS):

• The safety property: Only one process at a time may execute critical section

code. � (¬(c1 ∧ c2))

• The liveness property: Whenever a process, say process 1, requests to enter its

critical section, it will eventually be allowed to do so. � (r1 → ♦c1)

• The non-blocking property: A process, say process 1, can always request to

enter its critical section, i.e.: For all states s reachable from the initial state

such that c1 6∈ L(s), there exists a state t reachable from s such that r1 ∈ L(t).

Recall: The first two properties are expressible in LTL whereas the third is not.

But can the third be expressed in CTL? Yes, it can: ∀� (¬ c1 → ∃♦ r1).

How about the other two properties – can they be expressed in CTL?

Yes, they can.

For safety: the CTL ∀� (¬(c1 ∧ c2)) is equivalent to the LTL � (¬(c1 ∧ c2)).

For liveness: the CTL ∀� (r1 → ∀♦c1) is equivalent to the LTL � (r1 → ♦c1).

37

Differences between LTL and CTL

Consider an LTS describing two parallel processes, where, for i ∈ {1, 2}:
ni denotes “process i not in critical section”; ri denotes “process i requesting

to enter critical section”; ci denotes “process i in critical section”

Consider the following properties (which may or may not hold for that LTS):

• The safety property: Only one process at a time may execute critical section

code. � (¬(c1 ∧ c2))

• The liveness property: Whenever a process, say process 1, requests to enter its

critical section, it will eventually be allowed to do so. � (r1 → ♦c1)

• The non-blocking property: A process, say process 1, can always request to

enter its critical section, i.e.: For all states s reachable from the initial state

such that c1 6∈ L(s), there exists a state t reachable from s such that r1 ∈ L(t).

Recall: The first two properties are expressible in LTL whereas the third is not.

But can the third be expressed in CTL? Yes, it can: ∀� (¬ c1 → ∃♦ r1).

How about the other two properties – can they be expressed in CTL?

Yes, they can.

For safety: the CTL ∀� (¬(c1 ∧ c2)) is equivalent to the LTL � (¬(c1 ∧ c2)).

For liveness: the CTL ∀� (r1 → ∀♦c1) is equivalent to the LTL � (r1 → ♦c1).

37

Differences between LTL and CTL

Consider an LTS describing two parallel processes, where, for i ∈ {1, 2}:
ni denotes “process i not in critical section”; ri denotes “process i requesting

to enter critical section”; ci denotes “process i in critical section”

Consider the following properties (which may or may not hold for that LTS):

• The safety property: Only one process at a time may execute critical section

code. � (¬(c1 ∧ c2))

• The liveness property: Whenever a process, say process 1, requests to enter its

critical section, it will eventually be allowed to do so. � (r1 → ♦c1)

• The non-blocking property: A process, say process 1, can always request to

enter its critical section, i.e.: For all states s reachable from the initial state

such that c1 6∈ L(s), there exists a state t reachable from s such that r1 ∈ L(t).

Recall: The first two properties are expressible in LTL whereas the third is not.

But can the third be expressed in CTL? Yes, it can: ∀� (¬ c1 → ∃♦ r1).

How about the other two properties – can they be expressed in CTL?

Yes, they can.

For safety: the CTL ∀� (¬(c1 ∧ c2)) is equivalent to the LTL � (¬(c1 ∧ c2)).

For liveness: the CTL ∀� (r1 → ∀♦c1) is equivalent to the LTL � (r1 → ♦c1). 37

Equivalence Relation between CTL and LTL Formulas

Defined similarly to CTL formula equivalence.

Let ϕ be a CTL formula, and let ψ be an LTL formula.

ϕ and ψ are said to

be equivalent if they are satisfied by (i.e., hold for) exactly the same LTSs in

the same states: Given any LTS M = (S ,→, L) and any s ∈ S , we have that

M, s |= ϕ (in CTL) iff M, s |= ψ (in LTL).

38

Equivalence Relation between CTL and LTL Formulas

Defined similarly to CTL formula equivalence.

Let ϕ be a CTL formula, and let ψ be an LTL formula. ϕ and ψ are said to

be equivalent if they are satisfied by (i.e., hold for) exactly the same LTSs in

the same states

: Given any LTS M = (S ,→, L) and any s ∈ S , we have that

M, s |= ϕ (in CTL) iff M, s |= ψ (in LTL).

38

Equivalence Relation between CTL and LTL Formulas

Defined similarly to CTL formula equivalence.

Let ϕ be a CTL formula, and let ψ be an LTL formula. ϕ and ψ are said to

be equivalent if they are satisfied by (i.e., hold for) exactly the same LTSs in

the same states: Given any LTS M = (S ,→, L) and any s ∈ S , we have that

M, s |= ϕ (in CTL) iff M, s |= ψ (in LTL).

38

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (¬(c1 ∧ c2)) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (¬(c1 ∧ c2)).

Let M = (S ,→, L) be an LTS and s0 ∈ S . We have the following chain of

equivalent statements:

M, s0 |= ∀� (¬(c1 ∧ c2)) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ¬(c1 ∧ c2) in CTL

iff (by the CTL semantics of ¬, ∧ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , not [c1 ∈ L(si) and c2 ∈ L(si)]

iff (by the LTL semantics of ¬, ∧ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L ¬(c1 ∧ c2) in LTL

iff (by the LTL semantics of �, on sequences)Remember: πi is the i ’th suffix of π.

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (¬(c1 ∧ c2)) in LTL

iff (by the LTL semantics on LTSs)

M, s0 |= � (¬(c1 ∧ c2)) in LTL

39

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (¬(c1 ∧ c2)) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (¬(c1 ∧ c2)).

Let M = (S ,→, L) be an LTS and s0 ∈ S . We have the following chain of

equivalent statements:

M, s0 |= ∀� (¬(c1 ∧ c2)) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ¬(c1 ∧ c2) in CTL

iff (by the CTL semantics of ¬, ∧ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , not [c1 ∈ L(si) and c2 ∈ L(si)]

iff (by the LTL semantics of ¬, ∧ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L ¬(c1 ∧ c2) in LTL

iff (by the LTL semantics of �, on sequences)Remember: πi is the i ’th suffix of π.

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (¬(c1 ∧ c2)) in LTL

iff (by the LTL semantics on LTSs)

M, s0 |= � (¬(c1 ∧ c2)) in LTL

39

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (¬(c1 ∧ c2)) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (¬(c1 ∧ c2)).

Let M = (S ,→, L) be an LTS and s0 ∈ S . We have the following chain of

equivalent statements:

M, s0 |= ∀� (¬(c1 ∧ c2)) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ¬(c1 ∧ c2) in CTL

iff (by the CTL semantics of ¬, ∧ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , not [c1 ∈ L(si) and c2 ∈ L(si)]

iff (by the LTL semantics of ¬, ∧ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L ¬(c1 ∧ c2) in LTL

iff (by the LTL semantics of �, on sequences)Remember: πi is the i ’th suffix of π.

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (¬(c1 ∧ c2)) in LTL

iff (by the LTL semantics on LTSs)

M, s0 |= � (¬(c1 ∧ c2)) in LTL

39

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (¬(c1 ∧ c2)) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (¬(c1 ∧ c2)).

Let M = (S ,→, L) be an LTS and s0 ∈ S . We have the following chain of

equivalent statements:

M, s0 |= ∀� (¬(c1 ∧ c2)) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ¬(c1 ∧ c2) in CTL

iff (by the CTL semantics of ¬, ∧ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , not [c1 ∈ L(si) and c2 ∈ L(si)]

iff (by the LTL semantics of ¬, ∧ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L ¬(c1 ∧ c2) in LTL

iff (by the LTL semantics of �, on sequences)Remember: πi is the i ’th suffix of π.

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (¬(c1 ∧ c2)) in LTL

iff (by the LTL semantics on LTSs)

M, s0 |= � (¬(c1 ∧ c2)) in LTL

39

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (¬(c1 ∧ c2)) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (¬(c1 ∧ c2)).

Let M = (S ,→, L) be an LTS and s0 ∈ S . We have the following chain of

equivalent statements:

M, s0 |= ∀� (¬(c1 ∧ c2)) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ¬(c1 ∧ c2) in CTL

iff (by the CTL semantics of ¬, ∧ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , not [c1 ∈ L(si) and c2 ∈ L(si)]

iff (by the LTL semantics of ¬, ∧ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L ¬(c1 ∧ c2) in LTL

iff (by the LTL semantics of �, on sequences)Remember: πi is the i ’th suffix of π.

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (¬(c1 ∧ c2)) in LTL

iff (by the LTL semantics on LTSs)

M, s0 |= � (¬(c1 ∧ c2)) in LTL

39

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (¬(c1 ∧ c2)) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (¬(c1 ∧ c2)).

Let M = (S ,→, L) be an LTS and s0 ∈ S . We have the following chain of

equivalent statements:

M, s0 |= ∀� (¬(c1 ∧ c2)) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ¬(c1 ∧ c2) in CTL

iff (by the CTL semantics of ¬, ∧ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , not [c1 ∈ L(si) and c2 ∈ L(si)]

iff (by the LTL semantics of ¬, ∧ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L ¬(c1 ∧ c2) in LTL

iff (by the LTL semantics of �, on sequences)

Remember: πi is the i ’th suffix of π.

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (¬(c1 ∧ c2)) in LTL

iff (by the LTL semantics on LTSs)

M, s0 |= � (¬(c1 ∧ c2)) in LTL

39

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (¬(c1 ∧ c2)) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (¬(c1 ∧ c2)).

Let M = (S ,→, L) be an LTS and s0 ∈ S . We have the following chain of

equivalent statements:

M, s0 |= ∀� (¬(c1 ∧ c2)) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ¬(c1 ∧ c2) in CTL

iff (by the CTL semantics of ¬, ∧ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , not [c1 ∈ L(si) and c2 ∈ L(si)]

iff (by the LTL semantics of ¬, ∧ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L ¬(c1 ∧ c2) in LTL

iff (by the LTL semantics of �, on sequences)

Remember: πi is the i ’th suffix of π.

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (¬(c1 ∧ c2)) in LTL

iff (by the LTL semantics on LTSs)

M, s0 |= � (¬(c1 ∧ c2)) in LTL

39

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (¬(c1 ∧ c2)) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (¬(c1 ∧ c2)).

Let M = (S ,→, L) be an LTS and s0 ∈ S . We have the following chain of

equivalent statements:

M, s0 |= ∀� (¬(c1 ∧ c2)) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ¬(c1 ∧ c2) in CTL

iff (by the CTL semantics of ¬, ∧ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , not [c1 ∈ L(si) and c2 ∈ L(si)]

iff (by the LTL semantics of ¬, ∧ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L ¬(c1 ∧ c2) in LTL

iff (by the LTL semantics of �, on sequences)

Remember: πi is the i ’th suffix of π.

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (¬(c1 ∧ c2)) in LTL

iff (by the LTL semantics on LTSs)

M, s0 |= � (¬(c1 ∧ c2)) in LTL

39

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (¬(c1 ∧ c2)) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (¬(c1 ∧ c2)).

Let M = (S ,→, L) be an LTS and s0 ∈ S . We have the following chain of

equivalent statements:

M, s0 |= ∀� (¬(c1 ∧ c2)) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= ¬(c1 ∧ c2) in CTL

iff (by the CTL semantics of ¬, ∧ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , not [c1 ∈ L(si) and c2 ∈ L(si)]

iff (by the LTL semantics of ¬, ∧ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L ¬(c1 ∧ c2) in LTL

iff (by the LTL semantics of �, on sequences)

Remember: πi is the i ’th suffix of π.

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (¬(c1 ∧ c2)) in LTL

iff (by the LTL semantics on LTSs)

M, s0 |= � (¬(c1 ∧ c2)) in LTL

39

Proving CTL–LTL Formula Equivalence

Now let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is

satisfied by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∀� (r1 → ∀♦c1) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= r1 → ∀♦c1 in CTL

iff (by the CTL semantics of → and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then M, si |= ∀♦c1 in CTL

iff (by the CTL semantics of ∀♦ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

40

Proving CTL–LTL Formula Equivalence

Now let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is

satisfied by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∀� (r1 → ∀♦c1) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= r1 → ∀♦c1 in CTL

iff (by the CTL semantics of → and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then M, si |= ∀♦c1 in CTL

iff (by the CTL semantics of ∀♦ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

40

Proving CTL–LTL Formula Equivalence

Now let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is

satisfied by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∀� (r1 → ∀♦c1) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= r1 → ∀♦c1 in CTL

iff (by the CTL semantics of → and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then M, si |= ∀♦c1 in CTL

iff (by the CTL semantics of ∀♦ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

40

Proving CTL–LTL Formula Equivalence

Now let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is

satisfied by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∀� (r1 → ∀♦c1) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= r1 → ∀♦c1 in CTL

iff (by the CTL semantics of → and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then M, si |= ∀♦c1 in CTL

iff (by the CTL semantics of ∀♦ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

40

Proving CTL–LTL Formula Equivalence

Now let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is

satisfied by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∀� (r1 → ∀♦c1) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= r1 → ∀♦c1 in CTL

iff (by the CTL semantics of → and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then M, si |= ∀♦c1 in CTL

iff (by the CTL semantics of ∀♦ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

40

Proving CTL–LTL Formula Equivalence

Now let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is

satisfied by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∀� (r1 → ∀♦c1) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= r1 → ∀♦c1 in CTL

iff (by the CTL semantics of → and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then M, si |= ∀♦c1 in CTL

iff (by the CTL semantics of ∀♦ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

40

Proving CTL–LTL Formula Equivalence

Now let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is

satisfied by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the one hand, we have the following chain of equivalent statements:

M, s0 |= ∀� (r1 → ∀♦c1) in CTL

iff (by the CTL semantics of ∀�)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , M, si |= r1 → ∀♦c1 in CTL

iff (by the CTL semantics of → and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then M, si |= ∀♦c1 in CTL

iff (by the CTL semantics of ∀♦ and atoms)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

40

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the other hand, we have the following chain of equivalent statements:

M, s0 |= � (r1 → ♦c1) in LTL

iff (by the LTL semantics on LTSs)

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (r1 → ♦c1) in LTL

iff (by the LTL semantics of �, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L r1 → ♦c1 in LTL

iff (by the LTL semantics of → and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then πi |=L ♦c1 in LTL

iff (by the LTL semantics of ♦ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

41

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the other hand, we have the following chain of equivalent statements:

M, s0 |= � (r1 → ♦c1) in LTL

iff (by the LTL semantics on LTSs)

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (r1 → ♦c1) in LTL

iff (by the LTL semantics of �, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L r1 → ♦c1 in LTL

iff (by the LTL semantics of → and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then πi |=L ♦c1 in LTL

iff (by the LTL semantics of ♦ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

41

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the other hand, we have the following chain of equivalent statements:

M, s0 |= � (r1 → ♦c1) in LTL

iff (by the LTL semantics on LTSs)

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (r1 → ♦c1) in LTL

iff (by the LTL semantics of �, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L r1 → ♦c1 in LTL

iff (by the LTL semantics of → and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then πi |=L ♦c1 in LTL

iff (by the LTL semantics of ♦ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

41

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the other hand, we have the following chain of equivalent statements:

M, s0 |= � (r1 → ♦c1) in LTL

iff (by the LTL semantics on LTSs)

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (r1 → ♦c1) in LTL

iff (by the LTL semantics of �, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L r1 → ♦c1 in LTL

iff (by the LTL semantics of → and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then πi |=L ♦c1 in LTL

iff (by the LTL semantics of ♦ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

41

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the other hand, we have the following chain of equivalent statements:

M, s0 |= � (r1 → ♦c1) in LTL

iff (by the LTL semantics on LTSs)

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (r1 → ♦c1) in LTL

iff (by the LTL semantics of �, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L r1 → ♦c1 in LTL

iff (by the LTL semantics of → and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then πi |=L ♦c1 in LTL

iff (by the LTL semantics of ♦ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

41

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the other hand, we have the following chain of equivalent statements:

M, s0 |= � (r1 → ♦c1) in LTL

iff (by the LTL semantics on LTSs)

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (r1 → ♦c1) in LTL

iff (by the LTL semantics of �, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L r1 → ♦c1 in LTL

iff (by the LTL semantics of → and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then πi |=L ♦c1 in LTL

iff (by the LTL semantics of ♦ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j) 41

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

Let M = (S ,→, L) be an LTS and s0 ∈ S .

On the other hand, we have the following chain of equivalent statements:

M, s0 |= � (r1 → ♦c1) in LTL

iff (by the LTL semantics on LTSs)

for all π = s0s1s2 . . . ∈ Pathss0 (M), π |=L � (r1 → ♦c1) in LTL

iff (by the LTL semantics of �, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i , πi |=L r1 → ♦c1 in LTL

iff (by the LTL semantics of → and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then πi |=L ♦c1 in LTL

iff (by the LTL semantics of ♦ and atoms, on sequences)

for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j) 41

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

First, assume (1) and let’s prove (2):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Take π′ = s ′0s
′
1s
′
2 . . . to be πi . Then π′ ∈ Pathssi (M) and, for all j , s ′j = si+j .

By (1) applied to π, i and π′, we obtain j such that c1 ∈ L(s ′j), i.e., c1 ∈ L(si+j).

42

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

First, assume (1) and let’s prove (2):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Take π′ = s ′0s
′
1s
′
2 . . . to be πi . Then π′ ∈ Pathssi (M) and, for all j , s ′j = si+j .

By (1) applied to π, i and π′, we obtain j such that c1 ∈ L(s ′j), i.e., c1 ∈ L(si+j).

42

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

First, assume (1) and let’s prove (2):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Take π′ = s ′0s
′
1s
′
2 . . . to be πi . Then π′ ∈ Pathssi (M) and, for all j , s ′j = si+j .

By (1) applied to π, i and π′, we obtain j such that c1 ∈ L(s ′j), i.e., c1 ∈ L(si+j).

42

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

First, assume (1) and let’s prove (2):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Take π′ = s ′0s
′
1s
′
2 . . . to be πi .

Then π′ ∈ Pathssi (M) and, for all j , s ′j = si+j .

By (1) applied to π, i and π′, we obtain j such that c1 ∈ L(s ′j), i.e., c1 ∈ L(si+j).

42

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

First, assume (1) and let’s prove (2):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Take π′ = s ′0s
′
1s
′
2 . . . to be πi . Then π′ ∈ Pathssi (M) and, for all j , s ′j = si+j .

By (1) applied to π, i and π′, we obtain j such that c1 ∈ L(s ′j), i.e., c1 ∈ L(si+j).

42

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

First, assume (1) and let’s prove (2):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Take π′ = s ′0s
′
1s
′
2 . . . to be πi . Then π′ ∈ Pathssi (M) and, for all j , s ′j = si+j .

By (1) applied to π, i and π′, we obtain j such that c1 ∈ L(s ′j),

i.e., c1 ∈ L(si+j).

42

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

First, assume (1) and let’s prove (2):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Take π′ = s ′0s
′
1s
′
2 . . . to be πi . Then π′ ∈ Pathssi (M) and, for all j , s ′j = si+j .

By (1) applied to π, i and π′, we obtain j such that c1 ∈ L(s ′j), i.e., c1 ∈ L(si+j).

42

We know:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s

′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

We show:

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j) 43

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

Finally, assume (2) and let’s prove (1):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M). (Note that s ′0 = si .)

Take π′′ = s ′′0 s
′′
1 s
′′
2 . . . to be s0s1 . . . si−1s

′
0s
′
1s
′
2 . . .

Then π′′ ∈ Pathss0 (M), r1 ∈ L(s ′′i) and, for all j , s ′′i+j = s ′j .

By (2) applied to π′′ and i , we obtain j such that c1 ∈ L(s ′′i+j) , i.e., c1 ∈ L(s ′j).

44

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

Finally, assume (2) and let’s prove (1):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M). (Note that s ′0 = si .)

Take π′′ = s ′′0 s
′′
1 s
′′
2 . . . to be s0s1 . . . si−1s

′
0s
′
1s
′
2 . . .

Then π′′ ∈ Pathss0 (M), r1 ∈ L(s ′′i) and, for all j , s ′′i+j = s ′j .

By (2) applied to π′′ and i , we obtain j such that c1 ∈ L(s ′′i+j) , i.e., c1 ∈ L(s ′j).

44

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

Finally, assume (2) and let’s prove (1):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M).

(Note that s ′0 = si .)

Take π′′ = s ′′0 s
′′
1 s
′′
2 . . . to be s0s1 . . . si−1s

′
0s
′
1s
′
2 . . .

Then π′′ ∈ Pathss0 (M), r1 ∈ L(s ′′i) and, for all j , s ′′i+j = s ′j .

By (2) applied to π′′ and i , we obtain j such that c1 ∈ L(s ′′i+j) , i.e., c1 ∈ L(s ′j).

44

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

Finally, assume (2) and let’s prove (1):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M). (Note that s ′0 = si .)

Take π′′ = s ′′0 s
′′
1 s
′′
2 . . . to be s0s1 . . . si−1s

′
0s
′
1s
′
2 . . .

Then π′′ ∈ Pathss0 (M), r1 ∈ L(s ′′i) and, for all j , s ′′i+j = s ′j .

By (2) applied to π′′ and i , we obtain j such that c1 ∈ L(s ′′i+j) , i.e., c1 ∈ L(s ′j).

44

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

Finally, assume (2) and let’s prove (1):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M). (Note that s ′0 = si .)

Take π′′ = s ′′0 s
′′
1 s
′′
2 . . . to be s0s1 . . . si−1s

′
0s
′
1s
′
2 . . .

Then π′′ ∈ Pathss0 (M), r1 ∈ L(s ′′i) and, for all j , s ′′i+j = s ′j .

By (2) applied to π′′ and i , we obtain j such that c1 ∈ L(s ′′i+j) , i.e., c1 ∈ L(s ′j).

44

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

Finally, assume (2) and let’s prove (1):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M). (Note that s ′0 = si .)

Take π′′ = s ′′0 s
′′
1 s
′′
2 . . . to be s0s1 . . . si−1s

′
0s
′
1s
′
2 . . .

Then π′′ ∈ Pathss0 (M), r1 ∈ L(s ′′i) and, for all j , s ′′i+j = s ′j .

By (2) applied to π′′ and i , we obtain j such that c1 ∈ L(s ′′i+j) , i.e., c1 ∈ L(s ′j).

44

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

Finally, assume (2) and let’s prove (1):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M). (Note that s ′0 = si .)

Take π′′ = s ′′0 s
′′
1 s
′′
2 . . . to be s0s1 . . . si−1s

′
0s
′
1s
′
2 . . .

Then π′′ ∈ Pathss0 (M), r1 ∈ L(s ′′i) and, for all j , s ′′i+j = s ′j .

By (2) applied to π′′ and i , we obtain j such that c1 ∈ L(s ′′i+j) ,

i.e., c1 ∈ L(s ′j).

44

Proving CTL–LTL Formula Equivalence

Let’s prove that the CTL formula ∀� (r1 → ∀♦c1) is equivalent to (i.e., is satisfied

by the same LTSs in the same states as) the LTL formula � (r1 → ♦c1).

So, given an LTS M = (S ,→, L) and s0 ∈ S , we are left the prove that the

following statements are equivalent:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j)

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

Finally, assume (2) and let’s prove (1):

Let π = s0s1s2 . . . ∈ Pathss0 (M) and i , and assume r1 ∈ L(si).

Let π′ = s ′0s
′
1s
′
2 . . . ∈ Pathssi (M). (Note that s ′0 = si .)

Take π′′ = s ′′0 s
′′
1 s
′′
2 . . . to be s0s1 . . . si−1s

′
0s
′
1s
′
2 . . .

Then π′′ ∈ Pathss0 (M), r1 ∈ L(s ′′i) and, for all j , s ′′i+j = s ′j .

By (2) applied to π′′ and i , we obtain j such that c1 ∈ L(s ′′i+j) , i.e., c1 ∈ L(s ′j).
44

We know:

(2) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

there exists j such that c1 ∈ L(si+j)

•
{{ ##
•

|| ##

•
""

•
|| ""

•
��

•
�� ##•

�� ""

•
��

•
�� ##

•
��

•
�� ""

• • • • • • • •

. .

We show:

(1) for all π = s0s1s2 . . . ∈ Pathss0 (M), for all i ,

if r1 ∈ L(si) then

for all π′ = s ′0s
′
1s

′
2 . . . ∈ Pathssi (M), there exists j such that c1 ∈ L(s ′j) 45

CTL Model Checking

(Very Briefly)

CTL Model Checking Problem

Let M = (S ,→, L) be an LTS, s0 ∈ S , and ϕ a CTL formula.

The CTL model checking problem is to determine whether M, s0 |= ϕ, i.e., whether

M satisfies ϕ in state s0.

Theorem. The CTL model checking problem is algorithmically decidable in time and

space complexity O(|M| × |ϕ|), where |M| is defined as |S | + |→|.

Idea: Traverse the formula ϕ by structural recursion, labeling with ϕ all the states s
for which ϕ holds (i.e., M, s |= ϕ). For example:

• If ϕ is an atom a, then we label s with ϕ just in case a ∈ L(s).

• If ϕ has the form ϕ1 ∧ ϕ2, then we label s with ϕ just in case s is already labeled with

both ϕ1 and ϕ2.

• If ϕ has the form ∃�ϕ, then, by fixpoint iteration, we label all states that belong to

the largest subset T of S with the following properties:

• all states in T are already labeled with ϕ;

• if s ∈ T , then there exists s ′ such as s → s ′ and s ′ ∈ T .

Main lemma: Characterization of the CTL connectives’ semantics by means of least

and greatest fixpoints of suitable operators on P(S).

Not covered in these lectures – see Section 6.4 of Baier & Katoen’s “Principles of

Model Checking” (MIT Press 2008). Simpler than LTL model checking!

46

CTL Model Checking Problem

Let M = (S ,→, L) be an LTS, s0 ∈ S , and ϕ a CTL formula.

The CTL model checking problem is to determine whether M, s0 |= ϕ, i.e., whether

M satisfies ϕ in state s0.

Theorem. The CTL model checking problem is algorithmically decidable in time and

space complexity O(|M| × |ϕ|), where |M| is defined as |S | + |→|.

Idea: Traverse the formula ϕ by structural recursion, labeling with ϕ all the states s
for which ϕ holds (i.e., M, s |= ϕ). For example:

• If ϕ is an atom a, then we label s with ϕ just in case a ∈ L(s).

• If ϕ has the form ϕ1 ∧ ϕ2, then we label s with ϕ just in case s is already labeled with

both ϕ1 and ϕ2.

• If ϕ has the form ∃�ϕ, then, by fixpoint iteration, we label all states that belong to

the largest subset T of S with the following properties:

• all states in T are already labeled with ϕ;

• if s ∈ T , then there exists s ′ such as s → s ′ and s ′ ∈ T .

Main lemma: Characterization of the CTL connectives’ semantics by means of least

and greatest fixpoints of suitable operators on P(S).

Not covered in these lectures – see Section 6.4 of Baier & Katoen’s “Principles of

Model Checking” (MIT Press 2008). Simpler than LTL model checking!

46

CTL Model Checking Problem

Let M = (S ,→, L) be an LTS, s0 ∈ S , and ϕ a CTL formula.

The CTL model checking problem is to determine whether M, s0 |= ϕ, i.e., whether

M satisfies ϕ in state s0.

Theorem. The CTL model checking problem is algorithmically decidable in time and

space complexity O(|M| × |ϕ|), where |M| is defined as |S | + |→|.

Idea: Traverse the formula ϕ by structural recursion, labeling with ϕ all the states s
for which ϕ holds (i.e., M, s |= ϕ).

For example:

• If ϕ is an atom a, then we label s with ϕ just in case a ∈ L(s).

• If ϕ has the form ϕ1 ∧ ϕ2, then we label s with ϕ just in case s is already labeled with

both ϕ1 and ϕ2.

• If ϕ has the form ∃�ϕ, then, by fixpoint iteration, we label all states that belong to

the largest subset T of S with the following properties:

• all states in T are already labeled with ϕ;

• if s ∈ T , then there exists s ′ such as s → s ′ and s ′ ∈ T .

Main lemma: Characterization of the CTL connectives’ semantics by means of least

and greatest fixpoints of suitable operators on P(S).

Not covered in these lectures – see Section 6.4 of Baier & Katoen’s “Principles of

Model Checking” (MIT Press 2008). Simpler than LTL model checking!

46

CTL Model Checking Problem

Let M = (S ,→, L) be an LTS, s0 ∈ S , and ϕ a CTL formula.

The CTL model checking problem is to determine whether M, s0 |= ϕ, i.e., whether

M satisfies ϕ in state s0.

Theorem. The CTL model checking problem is algorithmically decidable in time and

space complexity O(|M| × |ϕ|), where |M| is defined as |S | + |→|.

Idea: Traverse the formula ϕ by structural recursion, labeling with ϕ all the states s
for which ϕ holds (i.e., M, s |= ϕ). For example:

• If ϕ is an atom a, then we label s with ϕ just in case a ∈ L(s).

• If ϕ has the form ϕ1 ∧ ϕ2, then we label s with ϕ just in case s is already labeled with

both ϕ1 and ϕ2.

• If ϕ has the form ∃�ϕ, then, by fixpoint iteration, we label all states that belong to

the largest subset T of S with the following properties:

• all states in T are already labeled with ϕ;

• if s ∈ T , then there exists s ′ such as s → s ′ and s ′ ∈ T .

Main lemma: Characterization of the CTL connectives’ semantics by means of least

and greatest fixpoints of suitable operators on P(S).

Not covered in these lectures – see Section 6.4 of Baier & Katoen’s “Principles of

Model Checking” (MIT Press 2008). Simpler than LTL model checking!

46

CTL Model Checking Problem

Let M = (S ,→, L) be an LTS, s0 ∈ S , and ϕ a CTL formula.

The CTL model checking problem is to determine whether M, s0 |= ϕ, i.e., whether

M satisfies ϕ in state s0.

Theorem. The CTL model checking problem is algorithmically decidable in time and

space complexity O(|M| × |ϕ|), where |M| is defined as |S | + |→|.

Idea: Traverse the formula ϕ by structural recursion, labeling with ϕ all the states s
for which ϕ holds (i.e., M, s |= ϕ). For example:

• If ϕ is an atom a, then we label s with ϕ just in case a ∈ L(s).

• If ϕ has the form ϕ1 ∧ ϕ2, then we label s with ϕ just in case s is already labeled with

both ϕ1 and ϕ2.

• If ϕ has the form ∃�ϕ, then, by fixpoint iteration, we label all states that belong to

the largest subset T of S with the following properties:

• all states in T are already labeled with ϕ;

• if s ∈ T , then there exists s ′ such as s → s ′ and s ′ ∈ T .

Main lemma: Characterization of the CTL connectives’ semantics by means of least

and greatest fixpoints of suitable operators on P(S).

Not covered in these lectures – see Section 6.4 of Baier & Katoen’s “Principles of

Model Checking” (MIT Press 2008). Simpler than LTL model checking!

46

CTL Model Checking Problem

Let M = (S ,→, L) be an LTS, s0 ∈ S , and ϕ a CTL formula.

The CTL model checking problem is to determine whether M, s0 |= ϕ, i.e., whether

M satisfies ϕ in state s0.

Theorem. The CTL model checking problem is algorithmically decidable in time and

space complexity O(|M| × |ϕ|), where |M| is defined as |S | + |→|.

Idea: Traverse the formula ϕ by structural recursion, labeling with ϕ all the states s
for which ϕ holds (i.e., M, s |= ϕ). For example:

• If ϕ is an atom a, then we label s with ϕ just in case a ∈ L(s).

• If ϕ has the form ϕ1 ∧ ϕ2, then we label s with ϕ just in case s is already labeled with

both ϕ1 and ϕ2.

• If ϕ has the form ∃�ϕ, then, by fixpoint iteration, we label all states that belong to

the largest subset T of S with the following properties:

• all states in T are already labeled with ϕ;

• if s ∈ T , then there exists s ′ such as s → s ′ and s ′ ∈ T .

Main lemma: Characterization of the CTL connectives’ semantics by means of least

and greatest fixpoints of suitable operators on P(S).

Not covered in these lectures – see Section 6.4 of Baier & Katoen’s “Principles of

Model Checking” (MIT Press 2008). Simpler than LTL model checking!

46

CTL Model Checking Problem

Let M = (S ,→, L) be an LTS, s0 ∈ S , and ϕ a CTL formula.

The CTL model checking problem is to determine whether M, s0 |= ϕ, i.e., whether

M satisfies ϕ in state s0.

Theorem. The CTL model checking problem is algorithmically decidable in time and

space complexity O(|M| × |ϕ|), where |M| is defined as |S | + |→|.

Idea: Traverse the formula ϕ by structural recursion, labeling with ϕ all the states s
for which ϕ holds (i.e., M, s |= ϕ). For example:

• If ϕ is an atom a, then we label s with ϕ just in case a ∈ L(s).

• If ϕ has the form ϕ1 ∧ ϕ2, then we label s with ϕ just in case s is already labeled with

both ϕ1 and ϕ2.

• If ϕ has the form ∃�ϕ, then, by fixpoint iteration, we label all states that belong to

the largest subset T of S with the following properties:

• all states in T are already labeled with ϕ;

• if s ∈ T , then there exists s ′ such as s → s ′ and s ′ ∈ T .

Main lemma: Characterization of the CTL connectives’ semantics by means of least

and greatest fixpoints of suitable operators on P(S).

Not covered in these lectures – see Section 6.4 of Baier & Katoen’s “Principles of

Model Checking” (MIT Press 2008). Simpler than LTL model checking!

46

CTL Model Checking Problem

Let M = (S ,→, L) be an LTS, s0 ∈ S , and ϕ a CTL formula.

The CTL model checking problem is to determine whether M, s0 |= ϕ, i.e., whether

M satisfies ϕ in state s0.

Theorem. The CTL model checking problem is algorithmically decidable in time and

space complexity O(|M| × |ϕ|), where |M| is defined as |S | + |→|.

Idea: Traverse the formula ϕ by structural recursion, labeling with ϕ all the states s
for which ϕ holds (i.e., M, s |= ϕ). For example:

• If ϕ is an atom a, then we label s with ϕ just in case a ∈ L(s).

• If ϕ has the form ϕ1 ∧ ϕ2, then we label s with ϕ just in case s is already labeled with

both ϕ1 and ϕ2.

• If ϕ has the form ∃�ϕ, then, by fixpoint iteration, we label all states that belong to

the largest subset T of S with the following properties:

• all states in T are already labeled with ϕ;

• if s ∈ T , then there exists s ′ such as s → s ′ and s ′ ∈ T .

Main lemma: Characterization of the CTL connectives’ semantics by means of least

and greatest fixpoints of suitable operators on P(S).

Not covered in these lectures – see Section 6.4 of Baier & Katoen’s “Principles of

Model Checking” (MIT Press 2008). Simpler than LTL model checking!
46

Ending

Summary of the Discussed Concepts

• CTL = Computation Tree Logic

• Syntax = formulas built from

• atoms

• propositional connectives

• CTL connectives, each consisting of a path quantifier and a temporal

operator

• Semantics = the satisfaction relation defined on LTSs

• Formula equivalence

• CTL versus LTL

• Brief sketch of CTL model checking

47

Further Reading

Section 6 of Baier & Katoen’s “Principles of Model Checking” (MIT Press 2008)

Distinguishes state formulas from path formulas

Writes ∀(ϕUψ) instead of ϕ ∀Uψ, and ∃(ϕUψ) instead of ϕ ∃Uψ

Section 3.4 of Huth & Ryan’s “Logic in Computer Science: Modelling and Reasoning

about Systems” (Cambridge University Press 2004)

Uses different notations for the CTL connectives:

X instead of © , F instead of ♦, G instead of � (just like it does for LTL)

A instead of ∀, E instead of ∃
Hence writes AF instead of ∀♦ , EG instead of ∃� , etc.

Also, A(ϕUψ) instead of ϕ ∀Uψ, and E(ϕUψ) instead of ϕ ∃Uψ

48

	Introduction
	Syntax
	Semantics
	Preliminaries
	The Semantics in Pictures
	The Formal Semantics

	CTL Versus LTL
	CTL Model Checking (Very Briefly)
	Ending

