
4507/ 6507 Software and Hardware Verification

Introduction to LTL

Andrei Popescu

University of Sheffield

These slides contain material from Denisa Diaconescu, Georg Struth and Traian Florin S, erbănut, ă

LTL

LTL = Linear(-time) Temporal Logic

Introduced into computer science by Amir Pnueli in 1977

A logic for reasoning about execution paths of systems

One of the most important logics for software and hardware verification

1

Overview

Syntax: LTL formulas

Semantics: labeled transition systems

Practical specification patterns

Formula equivalence

2

Basic Intuition

• Consider execution paths of a system into the future.

• Label states with atomic propositions p, q, r , . . . that hold along paths at

various points in time.

• LTL formulas can express regular patterns about these propositions as

execution proceeds.

while (x < 3) {
print(“hello”);

if (x == 1) print(“hi”);

if (x == 2) x = 0;

else x++;

}

Let p be “prints hello”,

q be “prints hi”,

r be “x is even”.

Say we start in a state where x is 0.

x ← [0

p,r

// x ←[1

p,q

// x ← [2

p,r

// x ←[0

p,r

// x ← [1

p,q

Always p holds. Always [p implies (q or r)].

Never (q and r) holds. Always eventually q holds.

Can you think of other patterns?

3

Basic Intuition

• Consider execution paths of a system into the future.

• Label states with atomic propositions p, q, r , . . . that hold along paths at

various points in time.

• LTL formulas can express regular patterns about these propositions as

execution proceeds.

while (x < 3) {
print(“hello”);

if (x == 1) print(“hi”);

if (x == 2) x = 0;

else x++;

}

Let p be “prints hello”,

q be “prints hi”,

r be “x is even”.

Say we start in a state where x is 0.

x ← [0

p,r

// x ←[1

p,q

// x ← [2

p,r

// x ←[0

p,r

// x ← [1

p,q

Always p holds. Always [p implies (q or r)].

Never (q and r) holds. Always eventually q holds.

Can you think of other patterns?

3

Basic Intuition

• Consider execution paths of a system into the future.

• Label states with atomic propositions p, q, r , . . . that hold along paths at

various points in time.

• LTL formulas can express regular patterns about these propositions as

execution proceeds.

while (x < 3) {
print(“hello”);

if (x == 1) print(“hi”);

if (x == 2) x = 0;

else x++;

}

Let p be “prints hello”,

q be “prints hi”,

r be “x is even”.

Say we start in a state where x is 0.

x ← [0

p,r

// x ←[1

p,q

// x ← [2

p,r

// x ←[0

p,r

// x ← [1

p,q

Always p holds. Always [p implies (q or r)].

Never (q and r) holds. Always eventually q holds.

Can you think of other patterns?

3

Basic Intuition

• Consider execution paths of a system into the future.

• Label states with atomic propositions p, q, r , . . . that hold along paths at

various points in time.

• LTL formulas can express regular patterns about these propositions as

execution proceeds.

while (x < 3) {
print(“hello”);

if (x == 1) print(“hi”);

if (x == 2) x = 0;

else x++;

}

Let p be “prints hello”,

q be “prints hi”,

r be “x is even”.

Say we start in a state where x is 0.

x ← [0

p,r

// x ←[1

p,q

// x ← [2

p,r

// x ←[0

p,r

// x ← [1

p,q

Always p holds. Always [p implies (q or r)].

Never (q and r) holds. Always eventually q holds.

Can you think of other patterns?

3

Basic Intuition

• Consider execution paths of a system into the future.

• Label states with atomic propositions p, q, r , . . . that hold along paths at

various points in time.

• LTL formulas can express regular patterns about these propositions as

execution proceeds.

while (x < 3) {
print(“hello”);

if (x == 1) print(“hi”);

if (x == 2) x = 0;

else x++;

}

Let p be “prints hello”,

q be “prints hi”,

r be “x is even”.

Say we start in a state where x is 0.

x ← [0

p,r

// x ←[1

p,q

// x ← [2

p,r

// x ←[0

p,r

// x ← [1

p,q

Always p holds.

Always [p implies (q or r)].

Never (q and r) holds. Always eventually q holds.

Can you think of other patterns?

3

Basic Intuition

• Consider execution paths of a system into the future.

• Label states with atomic propositions p, q, r , . . . that hold along paths at

various points in time.

• LTL formulas can express regular patterns about these propositions as

execution proceeds.

while (x < 3) {
print(“hello”);

if (x == 1) print(“hi”);

if (x == 2) x = 0;

else x++;

}

Let p be “prints hello”,

q be “prints hi”,

r be “x is even”.

Say we start in a state where x is 0.

x ← [0

p,r

// x ←[1

p,q

// x ← [2

p,r

// x ←[0

p,r

// x ← [1

p,q

Always p holds. Always [p implies (q or r)].

Never (q and r) holds. Always eventually q holds.

Can you think of other patterns?

3

Basic Intuition

• Consider execution paths of a system into the future.

• Label states with atomic propositions p, q, r , . . . that hold along paths at

various points in time.

• LTL formulas can express regular patterns about these propositions as

execution proceeds.

while (x < 3) {
print(“hello”);

if (x == 1) print(“hi”);

if (x == 2) x = 0;

else x++;

}

Let p be “prints hello”,

q be “prints hi”,

r be “x is even”.

Say we start in a state where x is 0.

x ← [0

p,r

// x ←[1

p,q

// x ← [2

p,r

// x ←[0

p,r

// x ← [1

p,q

Always p holds. Always [p implies (q or r)].

Never (q and r) holds.

Always eventually q holds.

Can you think of other patterns?

3

Basic Intuition

• Consider execution paths of a system into the future.

• Label states with atomic propositions p, q, r , . . . that hold along paths at

various points in time.

• LTL formulas can express regular patterns about these propositions as

execution proceeds.

while (x < 3) {
print(“hello”);

if (x == 1) print(“hi”);

if (x == 2) x = 0;

else x++;

}

Let p be “prints hello”,

q be “prints hi”,

r be “x is even”.

Say we start in a state where x is 0.

x ← [0

p,r

// x ←[1

p,q

// x ← [2

p,r

// x ←[0

p,r

// x ← [1

p,q

Always p holds. Always [p implies (q or r)].

Never (q and r) holds. Always eventually q holds.

Can you think of other patterns?

3

Basic Intuition

• Consider execution paths of a system into the future.

• Label states with atomic propositions p, q, r , . . . that hold along paths at

various points in time.

• LTL formulas can express regular patterns about these propositions as

execution proceeds.

while (x < 3) {
print(“hello”);

if (x == 1) print(“hi”);

if (x == 2) x = 0;

else x++;

}

Let p be “prints hello”,

q be “prints hi”,

r be “x is even”.

Say we start in a state where x is 0.

x ← [0

p,r

// x ←[1

p,q

// x ← [2

p,r

// x ←[0

p,r

// x ← [1

p,q

Always p holds. Always [p implies (q or r)].

Never (q and r) holds. Always eventually q holds.

Can you think of other patterns?
3

Syntax

Assume some set Atoms of atomic propositions (atoms for short) usually

denoted p, q, r etc.

LTL formulas, usually denoted ϕ, ψ etc., are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | ©ϕ | ♦ ϕ | � ϕ | ϕ U ψ

Examples: �(p U (q U r)) �♦p

¬, ∨, ∧, → are propositional connectives: “not”, “or”, “and”, “implies”.

© , ♦, �, U are temporal connectives: “next”, “eventually”. “always”,

“until”.

Pronunciation:

• ©ϕ – Next ϕ

• ♦ϕ – Eventually ϕ

• �ϕ – Always ϕ

• ϕ U ψ – ϕ Until ψ

The unary connectives

¬,© ,♦,� have higher

precedence than the binary

connectives ∧,∨,→,U.

E.g., �ϕ ∨ ψ is the same as

(�ϕ) ∨ ψ.

4

Syntax

Assume some set Atoms of atomic propositions (atoms for short) usually

denoted p, q, r etc.

LTL formulas, usually denoted ϕ, ψ etc., are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | ©ϕ | ♦ ϕ | � ϕ | ϕ U ψ

Examples: �(p U (q U r)) �♦p

¬, ∨, ∧, → are propositional connectives: “not”, “or”, “and”, “implies”.

© , ♦, �, U are temporal connectives: “next”, “eventually”. “always”,

“until”.

Pronunciation:

• ©ϕ – Next ϕ

• ♦ϕ – Eventually ϕ

• �ϕ – Always ϕ

• ϕ U ψ – ϕ Until ψ

The unary connectives

¬,© ,♦,� have higher

precedence than the binary

connectives ∧,∨,→,U.

E.g., �ϕ ∨ ψ is the same as

(�ϕ) ∨ ψ.

4

Syntax

Assume some set Atoms of atomic propositions (atoms for short) usually

denoted p, q, r etc.

LTL formulas, usually denoted ϕ, ψ etc., are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | ©ϕ | ♦ ϕ | � ϕ | ϕ U ψ

Examples: �(p U (q U r))

�♦p

¬, ∨, ∧, → are propositional connectives: “not”, “or”, “and”, “implies”.

© , ♦, �, U are temporal connectives: “next”, “eventually”. “always”,

“until”.

Pronunciation:

• ©ϕ – Next ϕ

• ♦ϕ – Eventually ϕ

• �ϕ – Always ϕ

• ϕ U ψ – ϕ Until ψ

The unary connectives

¬,© ,♦,� have higher

precedence than the binary

connectives ∧,∨,→,U.

E.g., �ϕ ∨ ψ is the same as

(�ϕ) ∨ ψ.

4

Syntax

Assume some set Atoms of atomic propositions (atoms for short) usually

denoted p, q, r etc.

LTL formulas, usually denoted ϕ, ψ etc., are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | ©ϕ | ♦ ϕ | � ϕ | ϕ U ψ

Examples: �(p U (q U r)) �♦p

¬, ∨, ∧, → are propositional connectives: “not”, “or”, “and”, “implies”.

© , ♦, �, U are temporal connectives: “next”, “eventually”. “always”,

“until”.

Pronunciation:

• ©ϕ – Next ϕ

• ♦ϕ – Eventually ϕ

• �ϕ – Always ϕ

• ϕ U ψ – ϕ Until ψ

The unary connectives

¬,© ,♦,� have higher

precedence than the binary

connectives ∧,∨,→,U.

E.g., �ϕ ∨ ψ is the same as

(�ϕ) ∨ ψ.

4

Syntax

Assume some set Atoms of atomic propositions (atoms for short) usually

denoted p, q, r etc.

LTL formulas, usually denoted ϕ, ψ etc., are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | ©ϕ | ♦ ϕ | � ϕ | ϕ U ψ

Examples: �(p U (q U r)) �♦p

¬, ∨, ∧, → are propositional connectives: “not”, “or”, “and”, “implies”.

© , ♦, �, U are temporal connectives: “next”, “eventually”. “always”,

“until”.

Pronunciation:

• ©ϕ – Next ϕ

• ♦ϕ – Eventually ϕ

• �ϕ – Always ϕ

• ϕ U ψ – ϕ Until ψ

The unary connectives

¬,© ,♦,� have higher

precedence than the binary

connectives ∧,∨,→,U.

E.g., �ϕ ∨ ψ is the same as

(�ϕ) ∨ ψ.

4

Syntax

Assume some set Atoms of atomic propositions (atoms for short) usually

denoted p, q, r etc.

LTL formulas, usually denoted ϕ, ψ etc., are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | ©ϕ | ♦ ϕ | � ϕ | ϕ U ψ

Examples: �(p U (q U r)) �♦p

¬, ∨, ∧, → are propositional connectives: “not”, “or”, “and”, “implies”.

© , ♦, �, U are temporal connectives: “next”, “eventually”. “always”,

“until”.

Pronunciation:

• ©ϕ – Next ϕ

• ♦ϕ – Eventually ϕ

• �ϕ – Always ϕ

• ϕ U ψ – ϕ Until ψ

The unary connectives

¬,© ,♦,� have higher

precedence than the binary

connectives ∧,∨,→,U.

E.g., �ϕ ∨ ψ is the same as

(�ϕ) ∨ ψ.

4

Syntax

Assume some set Atoms of atomic propositions (atoms for short) usually

denoted p, q, r etc.

LTL formulas, usually denoted ϕ, ψ etc., are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | ©ϕ | ♦ ϕ | � ϕ | ϕ U ψ

Examples: �(p U (q U r)) �♦p

¬, ∨, ∧, → are propositional connectives: “not”, “or”, “and”, “implies”.

© , ♦, �, U are temporal connectives: “next”, “eventually”. “always”,

“until”.

Pronunciation:

• ©ϕ – Next ϕ

• ♦ϕ – Eventually ϕ

• �ϕ – Always ϕ

• ϕ U ψ – ϕ Until ψ

The unary connectives

¬,© ,♦,� have higher

precedence than the binary

connectives ∧,∨,→,U.

E.g., �ϕ ∨ ψ is the same as

(�ϕ) ∨ ψ.

4

Syntax

Assume some set Atoms of atomic propositions (atoms for short) usually

denoted p, q, r etc.

LTL formulas, usually denoted ϕ, ψ etc., are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | ©ϕ | ♦ ϕ | � ϕ | ϕ U ψ

Examples: �(p U (q U r)) �♦p

¬, ∨, ∧, → are propositional connectives: “not”, “or”, “and”, “implies”.

© , ♦, �, U are temporal connectives: “next”, “eventually”. “always”,

“until”.

Pronunciation:

• ©ϕ – Next ϕ

• ♦ϕ – Eventually ϕ

• �ϕ – Always ϕ

• ϕ U ψ – ϕ Until ψ

The unary connectives

¬,© ,♦,� have higher

precedence than the binary

connectives ∧,∨,→,U.

E.g., �ϕ ∨ ψ is the same as

(�ϕ) ∨ ψ.
4

Syntax – Examples and Non-Examples

The following are LTL formulas:

• (♦p ∧�q)→ (p U r)

• ♦(p → �r) ∨ (¬q U p)

• p U (q U r)

• �♦p → ♦(q ∨ s)

The following are not LTL formulas:

• U r

• q � p

Exercise. 1. Give five more examples of correctly constructed formulas.

Include a formula that contains five atoms p, q, r , u, v , and a formula that

contains three occurrences of ♦, one occurrence of � and two occurrences of

U. Read aloud the formulas that you have constructed.

2. Give two examples of incorrectly constructed formulas that do not contain

U or �.

5

Syntax – Examples and Non-Examples

The following are LTL formulas:

• (♦p ∧�q)→ (p U r)

• ♦(p → �r) ∨ (¬q U p)

• p U (q U r)

• �♦p → ♦(q ∨ s)

The following are not LTL formulas:

• U r

• q � p

Exercise. 1. Give five more examples of correctly constructed formulas.

Include a formula that contains five atoms p, q, r , u, v , and a formula that

contains three occurrences of ♦, one occurrence of � and two occurrences of

U. Read aloud the formulas that you have constructed.

2. Give two examples of incorrectly constructed formulas that do not contain

U or �.

5

Syntax – Examples and Non-Examples

The following are LTL formulas:

• (♦p ∧�q)→ (p U r)

• ♦(p → �r) ∨ (¬q U p)

• p U (q U r)

• �♦p → ♦(q ∨ s)

The following are not LTL formulas:

• U r

• q � p

Exercise. 1. Give five more examples of correctly constructed formulas.

Include a formula that contains five atoms p, q, r , u, v , and a formula that

contains three occurrences of ♦, one occurrence of � and two occurrences of

U. Read aloud the formulas that you have constructed.

2. Give two examples of incorrectly constructed formulas that do not contain

U or �.

5

Syntax – Examples and Non-Examples

The following are LTL formulas:

• (♦p ∧�q)→ (p U r)

• ♦(p → �r) ∨ (¬q U p)

• p U (q U r)

• �♦p → ♦(q ∨ s)

The following are not LTL formulas:

• U r

• q � p

Exercise. 1. Give five more examples of correctly constructed formulas.

Include a formula that contains five atoms p, q, r , u, v , and a formula that

contains three occurrences of ♦, one occurrence of � and two occurrences of

U. Read aloud the formulas that you have constructed.

2. Give two examples of incorrectly constructed formulas that do not contain

U or �. 5

Informal Semantics

We model time as the stream of natural numbers: 0, 1, 2,

We consider an infinite execution path, which at every point in time reaches a

given state.

For every state on the path, we assume to know which atomic propositions

are true in that state.

LTL formulas are evaluated along this path, looking into the future:

• An atomic proposition p holds if p is true at the current point in time.

• The propositional connectives ¬,∨,∧ → have their usual meanings, e.g.,

ϕ ∧ ψ holds if ϕ holds and ψ holds.

• Meaning of temporal connectives:

• ©ϕ holds if ϕ holds next, i.e., at the next point in time.

• ♦ϕ holds if ϕ holds eventually, i.e., now or at some future point in time.

• �ϕ holds if ϕ holds always, i.e., now and at all future points in time.

• ϕUψ holds if ϕ holds until ψ holds; i.e., ψ holds now or at some point in

the future, and ϕ holds continuously until then.

6

Informal Semantics

We model time as the stream of natural numbers: 0, 1, 2,

We consider an infinite execution path, which at every point in time reaches a

given state.

For every state on the path, we assume to know which atomic propositions

are true in that state.

LTL formulas are evaluated along this path, looking into the future:

• An atomic proposition p holds if p is true at the current point in time.

• The propositional connectives ¬,∨,∧ → have their usual meanings, e.g.,

ϕ ∧ ψ holds if ϕ holds and ψ holds.

• Meaning of temporal connectives:

• ©ϕ holds if ϕ holds next, i.e., at the next point in time.

• ♦ϕ holds if ϕ holds eventually, i.e., now or at some future point in time.

• �ϕ holds if ϕ holds always, i.e., now and at all future points in time.

• ϕUψ holds if ϕ holds until ψ holds; i.e., ψ holds now or at some point in

the future, and ϕ holds continuously until then.

6

Informal Semantics

We model time as the stream of natural numbers: 0, 1, 2,

We consider an infinite execution path, which at every point in time reaches a

given state.

For every state on the path, we assume to know which atomic propositions

are true in that state.

LTL formulas are evaluated along this path, looking into the future:

• An atomic proposition p holds if p is true at the current point in time.

• The propositional connectives ¬,∨,∧ → have their usual meanings, e.g.,

ϕ ∧ ψ holds if ϕ holds and ψ holds.

• Meaning of temporal connectives:

• ©ϕ holds if ϕ holds next, i.e., at the next point in time.

• ♦ϕ holds if ϕ holds eventually, i.e., now or at some future point in time.

• �ϕ holds if ϕ holds always, i.e., now and at all future points in time.

• ϕUψ holds if ϕ holds until ψ holds; i.e., ψ holds now or at some point in

the future, and ϕ holds continuously until then.

6

Informal Semantics

We model time as the stream of natural numbers: 0, 1, 2,

We consider an infinite execution path, which at every point in time reaches a

given state.

For every state on the path, we assume to know which atomic propositions

are true in that state.

LTL formulas are evaluated along this path, looking into the future:

• An atomic proposition p holds if p is true at the current point in time.

• The propositional connectives ¬,∨,∧ → have their usual meanings, e.g.,

ϕ ∧ ψ holds if ϕ holds and ψ holds.

• Meaning of temporal connectives:

• ©ϕ holds if ϕ holds next, i.e., at the next point in time.

• ♦ϕ holds if ϕ holds eventually, i.e., now or at some future point in time.

• �ϕ holds if ϕ holds always, i.e., now and at all future points in time.

• ϕUψ holds if ϕ holds until ψ holds; i.e., ψ holds now or at some point in

the future, and ϕ holds continuously until then.

6

Informal Semantics

We model time as the stream of natural numbers: 0, 1, 2,

We consider an infinite execution path, which at every point in time reaches a

given state.

For every state on the path, we assume to know which atomic propositions

are true in that state.

LTL formulas are evaluated along this path, looking into the future:

• An atomic proposition p holds if p is true at the current point in time.

• The propositional connectives ¬,∨,∧ → have their usual meanings, e.g.,

ϕ ∧ ψ holds if ϕ holds and ψ holds.

• Meaning of temporal connectives:

• ©ϕ holds if ϕ holds next, i.e., at the next point in time.

• ♦ϕ holds if ϕ holds eventually, i.e., now or at some future point in time.

• �ϕ holds if ϕ holds always, i.e., now and at all future points in time.

• ϕUψ holds if ϕ holds until ψ holds; i.e., ψ holds now or at some point in

the future, and ϕ holds continuously until then.

6

Informal Semantics

We model time as the stream of natural numbers: 0, 1, 2,

We consider an infinite execution path, which at every point in time reaches a

given state.

For every state on the path, we assume to know which atomic propositions

are true in that state.

LTL formulas are evaluated along this path, looking into the future:

• An atomic proposition p holds if p is true at the current point in time.

• The propositional connectives ¬,∨,∧ → have their usual meanings, e.g.,

ϕ ∧ ψ holds if ϕ holds and ψ holds.

• Meaning of temporal connectives:

• ©ϕ holds if ϕ holds next, i.e., at the next point in time.

• ♦ϕ holds if ϕ holds eventually, i.e., now or at some future point in time.

• �ϕ holds if ϕ holds always, i.e., now and at all future points in time.

• ϕUψ holds if ϕ holds until ψ holds; i.e., ψ holds now or at some point in

the future, and ϕ holds continuously until then.

6

Informal Semantics

We model time as the stream of natural numbers: 0, 1, 2,

We consider an infinite execution path, which at every point in time reaches a

given state.

For every state on the path, we assume to know which atomic propositions

are true in that state.

LTL formulas are evaluated along this path, looking into the future:

• An atomic proposition p holds if p is true at the current point in time.

• The propositional connectives ¬,∨,∧ → have their usual meanings, e.g.,

ϕ ∧ ψ holds if ϕ holds and ψ holds.

• Meaning of temporal connectives:

• ©ϕ holds if ϕ holds next, i.e., at the next point in time.

• ♦ϕ holds if ϕ holds eventually, i.e., now or at some future point in time.

• �ϕ holds if ϕ holds always, i.e., now and at all future points in time.

• ϕUψ holds if ϕ holds until ψ holds; i.e., ψ holds now or at some point in

the future, and ϕ holds continuously until then.

6

Informal Semantics

We model time as the stream of natural numbers: 0, 1, 2,

We consider an infinite execution path, which at every point in time reaches a

given state.

For every state on the path, we assume to know which atomic propositions

are true in that state.

LTL formulas are evaluated along this path, looking into the future:

• An atomic proposition p holds if p is true at the current point in time.

• The propositional connectives ¬,∨,∧ → have their usual meanings, e.g.,

ϕ ∧ ψ holds if ϕ holds and ψ holds.

• Meaning of temporal connectives:

• ©ϕ holds if ϕ holds next, i.e., at the next point in time.

• ♦ϕ holds if ϕ holds eventually, i.e., now or at some future point in time.

• �ϕ holds if ϕ holds always, i.e., now and at all future points in time.

• ϕUψ holds if ϕ holds until ψ holds; i.e., ψ holds now or at some point in

the future, and ϕ holds continuously until then.

6

Informal Semantics

We model time as the stream of natural numbers: 0, 1, 2,

We consider an infinite execution path, which at every point in time reaches a

given state.

For every state on the path, we assume to know which atomic propositions

are true in that state.

LTL formulas are evaluated along this path, looking into the future:

• An atomic proposition p holds if p is true at the current point in time.

• The propositional connectives ¬,∨,∧ → have their usual meanings, e.g.,

ϕ ∧ ψ holds if ϕ holds and ψ holds.

• Meaning of temporal connectives:

• ©ϕ holds if ϕ holds next, i.e., at the next point in time.

• ♦ϕ holds if ϕ holds eventually, i.e., now or at some future point in time.

• �ϕ holds if ϕ holds always, i.e., now and at all future points in time.

• ϕUψ holds if ϕ holds until ψ holds; i.e., ψ holds now or at some point in

the future, and ϕ holds continuously until then.

6

Informal Semantics

We model time as the stream of natural numbers: 0, 1, 2,

We consider an infinite execution path, which at every point in time reaches a

given state.

For every state on the path, we assume to know which atomic propositions

are true in that state.

LTL formulas are evaluated along this path, looking into the future:

• An atomic proposition p holds if p is true at the current point in time.

• The propositional connectives ¬,∨,∧ → have their usual meanings, e.g.,

ϕ ∧ ψ holds if ϕ holds and ψ holds.

• Meaning of temporal connectives:

• ©ϕ holds if ϕ holds next, i.e., at the next point in time.

• ♦ϕ holds if ϕ holds eventually, i.e., now or at some future point in time.

• �ϕ holds if ϕ holds always, i.e., now and at all future points in time.

• ϕUψ holds if ϕ holds until ψ holds; i.e., ψ holds now or at some point in

the future, and ϕ holds continuously until then.

6

Informal Semantics

We model time as the stream of natural numbers: 0, 1, 2,

We consider an infinite execution path, which at every point in time reaches a

given state.

For every state on the path, we assume to know which atomic propositions

are true in that state.

LTL formulas are evaluated along this path, looking into the future:

• An atomic proposition p holds if p is true at the current point in time.

• The propositional connectives ¬,∨,∧ → have their usual meanings, e.g.,

ϕ ∧ ψ holds if ϕ holds and ψ holds.

• Meaning of temporal connectives:

• ©ϕ holds if ϕ holds next, i.e., at the next point in time.

• ♦ϕ holds if ϕ holds eventually, i.e., now or at some future point in time.

• �ϕ holds if ϕ holds always, i.e., now and at all future points in time.

• ϕUψ holds if ϕ holds until ψ holds; i.e., ψ holds now or at some point in

the future, and ϕ holds continuously until then.

6

Informal Semantics – Examples

We assume that enabled , read , write, etc. are all atoms.

By “further up in the future” we will mean “at the current time or later”.

� enabled means:

enabled holds always, i.e., now and at all points in the future.

s0

•
// s1

•
// s2

•
// s3

•
// s4

•
// s5

•
// s6

•
// s7

•

� ¬(read ∧ write) means:

Always (i.e., now and at all points in the future), it is not the case that

read and write hold. In other words: It is never the case that read and

write hold at the same time.

s0

•
// s1 // s2

•
// s3

•
// s4 // s5

•
// s6

•
// s7

7

Informal Semantics – Examples

We assume that enabled , read , write, etc. are all atoms.

By “further up in the future” we will mean “at the current time or later”.

� enabled means:

enabled holds always, i.e., now and at all points in the future.

s0

•
// s1

•
// s2

•
// s3

•
// s4

•
// s5

•
// s6

•
// s7

•

� ¬(read ∧ write) means:

Always (i.e., now and at all points in the future), it is not the case that

read and write hold. In other words: It is never the case that read and

write hold at the same time.

s0

•
// s1 // s2

•
// s3

•
// s4 // s5

•
// s6

•
// s7

7

Informal Semantics – Examples

We assume that enabled , read , write, etc. are all atoms.

By “further up in the future” we will mean “at the current time or later”.

� enabled means:

enabled holds always, i.e., now and at all points in the future.

s0

•
// s1

•
// s2

•
// s3

•
// s4

•
// s5

•
// s6

•
// s7

•

� ¬(read ∧ write) means:

Always (i.e., now and at all points in the future), it is not the case that

read and write hold. In other words: It is never the case that read and

write hold at the same time.

s0

•
// s1 // s2

•
// s3

•
// s4 // s5

•
// s6

•
// s7

7

Informal Semantics – Examples

�♦enabled means:

Always eventually enabled holds. In other words: Now and for all future

points, there is a point further up in the future where enabled holds.

Another way to say this: enabled holds infinitely often.

s0 // s1 // s2

•
// s3

•
// s4 // s5 // s6 // s7

•

♦� enabled means:

Eventually always enabled holds. In other words: Starting now or from a

future point, enabled will hold continuously for all points in the future.

s0 // s1 // s2 // s3 // s4

•
// s5

•
// s6

•
// s7

•

8

Informal Semantics – Examples

�♦enabled means:

Always eventually enabled holds. In other words: Now and for all future

points, there is a point further up in the future where enabled holds.

Another way to say this: enabled holds infinitely often.

s0 // s1 // s2

•
// s3

•
// s4 // s5 // s6 // s7

•

♦� enabled means:

Eventually always enabled holds. In other words: Starting now or from a

future point, enabled will hold continuously for all points in the future.

s0 // s1 // s2 // s3 // s4

•
// s5

•
// s6

•
// s7

•

8

Informal Semantics – Examples

� (request → ♦grant) means:

Always [request implies eventually grant]. In other words: Always (i.e.,

now and at all points in the future), if request holds then eventually

grant holds (i.e., there exists a point further up in the future where grant

holds).

s0

•
// s1 // s2

•
// s3

•
// s4 // s5

• •
// s6

•
// s7

•

(� request)→ (♦grant) means:

[Always request] implies [eventually grant]. In other words: If request

holds at all points in time, then grant holds at some point in time.

s0

•
// s1

•
// s2

•
// s3

•
// s4

•
// s5

• •
// s6

•
// s7

•

9

Informal Semantics – Examples

� (request → ♦grant) means:

Always [request implies eventually grant]. In other words: Always (i.e.,

now and at all points in the future), if request holds then eventually

grant holds (i.e., there exists a point further up in the future where grant

holds).

s0

•
// s1 // s2

•
// s3

•
// s4 // s5

• •
// s6

•
// s7

•

(� request)→ (♦grant) means:

[Always request] implies [eventually grant]. In other words: If request

holds at all points in time, then grant holds at some point in time.

s0

•
// s1

•
// s2

•
// s3

•
// s4

•
// s5

• •
// s6

•
// s7

•
9

Informal Semantics – Examples

� (request → (request U grant)) means:

Always, request implies [request until grant]. In other words: At every

point in the future, if request holds than here exists a point further up in

the future where grant holds, and request holds continuously until that

point.

s0 // s1

•
// s2

•
// s3

•
// s4

•
// s5

•
// s6

•
// s7

•

Exercise. Consider the following LTL formulas:

(a) � (request U grant) (b) �♦ (request → grant)

(c) �♦ request → �♦ grant (d) �♦� enabled

1. What is the correct way to parenthesize the point (c) formula, based on

the operator precedence?

2. Depict graphically the meaning of these formulas. What is the difference

between the point (d) formula and ♦� enabled?

10

Informal Semantics – Examples

� (request → (request U grant)) means:

Always, request implies [request until grant]. In other words: At every

point in the future, if request holds than here exists a point further up in

the future where grant holds, and request holds continuously until that

point.

s0 // s1

•
// s2

•
// s3

•
// s4

•
// s5

•
// s6

•
// s7

•

Exercise. Consider the following LTL formulas:

(a) � (request U grant) (b) �♦ (request → grant)

(c) �♦ request → �♦ grant (d) �♦� enabled

1. What is the correct way to parenthesize the point (c) formula, based on

the operator precedence?

2. Depict graphically the meaning of these formulas. What is the difference

between the point (d) formula and ♦� enabled? 10

Informal Semantics – Examples

Exercise. Consider the following LTL formulas:

(a) � (request U grant) (b) �♦ (request → grant)

(c) �♦ request → �♦ grant (d) �♦� enabled

1. What is the correct way to parenthesize the point (c) formula, based on the

operator precedence?

2. Depict graphically the meaning of these formulas. What is the difference between

the point (d) formula and ♦� enabled?

s0 // s1 // s2 // s3 // s4 // s5 // s6 // s7 // s8

11

Practical Specification Patterns

• A process is always active in its starting state:

� (start → active)

• It is always the case that requests are eventually granted:

� (request → ♦grant)

• A given process will be enabled infinitely often:

�♦enabled

• If a process is enabled infinitely often, then it will run infinitely often:

�♦enabled → �♦run

12

Practical Specification Patterns

• A process is always active in its starting state:

� (start → active)

• It is always the case that requests are eventually granted:

� (request → ♦grant)

• A given process will be enabled infinitely often:

�♦enabled

• If a process is enabled infinitely often, then it will run infinitely often:

�♦enabled → �♦run

12

Practical Specification Patterns

• A process is always active in its starting state:

� (start → active)

• It is always the case that requests are eventually granted:

� (request → ♦grant)

• A given process will be enabled infinitely often:

�♦enabled

• If a process is enabled infinitely often, then it will run infinitely often:

�♦enabled → �♦run

12

Practical Specification Patterns

• A process is always active in its starting state:

� (start → active)

• It is always the case that requests are eventually granted:

� (request → ♦grant)

• A given process will be enabled infinitely often:

�♦enabled

• If a process is enabled infinitely often, then it will run infinitely often:

�♦enabled → �♦run

12

Practical Specification Patterns

• A process will never become permanently inactive:

¬♦�¬ active

• It is always the case that, when a lift is at the 2nd floor, travels upwards

and the 5th floor is requested, it will not change direction until the 5th

floor is reached:

�(@2 ∧ upgoing ∧ pressed5→ (upgoing U @5))

13

Practical Specification Patterns

• A process will never become permanently inactive:

¬♦�¬ active

• It is always the case that, when a lift is at the 2nd floor, travels upwards

and the 5th floor is requested, it will not change direction until the 5th

floor is reached:

�(@2 ∧ upgoing ∧ pressed5→ (upgoing U @5))

13

Practical Specification Patterns

• A process will never become permanently inactive:

¬♦�¬ active

• It is always the case that, when a lift is at the 2nd floor, travels upwards

and the 5th floor is requested, it will not change direction until the 5th

floor is reached:

�(@2 ∧ upgoing ∧ pressed5→ (upgoing U @5))

13

Formal Semantics

Let S be a set of states and L : S → P(Atoms) be a labeling function

associating to each state s a set L(s) of all atoms that are true in that state.

Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let π be an infinite sequence of states s0s1s2 We think of L(si) as the set

of all atoms true at point i in time on π.

For each i , we write πi for the i ’th suffix of π, namely si si+1si+2

E.g., π1 is s1s2s3 . . . and π2 is s2s3s4 . . .

For an LTL formula ϕ, we define π |=L ϕ, read ”π satisfies ϕ w.r.t. labeling

L” or ”ϕ holds for π w.r.t. labeling L” by structural recursion on ϕ:

π |=L p iff p ∈ L(s0)

π |=L ϕ ∧ ψ iff π |=L ϕ and π |=L ψ

π |=L ϕ ∨ ψ iff π |=L ϕ or π |=L ψ

π |=L ϕ→ ψ iff π |=L ϕ implies π |=L ψ

14

Formal Semantics

Let S be a set of states and L : S → P(Atoms) be a labeling function

associating to each state s a set L(s) of all atoms that are true in that state.

Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let π be an infinite sequence of states s0s1s2 We think of L(si) as the set

of all atoms true at point i in time on π.

For each i , we write πi for the i ’th suffix of π, namely si si+1si+2

E.g., π1 is s1s2s3 . . . and π2 is s2s3s4 . . .

For an LTL formula ϕ, we define π |=L ϕ, read ”π satisfies ϕ w.r.t. labeling

L” or ”ϕ holds for π w.r.t. labeling L” by structural recursion on ϕ:

π |=L p iff p ∈ L(s0)

π |=L ϕ ∧ ψ iff π |=L ϕ and π |=L ψ

π |=L ϕ ∨ ψ iff π |=L ϕ or π |=L ψ

π |=L ϕ→ ψ iff π |=L ϕ implies π |=L ψ

14

Formal Semantics

Let S be a set of states and L : S → P(Atoms) be a labeling function

associating to each state s a set L(s) of all atoms that are true in that state.

Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let π be an infinite sequence of states s0s1s2 We think of L(si) as the set

of all atoms true at point i in time on π.

For each i , we write πi for the i ’th suffix of π, namely si si+1si+2

E.g., π1 is s1s2s3 . . . and π2 is s2s3s4 . . .

For an LTL formula ϕ, we define π |=L ϕ, read ”π satisfies ϕ w.r.t. labeling

L” or ”ϕ holds for π w.r.t. labeling L” by structural recursion on ϕ:

π |=L p iff p ∈ L(s0)

π |=L ϕ ∧ ψ iff π |=L ϕ and π |=L ψ

π |=L ϕ ∨ ψ iff π |=L ϕ or π |=L ψ

π |=L ϕ→ ψ iff π |=L ϕ implies π |=L ψ

14

Formal Semantics

Let S be a set of states and L : S → P(Atoms) be a labeling function

associating to each state s a set L(s) of all atoms that are true in that state.

Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let π be an infinite sequence of states s0s1s2 We think of L(si) as the set

of all atoms true at point i in time on π.

For each i , we write πi for the i ’th suffix of π, namely si si+1si+2

E.g., π1 is s1s2s3 . . . and π2 is s2s3s4 . . .

For an LTL formula ϕ, we define π |=L ϕ, read ”π satisfies ϕ w.r.t. labeling

L” or ”ϕ holds for π w.r.t. labeling L” by structural recursion on ϕ:

π |=L p iff p ∈ L(s0)

π |=L ϕ ∧ ψ iff π |=L ϕ and π |=L ψ

π |=L ϕ ∨ ψ iff π |=L ϕ or π |=L ψ

π |=L ϕ→ ψ iff π |=L ϕ implies π |=L ψ

14

Formal Semantics

Let S be a set of states and L : S → P(Atoms) be a labeling function

associating to each state s a set L(s) of all atoms that are true in that state.

Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let π be an infinite sequence of states s0s1s2 We think of L(si) as the set

of all atoms true at point i in time on π.

For each i , we write πi for the i ’th suffix of π, namely si si+1si+2

E.g., π1 is s1s2s3 . . . and π2 is s2s3s4 . . .

For an LTL formula ϕ, we define π |=L ϕ, read ”π satisfies ϕ w.r.t. labeling

L” or ”ϕ holds for π w.r.t. labeling L” by structural recursion on ϕ:

π |=L p iff p ∈ L(s0)

π |=L ϕ ∧ ψ iff π |=L ϕ and π |=L ψ

π |=L ϕ ∨ ψ iff π |=L ϕ or π |=L ψ

π |=L ϕ→ ψ iff π |=L ϕ implies π |=L ψ

14

Formal Semantics

Let S be a set of states and L : S → P(Atoms) be a labeling function

associating to each state s a set L(s) of all atoms that are true in that state.

Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let π be an infinite sequence of states s0s1s2 We think of L(si) as the set

of all atoms true at point i in time on π.

For each i , we write πi for the i ’th suffix of π, namely si si+1si+2

E.g., π1 is s1s2s3 . . . and π2 is s2s3s4 . . .

For an LTL formula ϕ, we define π |=L ϕ, read ”π satisfies ϕ w.r.t. labeling

L” or ”ϕ holds for π w.r.t. labeling L” by structural recursion on ϕ:

π |=L p iff p ∈ L(s0)

π |=L ϕ ∧ ψ iff π |=L ϕ and π |=L ψ

π |=L ϕ ∨ ψ iff π |=L ϕ or π |=L ψ

π |=L ϕ→ ψ iff π |=L ϕ implies π |=L ψ

14

Formal Semantics

Let S be a set of states and L : S → P(Atoms) be a labeling function

associating to each state s a set L(s) of all atoms that are true in that state.

Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let π be an infinite sequence of states s0s1s2 We think of L(si) as the set

of all atoms true at point i in time on π.

For each i , we write πi for the i ’th suffix of π, namely si si+1si+2

E.g., π1 is s1s2s3 . . . and π2 is s2s3s4 . . .

For an LTL formula ϕ, we define π |=L ϕ, read ”π satisfies ϕ w.r.t. labeling

L” or ”ϕ holds for π w.r.t. labeling L” by structural recursion on ϕ:

π |=L p iff p ∈ L(s0)

π |=L ϕ ∧ ψ iff π |=L ϕ and π |=L ψ

π |=L ϕ ∨ ψ iff π |=L ϕ or π |=L ψ

π |=L ϕ→ ψ iff π |=L ϕ implies π |=L ψ

14

Formal Semantics

Let S be a set of states and L : S → P(Atoms) be a labeling function

associating to each state s a set L(s) of all atoms that are true in that state.

Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let π be an infinite sequence of states s0s1s2 We think of L(si) as the set

of all atoms true at point i in time on π.

For each i , we write πi for the i ’th suffix of π, namely si si+1si+2

E.g., π1 is s1s2s3 . . . and π2 is s2s3s4 . . .

For an LTL formula ϕ, we define π |=L ϕ, read ”π satisfies ϕ w.r.t. labeling

L” or ”ϕ holds for π w.r.t. labeling L” by structural recursion on ϕ:

π |=L p iff p ∈ L(s0)

π |=L ϕ ∧ ψ iff π |=L ϕ and π |=L ψ

π |=L ϕ ∨ ψ iff π |=L ϕ or π |=L ψ

π |=L ϕ→ ψ iff π |=L ϕ implies π |=L ψ

14

Formal Semantics

π |=L ©ϕ iff π1 |=L ϕ

π |=L ♦ϕ iff there exists i ≥ 0 such that πi |=L ϕ

π |=L �ϕ iff for all i ≥ 0 we have πi |=L ϕ

π |=L ϕUψ iff there exists i ≥ 0 such that πi |=L ψ and

for all j ∈ {0, . . . , i − 1} we have πj |=L ϕ

|= is called the satisfaction relation. It is a relation between formulas and

infinite sequences of states in the presence of a state labeling with atom sets.

When the labeling L is fixed, we can write π |= ϕ instead of π |=L ϕ.

15

Formal Semantics

π |=L ©ϕ iff π1 |=L ϕ

π |=L ♦ϕ iff there exists i ≥ 0 such that πi |=L ϕ

π |=L �ϕ iff for all i ≥ 0 we have πi |=L ϕ

π |=L ϕUψ iff there exists i ≥ 0 such that πi |=L ψ and

for all j ∈ {0, . . . , i − 1} we have πj |=L ϕ

|= is called the satisfaction relation. It is a relation between formulas and

infinite sequences of states in the presence of a state labeling with atom sets.

When the labeling L is fixed, we can write π |= ϕ instead of π |=L ϕ.

15

Formal Semantics

π |=L ©ϕ iff π1 |=L ϕ

π |=L ♦ϕ iff there exists i ≥ 0 such that πi |=L ϕ

π |=L �ϕ iff for all i ≥ 0 we have πi |=L ϕ

π |=L ϕUψ iff there exists i ≥ 0 such that πi |=L ψ and

for all j ∈ {0, . . . , i − 1} we have πj |=L ϕ

|= is called the satisfaction relation. It is a relation between formulas and

infinite sequences of states in the presence of a state labeling with atom sets.

When the labeling L is fixed, we can write π |= ϕ instead of π |=L ϕ.

15

Formal Semantics

π |=L ©ϕ iff π1 |=L ϕ

π |=L ♦ϕ iff there exists i ≥ 0 such that πi |=L ϕ

π |=L �ϕ iff for all i ≥ 0 we have πi |=L ϕ

π |=L ϕUψ iff there exists i ≥ 0 such that πi |=L ψ and

for all j ∈ {0, . . . , i − 1} we have πj |=L ϕ

|= is called the satisfaction relation. It is a relation between formulas and

infinite sequences of states in the presence of a state labeling with atom sets.

When the labeling L is fixed, we can write π |= ϕ instead of π |=L ϕ.

15

Formal Semantics

π |=L ©ϕ iff π1 |=L ϕ

π |=L ♦ϕ iff there exists i ≥ 0 such that πi |=L ϕ

π |=L �ϕ iff for all i ≥ 0 we have πi |=L ϕ

π |=L ϕUψ iff there exists i ≥ 0 such that πi |=L ψ and

for all j ∈ {0, . . . , i − 1} we have πj |=L ϕ

|= is called the satisfaction relation. It is a relation between formulas and

infinite sequences of states in the presence of a state labeling with atom sets.

When the labeling L is fixed, we can write π |= ϕ instead of π |=L ϕ.

15

Formal Semantics

π |=L ©ϕ iff π1 |=L ϕ

π |=L ♦ϕ iff there exists i ≥ 0 such that πi |=L ϕ

π |=L �ϕ iff for all i ≥ 0 we have πi |=L ϕ

π |=L ϕUψ iff there exists i ≥ 0 such that πi |=L ψ and

for all j ∈ {0, . . . , i − 1} we have πj |=L ϕ

|= is called the satisfaction relation. It is a relation between formulas and

infinite sequences of states in the presence of a state labeling with atom sets.

When the labeling L is fixed, we can write π |= ϕ instead of π |=L ϕ.

15

Semantics of Atoms Illustrated

π |= p

s0

p

// s1 // s2 // s3 // s4

16

Semantics of “Next” Illustrated

π |= ©p

s0 // s1

p

// s2 // s3 // s4

17

Semantics of “Eventually” Illustrated

π |= ♦p

s0 // s1 // s2 // s3

p

// s4

18

Semantics of “Always” Illustrated

π |= �p

s0

p

// s1

p

// s2

p

// s3

p

// s4

p

19

Combined Semantics of “Eventually” and “Always” Illustrated

π |= ♦�p

s0 // s1 // s2

p

// s3

p

// s4

p

20

Semantics of “Until” Illustrated

π |= p U q

s0

p

// s1

p

// s2

p

// s3

q

// s4

21

Exercises

22

Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S ,→, L)

consisting of:

• S a finite set of states

• → ⊆ S × S a transition relation

• L : S → P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s1 ∈ S there exists

s2 ∈ S with s1 → s2.

A path π in an LTS M = (S ,→, L) is an infinite sequence of states s0s1s2 . . .

such that for all i ≥ 0, si → si+1.

Paths are written as π = s0 → s1 → s2 → . . .

23

Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S ,→, L)

consisting of:

• S a finite set of states

• → ⊆ S × S a transition relation

• L : S → P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s1 ∈ S there exists

s2 ∈ S with s1 → s2.

A path π in an LTS M = (S ,→, L) is an infinite sequence of states s0s1s2 . . .

such that for all i ≥ 0, si → si+1.

Paths are written as π = s0 → s1 → s2 → . . .

23

Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S ,→, L)

consisting of:

• S a finite set of states

• → ⊆ S × S a transition relation

• L : S → P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s1 ∈ S there exists

s2 ∈ S with s1 → s2.

A path π in an LTS M = (S ,→, L) is an infinite sequence of states s0s1s2 . . .

such that for all i ≥ 0, si → si+1.

Paths are written as π = s0 → s1 → s2 → . . .

23

Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S ,→, L)

consisting of:

• S a finite set of states

• → ⊆ S × S a transition relation

• L : S → P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s1 ∈ S there exists

s2 ∈ S with s1 → s2.

A path π in an LTS M = (S ,→, L) is an infinite sequence of states s0s1s2 . . .

such that for all i ≥ 0, si → si+1.

Paths are written as π = s0 → s1 → s2 → . . .

23

Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S ,→, L)

consisting of:

• S a finite set of states

• → ⊆ S × S a transition relation

• L : S → P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s1 ∈ S there exists

s2 ∈ S with s1 → s2.

A path π in an LTS M = (S ,→, L) is an infinite sequence of states s0s1s2 . . .

such that for all i ≥ 0, si → si+1.

Paths are written as π = s0 → s1 → s2 → . . .

23

Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S ,→, L)

consisting of:

• S a finite set of states

• → ⊆ S × S a transition relation

• L : S → P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s1 ∈ S there exists

s2 ∈ S with s1 → s2.

A path π in an LTS M = (S ,→, L) is an infinite sequence of states s0s1s2 . . .

such that for all i ≥ 0, si → si+1.

Paths are written as π = s0 → s1 → s2 → . . .

23

Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S ,→, L)

consisting of:

• S a finite set of states

• → ⊆ S × S a transition relation

• L : S → P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s1 ∈ S there exists

s2 ∈ S with s1 → s2.

A path π in an LTS M = (S ,→, L) is an infinite sequence of states s0s1s2 . . .

such that for all i ≥ 0, si → si+1.

Paths are written as π = s0 → s1 → s2 → . . .

23

Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S ,→, L)

consisting of:

• S a finite set of states

• → ⊆ S × S a transition relation

• L : S → P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s1 ∈ S there exists

s2 ∈ S with s1 → s2.

A path π in an LTS M = (S ,→, L) is an infinite sequence of states s0s1s2 . . .

such that for all i ≥ 0, si → si+1.

Paths are written as π = s0 → s1 → s2 → . . .

23

Transition Systems and Paths – Example

Recall the example with two parallel processes, where, for i ∈ {1, 2}:
• ni denotes “process i not in critical section”

• ri denotes “process i requesting to enter critical section”

• ci denotes “process i in critical section”

Atoms = {n1, n2, r1, r2, c1, c2}

s0

n1n2

s1 r1n2 s5n1r2

s2c1n2 s3

r1r2

s6n1c2

s4

c1r2

s7

r1c2

M = (S ,→, L) where

• S = {s0, s1, . . . , s7}
• → = {(s0, s1), (s0, s5), . . .}
• L(s0) = {n1, n2}
• L(s1) = {r1, n2}
• . . .

24

Transition Systems and Paths – Example

Recall the example with two parallel processes, where, for i ∈ {1, 2}:
• ni denotes “process i not in critical section”

• ri denotes “process i requesting to enter critical section”

• ci denotes “process i in critical section”

Atoms = {n1, n2, r1, r2, c1, c2}

s0

n1n2

s1 r1n2 s5n1r2

s2c1n2 s3

r1r2

s6n1c2

s4

c1r2

s7

r1c2

M = (S ,→, L) where

• S = {s0, s1, . . . , s7}
• → = {(s0, s1), (s0, s5), . . .}
• L(s0) = {n1, n2}
• L(s1) = {r1, n2}
• . . .

24

Transition Systems and Paths – Example

Recall the example with two parallel processes, where, for i ∈ {1, 2}:
• ni denotes “process i not in critical section”

• ri denotes “process i requesting to enter critical section”

• ci denotes “process i in critical section”

Atoms = {n1, n2, r1, r2, c1, c2}

s0

n1n2

s1 r1n2 s5n1r2

s2c1n2 s3

r1r2

s6n1c2

s4

c1r2

s7

r1c2

M = (S ,→, L) where

• S = {s0, s1, . . . , s7}
• → = {(s0, s1), (s0, s5), . . .}
• L(s0) = {n1, n2}
• L(s1) = {r1, n2}
• . . .

24

Unwinding a Transition System

Visualise all paths from a given state s0 by unwinding the LTS to obtain an

infinite tree.

For example:

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

All possible paths starting in s0:

(s0 → s1 →)∞

(s0 → s1 →)n (s2 →)∞ for n ≥ 1

(s0 → s1 →)n s0 → (s2 →)∞ for n ≥ 0

25

Unwinding a Transition System

Visualise all paths from a given state s0 by unwinding the LTS to obtain an

infinite tree. For example:

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

All possible paths starting in s0:

(s0 → s1 →)∞

(s0 → s1 →)n (s2 →)∞ for n ≥ 1

(s0 → s1 →)n s0 → (s2 →)∞ for n ≥ 0

25

Unwinding a Transition System

Visualise all paths from a given state s0 by unwinding the LTS to obtain an

infinite tree. For example:

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

All possible paths starting in s0:

(s0 → s1 →)∞

(s0 → s1 →)n (s2 →)∞ for n ≥ 1

(s0 → s1 →)n s0 → (s2 →)∞ for n ≥ 0

25

Unwinding a Transition System

Visualise all paths from a given state s0 by unwinding the LTS to obtain an

infinite tree. For example:

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

All possible paths starting in s0:

(s0 → s1 →)∞

(s0 → s1 →)n (s2 →)∞ for n ≥ 1

(s0 → s1 →)n s0 → (s2 →)∞ for n ≥ 0

25

Unwinding a Transition System

Visualise all paths from a given state s0 by unwinding the LTS to obtain an

infinite tree. For example:

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

All possible paths starting in s0:

(s0 → s1 →)∞

(s0 → s1 →)n (s2 →)∞ for n ≥ 1

(s0 → s1 →)n s0 → (s2 →)∞ for n ≥ 0

25

Unwinding a Transition System

Visualise all paths from a given state s0 by unwinding the LTS to obtain an

infinite tree. For example:

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

All possible paths starting in s0:

(s0 → s1 →)∞

(s0 → s1 →)n (s2 →)∞ for n ≥ 1

(s0 → s1 →)n s0 → (s2 →)∞ for n ≥ 0

25

Unwinding a Transition System

Visualise all paths from a given state s0 by unwinding the LTS to obtain an

infinite tree. For example:

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

All possible paths starting in s0:

(s0 → s1 →)∞

(s0 → s1 →)n (s2 →)∞ for n ≥ 1

(s0 → s1 →)n s0 → (s2 →)∞ for n ≥ 0 25

Formal Semantics Continued: Satisfaction Relation for LTSs

Let M = (S ,→, L) be an LTS and ϕ be an LTL formula.

We extend the satisfaction relation from infinite sequences to LTSs as follows:

For a state s ∈ S , we define M, s |= ϕ, read M satisfies ϕ in state s or ϕ

holds for M in state s, to mean that π |=L ϕ for every path π of M starting

at state s.

26

Satisfaction Relation for LTSs – Example

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

1. M, s0 |= p ∧ q

2. M, s0 |= ¬r
3. M, s0 |= ©r

4. M, s0 6|= ©(q ∧ r)

5. M, s0 |= �¬(p ∧ r)

6. M, s2 |= �r

7. M, s0 |=
♦(¬q ∧ r)→ ♦�r

8. M, s0 6|= �♦p

9. M, s0 |= �♦p → �♦r

10. M, s0 6|= �♦r → �♦p

27

Satisfaction Relation for LTSs – Example

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

1. M, s0 |= p ∧ q

2. M, s0 |= ¬r
3. M, s0 |= ©r

4. M, s0 6|= ©(q ∧ r)

5. M, s0 |= �¬(p ∧ r)

6. M, s2 |= �r

7. M, s0 |=
♦(¬q ∧ r)→ ♦�r

8. M, s0 6|= �♦p

9. M, s0 |= �♦p → �♦r

10. M, s0 6|= �♦r → �♦p

27

Satisfaction Relation for LTSs – Example

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

1. M, s0 |= p ∧ q

2. M, s0 |= ¬r

3. M, s0 |= ©r

4. M, s0 6|= ©(q ∧ r)

5. M, s0 |= �¬(p ∧ r)

6. M, s2 |= �r

7. M, s0 |=
♦(¬q ∧ r)→ ♦�r

8. M, s0 6|= �♦p

9. M, s0 |= �♦p → �♦r

10. M, s0 6|= �♦r → �♦p

27

Satisfaction Relation for LTSs – Example

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

1. M, s0 |= p ∧ q

2. M, s0 |= ¬r
3. M, s0 |= ©r

4. M, s0 6|= ©(q ∧ r)

5. M, s0 |= �¬(p ∧ r)

6. M, s2 |= �r

7. M, s0 |=
♦(¬q ∧ r)→ ♦�r

8. M, s0 6|= �♦p

9. M, s0 |= �♦p → �♦r

10. M, s0 6|= �♦r → �♦p

27

Satisfaction Relation for LTSs – Example

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

1. M, s0 |= p ∧ q

2. M, s0 |= ¬r
3. M, s0 |= ©r

4. M, s0 6|= ©(q ∧ r)

5. M, s0 |= �¬(p ∧ r)

6. M, s2 |= �r

7. M, s0 |=
♦(¬q ∧ r)→ ♦�r

8. M, s0 6|= �♦p

9. M, s0 |= �♦p → �♦r

10. M, s0 6|= �♦r → �♦p

27

Satisfaction Relation for LTSs – Example

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

1. M, s0 |= p ∧ q

2. M, s0 |= ¬r
3. M, s0 |= ©r

4. M, s0 6|= ©(q ∧ r)

5. M, s0 |= �¬(p ∧ r)

6. M, s2 |= �r

7. M, s0 |=
♦(¬q ∧ r)→ ♦�r

8. M, s0 6|= �♦p

9. M, s0 |= �♦p → �♦r

10. M, s0 6|= �♦r → �♦p

27

Satisfaction Relation for LTSs – Example

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

1. M, s0 |= p ∧ q

2. M, s0 |= ¬r
3. M, s0 |= ©r

4. M, s0 6|= ©(q ∧ r)

5. M, s0 |= �¬(p ∧ r)

6. M, s2 |= �r

7. M, s0 |=
♦(¬q ∧ r)→ ♦�r

8. M, s0 6|= �♦p

9. M, s0 |= �♦p → �♦r

10. M, s0 6|= �♦r → �♦p

27

Satisfaction Relation for LTSs – Example

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

1. M, s0 |= p ∧ q

2. M, s0 |= ¬r
3. M, s0 |= ©r

4. M, s0 6|= ©(q ∧ r)

5. M, s0 |= �¬(p ∧ r)

6. M, s2 |= �r

7. M, s0 |=
♦(¬q ∧ r)→ ♦�r

8. M, s0 6|= �♦p

9. M, s0 |= �♦p → �♦r

10. M, s0 6|= �♦r → �♦p

27

Satisfaction Relation for LTSs – Example

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

1. M, s0 |= p ∧ q

2. M, s0 |= ¬r
3. M, s0 |= ©r

4. M, s0 6|= ©(q ∧ r)

5. M, s0 |= �¬(p ∧ r)

6. M, s2 |= �r

7. M, s0 |=
♦(¬q ∧ r)→ ♦�r

8. M, s0 6|= �♦p

9. M, s0 |= �♦p → �♦r

10. M, s0 6|= �♦r → �♦p

27

Satisfaction Relation for LTSs – Example

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

1. M, s0 |= p ∧ q

2. M, s0 |= ¬r
3. M, s0 |= ©r

4. M, s0 6|= ©(q ∧ r)

5. M, s0 |= �¬(p ∧ r)

6. M, s2 |= �r

7. M, s0 |=
♦(¬q ∧ r)→ ♦�r

8. M, s0 6|= �♦p

9. M, s0 |= �♦p → �♦r

10. M, s0 6|= �♦r → �♦p

27

Satisfaction Relation for LTSs – Example

s0

p, q

s1

q, r

s2

r

s0 p, q

s1 q, r s2 r

s0 p, q s2 r s2 r

s1 q, r s2 r s2 r . . .

...
. . .

. . .
. . .

1. M, s0 |= p ∧ q

2. M, s0 |= ¬r
3. M, s0 |= ©r

4. M, s0 6|= ©(q ∧ r)

5. M, s0 |= �¬(p ∧ r)

6. M, s2 |= �r

7. M, s0 |=
♦(¬q ∧ r)→ ♦�r

8. M, s0 6|= �♦p

9. M, s0 |= �♦p → �♦r

10. M, s0 6|= �♦r → �♦p

27

Homework Exercise 1

Consider the LTS shown in the picture:

s0

p

s1

p, r

s2

p, q

1. Write down the mathematical definitions of its components S , → and L.

2. Draw its unwinding tree.

3. Describe all its possible paths that start at state s0.

4. Determine which of the following are true, and explain why or why not:

s1 |= p ∧ r s0 |= ©r

s0 |= ©(p ∨ r) s2 |= �p

s0 |= (p ∨ q) U r s1 |= (p ∧ ¬ r) U q

5. Give your own examples of LTL formulas and states such that the formula

holds or does not hold in the given state, and in each case explain why. 28

Homework Exercise 2

In the example with the two processes executed in parallel, determine whether

the following properties are expressible in LTL; and if yes, whether they hold.

• The safety property: Only one process may execute critical section code

at any point

• The liveness property: Whenever a process requests to enter its critical

section, it will eventually be allowed to do so.

• The non-blocking property: A process can always request to enter its

critical section.

29

Transition Systems and Paths – Example

Recall the example with two parallel processes, where, for i ∈ {1, 2}:
• ni denotes “process i not in critical section”

• ri denotes “process i requesting to enter critical section”

• ci denotes “process i in critical section”

Atoms = {n1, n2, r1, r2, c1, c2}

s0

n1n2

s1 r1n2 s5n1r2

s2c1n2 s3

r1r2

s6n1c2

s4

c1r2

s7

r1c2

M = (S ,→, L) where

• S = {s0, s1, . . . , s7}
• → = {(s0, s1), (s0, s5), . . .}
• L(s0) = {n1, n2}
• L(s1) = {r1, n2}
• . . .

30

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ϕ = � (¬(c1 ∧ c2)). Let’s prove that M, s0 |= ϕ.

M, s0 |= ϕ

means (by the semantics in an LTS)

for all π ∈ Pathss0 (M), π |=L ϕ

which means (by the semantics of �)

for all π ∈ Pathss0 (M), for all i ≥ 0, πi |=L ¬(c1 ∧ c2)

which means (by the semantics of the propositional connectives and atoms)

for all π = t0t1t2 . . . ∈ Pathss0 (M), for all i ≥ 0, not (c1 ∈ L(ti) and c2 ∈ L(ti))

which is implied by

for all s ∈ S , not (c1 ∈ L(s) and c2 ∈ L(s))

which is true – can be checked by inspecting the system.

We conclude that M, s0 |= ϕ.

This was backwards reasoning, reducing the goal to something true.

31

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ϕ = � (¬(c1 ∧ c2)).

Let’s prove that M, s0 |= ϕ.

M, s0 |= ϕ

means (by the semantics in an LTS)

for all π ∈ Pathss0 (M), π |=L ϕ

which means (by the semantics of �)

for all π ∈ Pathss0 (M), for all i ≥ 0, πi |=L ¬(c1 ∧ c2)

which means (by the semantics of the propositional connectives and atoms)

for all π = t0t1t2 . . . ∈ Pathss0 (M), for all i ≥ 0, not (c1 ∈ L(ti) and c2 ∈ L(ti))

which is implied by

for all s ∈ S , not (c1 ∈ L(s) and c2 ∈ L(s))

which is true – can be checked by inspecting the system.

We conclude that M, s0 |= ϕ.

This was backwards reasoning, reducing the goal to something true.

31

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ϕ = � (¬(c1 ∧ c2)). Let’s prove that M, s0 |= ϕ.

M, s0 |= ϕ

means (by the semantics in an LTS)

for all π ∈ Pathss0 (M), π |=L ϕ

which means (by the semantics of �)

for all π ∈ Pathss0 (M), for all i ≥ 0, πi |=L ¬(c1 ∧ c2)

which means (by the semantics of the propositional connectives and atoms)

for all π = t0t1t2 . . . ∈ Pathss0 (M), for all i ≥ 0, not (c1 ∈ L(ti) and c2 ∈ L(ti))

which is implied by

for all s ∈ S , not (c1 ∈ L(s) and c2 ∈ L(s))

which is true – can be checked by inspecting the system.

We conclude that M, s0 |= ϕ.

This was backwards reasoning, reducing the goal to something true.

31

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ϕ = � (¬(c1 ∧ c2)). Let’s prove that M, s0 |= ϕ.

M, s0 |= ϕ

means (by the semantics in an LTS)

for all π ∈ Pathss0 (M), π |=L ϕ

which means (by the semantics of �)

for all π ∈ Pathss0 (M), for all i ≥ 0, πi |=L ¬(c1 ∧ c2)

which means (by the semantics of the propositional connectives and atoms)

for all π = t0t1t2 . . . ∈ Pathss0 (M), for all i ≥ 0, not (c1 ∈ L(ti) and c2 ∈ L(ti))

which is implied by

for all s ∈ S , not (c1 ∈ L(s) and c2 ∈ L(s))

which is true – can be checked by inspecting the system.

We conclude that M, s0 |= ϕ.

This was backwards reasoning, reducing the goal to something true.

31

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ϕ = � (¬(c1 ∧ c2)). Let’s prove that M, s0 |= ϕ.

M, s0 |= ϕ

means (by the semantics in an LTS)

for all π ∈ Pathss0 (M), π |=L ϕ

which means (by the semantics of �)

for all π ∈ Pathss0 (M), for all i ≥ 0, πi |=L ¬(c1 ∧ c2)

which means (by the semantics of the propositional connectives and atoms)

for all π = t0t1t2 . . . ∈ Pathss0 (M), for all i ≥ 0, not (c1 ∈ L(ti) and c2 ∈ L(ti))

which is implied by

for all s ∈ S , not (c1 ∈ L(s) and c2 ∈ L(s))

which is true – can be checked by inspecting the system.

We conclude that M, s0 |= ϕ.

This was backwards reasoning, reducing the goal to something true.

31

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ϕ = � (¬(c1 ∧ c2)). Let’s prove that M, s0 |= ϕ.

M, s0 |= ϕ

means (by the semantics in an LTS)

for all π ∈ Pathss0 (M), π |=L ϕ

which means (by the semantics of �)

for all π ∈ Pathss0 (M), for all i ≥ 0, πi |=L ¬(c1 ∧ c2)

which means (by the semantics of the propositional connectives and atoms)

for all π = t0t1t2 . . . ∈ Pathss0 (M), for all i ≥ 0, not (c1 ∈ L(ti) and c2 ∈ L(ti))

which is implied by

for all s ∈ S , not (c1 ∈ L(s) and c2 ∈ L(s))

which is true – can be checked by inspecting the system.

We conclude that M, s0 |= ϕ.

This was backwards reasoning, reducing the goal to something true.

31

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ϕ = � (¬(c1 ∧ c2)). Let’s prove that M, s0 |= ϕ.

M, s0 |= ϕ

means (by the semantics in an LTS)

for all π ∈ Pathss0 (M), π |=L ϕ

which means (by the semantics of �)

for all π ∈ Pathss0 (M), for all i ≥ 0, πi |=L ¬(c1 ∧ c2)

which means (by the semantics of the propositional connectives and atoms)

for all π = t0t1t2 . . . ∈ Pathss0 (M), for all i ≥ 0, not (c1 ∈ L(ti) and c2 ∈ L(ti))

which is implied by

for all s ∈ S , not (c1 ∈ L(s) and c2 ∈ L(s))

which is true – can be checked by inspecting the system.

We conclude that M, s0 |= ϕ.

This was backwards reasoning, reducing the goal to something true.

31

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ϕ = � (¬(c1 ∧ c2)). Let’s prove that M, s0 |= ϕ.

M, s0 |= ϕ

means (by the semantics in an LTS)

for all π ∈ Pathss0 (M), π |=L ϕ

which means (by the semantics of �)

for all π ∈ Pathss0 (M), for all i ≥ 0, πi |=L ¬(c1 ∧ c2)

which means (by the semantics of the propositional connectives and atoms)

for all π = t0t1t2 . . . ∈ Pathss0 (M), for all i ≥ 0, not (c1 ∈ L(ti) and c2 ∈ L(ti))

which is implied by

for all s ∈ S , not (c1 ∈ L(s) and c2 ∈ L(s))

which is true – can be checked by inspecting the system.

We conclude that M, s0 |= ϕ.

This was backwards reasoning, reducing the goal to something true.

31

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ϕ = � (¬(c1 ∧ c2)). Let’s prove that M, s0 |= ϕ.

M, s0 |= ϕ

means (by the semantics in an LTS)

for all π ∈ Pathss0 (M), π |=L ϕ

which means (by the semantics of �)

for all π ∈ Pathss0 (M), for all i ≥ 0, πi |=L ¬(c1 ∧ c2)

which means (by the semantics of the propositional connectives and atoms)

for all π = t0t1t2 . . . ∈ Pathss0 (M), for all i ≥ 0, not (c1 ∈ L(ti) and c2 ∈ L(ti))

which is implied by

for all s ∈ S , not (c1 ∈ L(s) and c2 ∈ L(s))

which is true – can be checked by inspecting the system.

We conclude that M, s0 |= ϕ.

This was backwards reasoning, reducing the goal to something true.

31

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ϕ = � (¬(c1 ∧ c2)). Let’s prove that M, s0 |= ϕ.

M, s0 |= ϕ

means (by the semantics in an LTS)

for all π ∈ Pathss0 (M), π |=L ϕ

which means (by the semantics of �)

for all π ∈ Pathss0 (M), for all i ≥ 0, πi |=L ¬(c1 ∧ c2)

which means (by the semantics of the propositional connectives and atoms)

for all π = t0t1t2 . . . ∈ Pathss0 (M), for all i ≥ 0, not (c1 ∈ L(ti) and c2 ∈ L(ti))

which is implied by

for all s ∈ S , not (c1 ∈ L(s) and c2 ∈ L(s))

which is true – can be checked by inspecting the system.

We conclude that M, s0 |= ϕ.

This was backwards reasoning, reducing the goal to something true.

31

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ϕ = � (¬(c1 ∧ c2)). Let’s prove that M, s0 |= ϕ.

M, s0 |= ϕ

means (by the semantics in an LTS)

for all π ∈ Pathss0 (M), π |=L ϕ

which means (by the semantics of �)

for all π ∈ Pathss0 (M), for all i ≥ 0, πi |=L ¬(c1 ∧ c2)

which means (by the semantics of the propositional connectives and atoms)

for all π = t0t1t2 . . . ∈ Pathss0 (M), for all i ≥ 0, not (c1 ∈ L(ti) and c2 ∈ L(ti))

which is implied by

for all s ∈ S , not (c1 ∈ L(s) and c2 ∈ L(s))

which is true – can be checked by inspecting the system.

We conclude that M, s0 |= ϕ.

This was backwards reasoning, reducing the goal to something true. 31

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.

An LTL formula expressing this is ϕ = � ((r1 → ♦c1) ∧ (r2 → ♦c2)).

Let’s prove that M, s0 6|= ϕ.

By the semantics in an LTS, it suffices to find one π ∈ Paths0 (M) such that π 6|=L ϕ.

We take π = s0(s1s3s7)∞.

π |=L ϕ

implies, by the semantics of � and ∧
(s1s3s7)∞ |=L r1 → ♦c1

which implies, by the semantics of → and atoms (since r1 ∈ L(s1))

(s1s3s7)∞ |=L ♦c1

which implies, by the semantics of ♦ and atoms

c1 ∈ L(s1) or c1 ∈ L(s3) or c1 ∈ L(s7)

which is false – as can be seen by inspecting the system.

Since the assumption π |=L ϕ leads to a contradiction, we conclude π 6|=L ϕ.

32

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.

An LTL formula expressing this is ϕ = � ((r1 → ♦c1) ∧ (r2 → ♦c2)).

Let’s prove that M, s0 6|= ϕ.

By the semantics in an LTS, it suffices to find one π ∈ Paths0 (M) such that π 6|=L ϕ.

We take π = s0(s1s3s7)∞.

π |=L ϕ

implies, by the semantics of � and ∧
(s1s3s7)∞ |=L r1 → ♦c1

which implies, by the semantics of → and atoms (since r1 ∈ L(s1))

(s1s3s7)∞ |=L ♦c1

which implies, by the semantics of ♦ and atoms

c1 ∈ L(s1) or c1 ∈ L(s3) or c1 ∈ L(s7)

which is false – as can be seen by inspecting the system.

Since the assumption π |=L ϕ leads to a contradiction, we conclude π 6|=L ϕ.

32

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.

An LTL formula expressing this is ϕ = � ((r1 → ♦c1) ∧ (r2 → ♦c2)).

Let’s prove that M, s0 6|= ϕ.

By the semantics in an LTS, it suffices to find one π ∈ Paths0 (M) such that π 6|=L ϕ.

We take π = s0(s1s3s7)∞.

π |=L ϕ

implies, by the semantics of � and ∧
(s1s3s7)∞ |=L r1 → ♦c1

which implies, by the semantics of → and atoms (since r1 ∈ L(s1))

(s1s3s7)∞ |=L ♦c1

which implies, by the semantics of ♦ and atoms

c1 ∈ L(s1) or c1 ∈ L(s3) or c1 ∈ L(s7)

which is false – as can be seen by inspecting the system.

Since the assumption π |=L ϕ leads to a contradiction, we conclude π 6|=L ϕ.

32

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.

An LTL formula expressing this is ϕ = � ((r1 → ♦c1) ∧ (r2 → ♦c2)).

Let’s prove that M, s0 6|= ϕ.

By the semantics in an LTS, it suffices to find one π ∈ Paths0 (M) such that π 6|=L ϕ.

We take π = s0(s1s3s7)∞.

π |=L ϕ

implies, by the semantics of � and ∧
(s1s3s7)∞ |=L r1 → ♦c1

which implies, by the semantics of → and atoms (since r1 ∈ L(s1))

(s1s3s7)∞ |=L ♦c1

which implies, by the semantics of ♦ and atoms

c1 ∈ L(s1) or c1 ∈ L(s3) or c1 ∈ L(s7)

which is false – as can be seen by inspecting the system.

Since the assumption π |=L ϕ leads to a contradiction, we conclude π 6|=L ϕ.

32

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.

An LTL formula expressing this is ϕ = � ((r1 → ♦c1) ∧ (r2 → ♦c2)).

Let’s prove that M, s0 6|= ϕ.

By the semantics in an LTS, it suffices to find one π ∈ Paths0 (M) such that π 6|=L ϕ.

We take π = s0(s1s3s7)∞.

π |=L ϕ

implies, by the semantics of � and ∧
(s1s3s7)∞ |=L r1 → ♦c1

which implies, by the semantics of → and atoms (since r1 ∈ L(s1))

(s1s3s7)∞ |=L ♦c1

which implies, by the semantics of ♦ and atoms

c1 ∈ L(s1) or c1 ∈ L(s3) or c1 ∈ L(s7)

which is false – as can be seen by inspecting the system.

Since the assumption π |=L ϕ leads to a contradiction, we conclude π 6|=L ϕ.

32

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.

An LTL formula expressing this is ϕ = � ((r1 → ♦c1) ∧ (r2 → ♦c2)).

Let’s prove that M, s0 6|= ϕ.

By the semantics in an LTS, it suffices to find one π ∈ Paths0 (M) such that π 6|=L ϕ.

We take π = s0(s1s3s7)∞.

π |=L ϕ

implies, by the semantics of � and ∧
(s1s3s7)∞ |=L r1 → ♦c1

which implies, by the semantics of → and atoms (since r1 ∈ L(s1))

(s1s3s7)∞ |=L ♦c1

which implies, by the semantics of ♦ and atoms

c1 ∈ L(s1) or c1 ∈ L(s3) or c1 ∈ L(s7)

which is false – as can be seen by inspecting the system.

Since the assumption π |=L ϕ leads to a contradiction, we conclude π 6|=L ϕ.

32

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.

An LTL formula expressing this is ϕ = � ((r1 → ♦c1) ∧ (r2 → ♦c2)).

Let’s prove that M, s0 6|= ϕ.

By the semantics in an LTS, it suffices to find one π ∈ Paths0 (M) such that π 6|=L ϕ.

We take π = s0(s1s3s7)∞.

π |=L ϕ

implies, by the semantics of � and ∧
(s1s3s7)∞ |=L r1 → ♦c1

which implies, by the semantics of → and atoms (since r1 ∈ L(s1))

(s1s3s7)∞ |=L ♦c1

which implies, by the semantics of ♦ and atoms

c1 ∈ L(s1) or c1 ∈ L(s3) or c1 ∈ L(s7)

which is false – as can be seen by inspecting the system.

Since the assumption π |=L ϕ leads to a contradiction, we conclude π 6|=L ϕ.

32

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.

An LTL formula expressing this is ϕ = � ((r1 → ♦c1) ∧ (r2 → ♦c2)).

Let’s prove that M, s0 6|= ϕ.

By the semantics in an LTS, it suffices to find one π ∈ Paths0 (M) such that π 6|=L ϕ.

We take π = s0(s1s3s7)∞.

π |=L ϕ

implies, by the semantics of � and ∧
(s1s3s7)∞ |=L r1 → ♦c1

which implies, by the semantics of → and atoms (since r1 ∈ L(s1))

(s1s3s7)∞ |=L ♦c1

which implies, by the semantics of ♦ and atoms

c1 ∈ L(s1) or c1 ∈ L(s3) or c1 ∈ L(s7)

which is false – as can be seen by inspecting the system.

Since the assumption π |=L ϕ leads to a contradiction, we conclude π 6|=L ϕ.

32

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.

An LTL formula expressing this is ϕ = � ((r1 → ♦c1) ∧ (r2 → ♦c2)).

Let’s prove that M, s0 6|= ϕ.

By the semantics in an LTS, it suffices to find one π ∈ Paths0 (M) such that π 6|=L ϕ.

We take π = s0(s1s3s7)∞.

π |=L ϕ

implies, by the semantics of � and ∧
(s1s3s7)∞ |=L r1 → ♦c1

which implies, by the semantics of → and atoms (since r1 ∈ L(s1))

(s1s3s7)∞ |=L ♦c1

which implies, by the semantics of ♦ and atoms

c1 ∈ L(s1) or c1 ∈ L(s3) or c1 ∈ L(s7)

which is false – as can be seen by inspecting the system.

Since the assumption π |=L ϕ leads to a contradiction, we conclude π 6|=L ϕ.

32

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.

An LTL formula expressing this is ϕ = � ((r1 → ♦c1) ∧ (r2 → ♦c2)).

Let’s prove that M, s0 6|= ϕ.

By the semantics in an LTS, it suffices to find one π ∈ Paths0 (M) such that π 6|=L ϕ.

We take π = s0(s1s3s7)∞.

π |=L ϕ

implies, by the semantics of � and ∧
(s1s3s7)∞ |=L r1 → ♦c1

which implies, by the semantics of → and atoms (since r1 ∈ L(s1))

(s1s3s7)∞ |=L ♦c1

which implies, by the semantics of ♦ and atoms

c1 ∈ L(s1) or c1 ∈ L(s3) or c1 ∈ L(s7)

which is false – as can be seen by inspecting the system.

Since the assumption π |=L ϕ leads to a contradiction, we conclude π 6|=L ϕ. 32

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section

(provided it is not there already).

Let’s call a state t reachable from a state s if there is a finite path inM from s to t.

We can express the non-blocking property for process 1 as follows:

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

And similarly NB2 for process 2. Our property is therefore NB = “NB1 and NB2”.

The properties NB1 and NB2 (hence NB as well) are true about the system M.

This can be routinely checked by:

- looking at all the states s reachable from s0 such that c1 6∈ L(s)

- and, for of them, finding a state t reachable from s such that r1 ∈ L(t).

But NB1, NB2 and NB are not expressible as LTL formulas.

Can we prove this? Hmm. . . what does it even mean?

33

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section

(provided it is not there already).

Let’s call a state t reachable from a state s if there is a finite path inM from s to t.

We can express the non-blocking property for process 1 as follows:

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

And similarly NB2 for process 2. Our property is therefore NB = “NB1 and NB2”.

The properties NB1 and NB2 (hence NB as well) are true about the system M.

This can be routinely checked by:

- looking at all the states s reachable from s0 such that c1 6∈ L(s)

- and, for of them, finding a state t reachable from s such that r1 ∈ L(t).

But NB1, NB2 and NB are not expressible as LTL formulas.

Can we prove this? Hmm. . . what does it even mean?

33

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section

(provided it is not there already).

Let’s call a state t reachable from a state s if there is a finite path inM from s to t.

We can express the non-blocking property for process 1 as follows:

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

And similarly NB2 for process 2. Our property is therefore NB = “NB1 and NB2”.

The properties NB1 and NB2 (hence NB as well) are true about the system M.

This can be routinely checked by:

- looking at all the states s reachable from s0 such that c1 6∈ L(s)

- and, for of them, finding a state t reachable from s such that r1 ∈ L(t).

But NB1, NB2 and NB are not expressible as LTL formulas.

Can we prove this? Hmm. . . what does it even mean?

33

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section

(provided it is not there already).

Let’s call a state t reachable from a state s if there is a finite path inM from s to t.

We can express the non-blocking property for process 1 as follows:

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

And similarly NB2 for process 2. Our property is therefore NB = “NB1 and NB2”.

The properties NB1 and NB2 (hence NB as well) are true about the system M.

This can be routinely checked by:

- looking at all the states s reachable from s0 such that c1 6∈ L(s)

- and, for of them, finding a state t reachable from s such that r1 ∈ L(t).

But NB1, NB2 and NB are not expressible as LTL formulas.

Can we prove this? Hmm. . . what does it even mean?

33

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section

(provided it is not there already).

Let’s call a state t reachable from a state s if there is a finite path inM from s to t.

We can express the non-blocking property for process 1 as follows:

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

And similarly NB2 for process 2. Our property is therefore NB = “NB1 and NB2”.

The properties NB1 and NB2 (hence NB as well) are true about the system M.

This can be routinely checked by:

- looking at all the states s reachable from s0 such that c1 6∈ L(s)

- and, for of them, finding a state t reachable from s such that r1 ∈ L(t).

But NB1, NB2 and NB are not expressible as LTL formulas.

Can we prove this? Hmm. . . what does it even mean?

33

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section

(provided it is not there already).

Let’s call a state t reachable from a state s if there is a finite path inM from s to t.

We can express the non-blocking property for process 1 as follows:

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

And similarly NB2 for process 2. Our property is therefore NB = “NB1 and NB2”.

The properties NB1 and NB2 (hence NB as well) are true about the system M.

This can be routinely checked by:

- looking at all the states s reachable from s0 such that c1 6∈ L(s)

- and, for of them, finding a state t reachable from s such that r1 ∈ L(t).

But NB1, NB2 and NB are not expressible as LTL formulas.

Can we prove this? Hmm. . . what does it even mean?

33

Homework Exercise 2 – Solution

In the example with the two processes executed in parallel, determine whether the

following properties are expressible in LTL; and if yes, whether they hold (for s0).

Let M = (S ,→, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section

(provided it is not there already).

Let’s call a state t reachable from a state s if there is a finite path inM from s to t.

We can express the non-blocking property for process 1 as follows:

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

And similarly NB2 for process 2. Our property is therefore NB = “NB1 and NB2”.

The properties NB1 and NB2 (hence NB as well) are true about the system M.

This can be routinely checked by:

- looking at all the states s reachable from s0 such that c1 6∈ L(s)

- and, for of them, finding a state t reachable from s such that r1 ∈ L(t).

But NB1, NB2 and NB are not expressible as LTL formulas.

Can we prove this? Hmm. . . what does it even mean?
33

Expressibility in LTL

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

NB1 expressible in LTL means: There exists an LTL formula ϕ such that, for all

LTSs M = (S ,→, L) and states s0 ∈ S , NB1 is true for M and s0 iff M, s0 |= ϕ.

Let’s assume NB1 expressible in LTL, and let ϕ be an LTL formula as above.

Let M = (S ,→, L) and M′ = (S ′,→′, L′) be the LTSs shown on the left and on

the right, respectively.
s0 s1

r1

s0

Clearly, NB1 is true for M and s0, but NB1 is not true for M′ and s0.

Then, by the choice of ϕ, we have M, s0 |= ϕ.

And since Paths0 (M′) ⊆ Paths0 (M) and L(s0) = L′(s0) (M′ is a subsystem of M),

from the above we have M′, s0 |= ϕ.

Hence, by the choice of ϕ, NB1 is true for M′ and s0, which yields a contradiction.

We’ve reached a contradiction, meaning our assumption is false. So NB1 is not

expressible in LTL.

Homework: Modify the proof to show that NB is not expressible in LTL.

34

Expressibility in LTL

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

NB1 expressible in LTL means: There exists an LTL formula ϕ such that, for all

LTSs M = (S ,→, L) and states s0 ∈ S , NB1 is true for M and s0 iff M, s0 |= ϕ.

Let’s assume NB1 expressible in LTL, and let ϕ be an LTL formula as above.

Let M = (S ,→, L) and M′ = (S ′,→′, L′) be the LTSs shown on the left and on

the right, respectively.
s0 s1

r1

s0

Clearly, NB1 is true for M and s0, but NB1 is not true for M′ and s0.

Then, by the choice of ϕ, we have M, s0 |= ϕ.

And since Paths0 (M′) ⊆ Paths0 (M) and L(s0) = L′(s0) (M′ is a subsystem of M),

from the above we have M′, s0 |= ϕ.

Hence, by the choice of ϕ, NB1 is true for M′ and s0, which yields a contradiction.

We’ve reached a contradiction, meaning our assumption is false. So NB1 is not

expressible in LTL.

Homework: Modify the proof to show that NB is not expressible in LTL.

34

Expressibility in LTL

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

NB1 expressible in LTL means: There exists an LTL formula ϕ such that, for all

LTSs M = (S ,→, L) and states s0 ∈ S , NB1 is true for M and s0 iff M, s0 |= ϕ.

Let’s assume NB1 expressible in LTL, and let ϕ be an LTL formula as above.

Let M = (S ,→, L) and M′ = (S ′,→′, L′) be the LTSs shown on the left and on

the right, respectively.
s0 s1

r1

s0

Clearly, NB1 is true for M and s0, but NB1 is not true for M′ and s0.

Then, by the choice of ϕ, we have M, s0 |= ϕ.

And since Paths0 (M′) ⊆ Paths0 (M) and L(s0) = L′(s0) (M′ is a subsystem of M),

from the above we have M′, s0 |= ϕ.

Hence, by the choice of ϕ, NB1 is true for M′ and s0, which yields a contradiction.

We’ve reached a contradiction, meaning our assumption is false. So NB1 is not

expressible in LTL.

Homework: Modify the proof to show that NB is not expressible in LTL.

34

Expressibility in LTL

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

NB1 expressible in LTL means: There exists an LTL formula ϕ such that, for all

LTSs M = (S ,→, L) and states s0 ∈ S , NB1 is true for M and s0 iff M, s0 |= ϕ.

Let’s assume NB1 expressible in LTL, and let ϕ be an LTL formula as above.

Let M = (S ,→, L) and M′ = (S ′,→′, L′) be the LTSs shown on the left and on

the right, respectively.
s0 s1

r1

s0

Clearly, NB1 is true for M and s0, but NB1 is not true for M′ and s0.

Then, by the choice of ϕ, we have M, s0 |= ϕ.

And since Paths0 (M′) ⊆ Paths0 (M) and L(s0) = L′(s0) (M′ is a subsystem of M),

from the above we have M′, s0 |= ϕ.

Hence, by the choice of ϕ, NB1 is true for M′ and s0, which yields a contradiction.

We’ve reached a contradiction, meaning our assumption is false. So NB1 is not

expressible in LTL.

Homework: Modify the proof to show that NB is not expressible in LTL.

34

Expressibility in LTL

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

NB1 expressible in LTL means: There exists an LTL formula ϕ such that, for all

LTSs M = (S ,→, L) and states s0 ∈ S , NB1 is true for M and s0 iff M, s0 |= ϕ.

Let’s assume NB1 expressible in LTL, and let ϕ be an LTL formula as above.

Let M = (S ,→, L) and M′ = (S ′,→′, L′) be the LTSs shown on the left and on

the right, respectively.
s0 s1

r1

s0

Clearly, NB1 is true for M and s0, but NB1 is not true for M′ and s0.

Then, by the choice of ϕ, we have M, s0 |= ϕ.

And since Paths0 (M′) ⊆ Paths0 (M) and L(s0) = L′(s0) (M′ is a subsystem of M),

from the above we have M′, s0 |= ϕ.

Hence, by the choice of ϕ, NB1 is true for M′ and s0, which yields a contradiction.

We’ve reached a contradiction, meaning our assumption is false. So NB1 is not

expressible in LTL.

Homework: Modify the proof to show that NB is not expressible in LTL.

34

Expressibility in LTL

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

NB1 expressible in LTL means: There exists an LTL formula ϕ such that, for all

LTSs M = (S ,→, L) and states s0 ∈ S , NB1 is true for M and s0 iff M, s0 |= ϕ.

Let’s assume NB1 expressible in LTL, and let ϕ be an LTL formula as above.

Let M = (S ,→, L) and M′ = (S ′,→′, L′) be the LTSs shown on the left and on

the right, respectively.
s0 s1

r1

s0

Clearly, NB1 is true for M and s0, but NB1 is not true for M′ and s0.

Then, by the choice of ϕ, we have M, s0 |= ϕ.

And since Paths0 (M′) ⊆ Paths0 (M) and L(s0) = L′(s0) (M′ is a subsystem of M),

from the above we have M′, s0 |= ϕ.

Hence, by the choice of ϕ, NB1 is true for M′ and s0, which yields a contradiction.

We’ve reached a contradiction, meaning our assumption is false. So NB1 is not

expressible in LTL.

Homework: Modify the proof to show that NB is not expressible in LTL.

34

Expressibility in LTL

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

NB1 expressible in LTL means: There exists an LTL formula ϕ such that, for all

LTSs M = (S ,→, L) and states s0 ∈ S , NB1 is true for M and s0 iff M, s0 |= ϕ.

Let’s assume NB1 expressible in LTL, and let ϕ be an LTL formula as above.

Let M = (S ,→, L) and M′ = (S ′,→′, L′) be the LTSs shown on the left and on

the right, respectively.
s0 s1

r1

s0

Clearly, NB1 is true for M and s0, but NB1 is not true for M′ and s0.

Then, by the choice of ϕ, we have M, s0 |= ϕ.

And since Paths0 (M′) ⊆ Paths0 (M) and L(s0) = L′(s0) (M′ is a subsystem of M),

from the above we have M′, s0 |= ϕ.

Hence, by the choice of ϕ, NB1 is true for M′ and s0, which yields a contradiction.

We’ve reached a contradiction, meaning our assumption is false. So NB1 is not

expressible in LTL.

Homework: Modify the proof to show that NB is not expressible in LTL.

34

Expressibility in LTL

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

NB1 expressible in LTL means: There exists an LTL formula ϕ such that, for all

LTSs M = (S ,→, L) and states s0 ∈ S , NB1 is true for M and s0 iff M, s0 |= ϕ.

Let’s assume NB1 expressible in LTL, and let ϕ be an LTL formula as above.

Let M = (S ,→, L) and M′ = (S ′,→′, L′) be the LTSs shown on the left and on

the right, respectively.
s0 s1

r1

s0

Clearly, NB1 is true for M and s0, but NB1 is not true for M′ and s0.

Then, by the choice of ϕ, we have M, s0 |= ϕ.

And since Paths0 (M′) ⊆ Paths0 (M) and L(s0) = L′(s0) (M′ is a subsystem of M),

from the above we have M′, s0 |= ϕ.

Hence, by the choice of ϕ, NB1 is true for M′ and s0, which yields a contradiction.

We’ve reached a contradiction, meaning our assumption is false. So NB1 is not

expressible in LTL.

Homework: Modify the proof to show that NB is not expressible in LTL.

34

Expressibility in LTL

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

NB1 expressible in LTL means: There exists an LTL formula ϕ such that, for all

LTSs M = (S ,→, L) and states s0 ∈ S , NB1 is true for M and s0 iff M, s0 |= ϕ.

Let’s assume NB1 expressible in LTL, and let ϕ be an LTL formula as above.

Let M = (S ,→, L) and M′ = (S ′,→′, L′) be the LTSs shown on the left and on

the right, respectively.
s0 s1

r1

s0

Clearly, NB1 is true for M and s0, but NB1 is not true for M′ and s0.

Then, by the choice of ϕ, we have M, s0 |= ϕ.

And since Paths0 (M′) ⊆ Paths0 (M) and L(s0) = L′(s0) (M′ is a subsystem of M),

from the above we have M′, s0 |= ϕ.

Hence, by the choice of ϕ, NB1 is true for M′ and s0, which yields a contradiction.

We’ve reached a contradiction, meaning our assumption is false. So NB1 is not

expressible in LTL.

Homework: Modify the proof to show that NB is not expressible in LTL.

34

Expressibility in LTL

NB1: For all states s reachable from s0 such that c1 6∈ L(s), there exists a state t

reachable from s such that r1 ∈ L(t).

NB1 expressible in LTL means: There exists an LTL formula ϕ such that, for all

LTSs M = (S ,→, L) and states s0 ∈ S , NB1 is true for M and s0 iff M, s0 |= ϕ.

Let’s assume NB1 expressible in LTL, and let ϕ be an LTL formula as above.

Let M = (S ,→, L) and M′ = (S ′,→′, L′) be the LTSs shown on the left and on

the right, respectively.
s0 s1

r1

s0

Clearly, NB1 is true for M and s0, but NB1 is not true for M′ and s0.

Then, by the choice of ϕ, we have M, s0 |= ϕ.

And since Paths0 (M′) ⊆ Paths0 (M) and L(s0) = L′(s0) (M′ is a subsystem of M),

from the above we have M′, s0 |= ϕ.

Hence, by the choice of ϕ, NB1 is true for M′ and s0, which yields a contradiction.

We’ve reached a contradiction, meaning our assumption is false. So NB1 is not

expressible in LTL.

Homework: Modify the proof to show that NB is not expressible in LTL. 34

Formula Equivalence

Two formulas ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if they are satisfied by

(i.e., hold for) exactly the same state labelings and infinite sequences of states:

Given any labeling L : S → P(Atoms) and any infinite sequence of states π,

we have that π |=L ϕ iff π |=L ψ

; in other words:

(1) π |=L ϕ implies π |=L ψ

and

(2) π |=L ψ implies π |=L ϕ.

Note. If ϕ ≡ ψ, then ϕ and ψ will also be satisfied by the same LTSs in the

same states: Given any LTS M = (S ,→, L) and any s ∈ S , we have that

M, s |= ϕ iff M, s |= ψ.

Homework Exercise 3: Explain why this is the case.

35

Formula Equivalence

Two formulas ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if they are satisfied by

(i.e., hold for) exactly the same state labelings and infinite sequences of states:

Given any labeling L : S → P(Atoms) and any infinite sequence of states π,

we have that π |=L ϕ iff π |=L ψ; in other words:

(1) π |=L ϕ implies π |=L ψ

and

(2) π |=L ψ implies π |=L ϕ.

Note. If ϕ ≡ ψ, then ϕ and ψ will also be satisfied by the same LTSs in the

same states: Given any LTS M = (S ,→, L) and any s ∈ S , we have that

M, s |= ϕ iff M, s |= ψ.

Homework Exercise 3: Explain why this is the case.

35

Formula Equivalence

Two formulas ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if they are satisfied by

(i.e., hold for) exactly the same state labelings and infinite sequences of states:

Given any labeling L : S → P(Atoms) and any infinite sequence of states π,

we have that π |=L ϕ iff π |=L ψ; in other words:

(1) π |=L ϕ implies π |=L ψ

and

(2) π |=L ψ implies π |=L ϕ.

Note. If ϕ ≡ ψ, then ϕ and ψ will also be satisfied by the same LTSs in the

same states: Given any LTS M = (S ,→, L) and any s ∈ S , we have that

M, s |= ϕ iff M, s |= ψ.

Homework Exercise 3: Explain why this is the case.

35

Formula Equivalence

Two formulas ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if they are satisfied by

(i.e., hold for) exactly the same state labelings and infinite sequences of states:

Given any labeling L : S → P(Atoms) and any infinite sequence of states π,

we have that π |=L ϕ iff π |=L ψ; in other words:

(1) π |=L ϕ implies π |=L ψ

and

(2) π |=L ψ implies π |=L ϕ.

Note. If ϕ ≡ ψ, then ϕ and ψ will also be satisfied by the same LTSs in the

same states: Given any LTS M = (S ,→, L) and any s ∈ S , we have that

M, s |= ϕ iff M, s |= ψ.

Homework Exercise 3: Explain why this is the case.

35

Some Formula Equivalences

Propositional tautologies:

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

Duality laws:

¬ © ϕ ≡ ©¬ϕ ¬�ϕ ≡ ♦¬ϕ ¬♦ϕ ≡ �¬ϕ

Distributive laws:

�(ϕ ∧ ψ) ≡ �ϕ ∧�ψ ♦(ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ ©(ϕUψ) ≡ ©ϕ U©ψ

Note:

�(ϕ ∨ ψ) 6≡ �ϕ ∨�ψ ♦(ϕ ∧ ψ) 6≡ ♦ϕ ∧ ♦ψ

36

Some Formula Equivalences

Propositional tautologies:

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

Duality laws:

¬ © ϕ ≡ ©¬ϕ ¬�ϕ ≡ ♦¬ϕ ¬♦ϕ ≡ �¬ϕ

Distributive laws:

�(ϕ ∧ ψ) ≡ �ϕ ∧�ψ ♦(ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ ©(ϕUψ) ≡ ©ϕ U©ψ

Note:

�(ϕ ∨ ψ) 6≡ �ϕ ∨�ψ ♦(ϕ ∧ ψ) 6≡ ♦ϕ ∧ ♦ψ

36

Some Formula Equivalences

Propositional tautologies:

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

Duality laws:

¬ © ϕ ≡ ©¬ϕ ¬�ϕ ≡ ♦¬ϕ ¬♦ϕ ≡ �¬ϕ

Distributive laws:

�(ϕ ∧ ψ) ≡ �ϕ ∧�ψ ♦(ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ ©(ϕUψ) ≡ ©ϕ U©ψ

Note:

�(ϕ ∨ ψ) 6≡ �ϕ ∨�ψ ♦(ϕ ∧ ψ) 6≡ ♦ϕ ∧ ♦ψ

36

Some Formula Equivalences

Propositional tautologies:

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

Duality laws:

¬ © ϕ ≡ ©¬ϕ ¬�ϕ ≡ ♦¬ϕ ¬♦ϕ ≡ �¬ϕ

Distributive laws:

�(ϕ ∧ ψ) ≡ �ϕ ∧�ψ ♦(ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ ©(ϕUψ) ≡ ©ϕ U©ψ

Note:

�(ϕ ∨ ψ) 6≡ �ϕ ∨�ψ ♦(ϕ ∧ ψ) 6≡ ♦ϕ ∧ ♦ψ

36

Some Formula Equivalences

Inter-definability laws:

♦ϕ ≡ ¬�¬ϕ �ϕ ≡ ¬♦¬ϕ ♦ϕ ≡ >Uϕ

where > (read “True”) is an abbreviation for p → p for some atom p

Idempotency laws:

♦♦ϕ ≡ ♦ϕ ��ϕ ≡ �ϕ (ϕUψ) Uψ ≡ ϕUψ ϕU (ϕUψ) ≡ ϕUψ

Absorption laws:

�♦�ϕ ≡ ♦�ϕ ♦�♦ϕ ≡ �♦ϕ

Expansion laws:

♦ϕ ≡ ϕ ∨ ©♦ϕ �ϕ ≡ ϕ ∧ ©�ϕ ϕUψ ≡ ψ ∨ (ϕ ∧ ©(ϕUψ))

37

Some Formula Equivalences

Inter-definability laws:

♦ϕ ≡ ¬�¬ϕ �ϕ ≡ ¬♦¬ϕ ♦ϕ ≡ >Uϕ

where > (read “True”) is an abbreviation for p → p for some atom p

Idempotency laws:

♦♦ϕ ≡ ♦ϕ ��ϕ ≡ �ϕ (ϕUψ) Uψ ≡ ϕUψ ϕU (ϕUψ) ≡ ϕUψ

Absorption laws:

�♦�ϕ ≡ ♦�ϕ ♦�♦ϕ ≡ �♦ϕ

Expansion laws:

♦ϕ ≡ ϕ ∨ ©♦ϕ �ϕ ≡ ϕ ∧ ©�ϕ ϕUψ ≡ ψ ∨ (ϕ ∧ ©(ϕUψ))

37

Some Formula Equivalences

Inter-definability laws:

♦ϕ ≡ ¬�¬ϕ �ϕ ≡ ¬♦¬ϕ ♦ϕ ≡ >Uϕ

where > (read “True”) is an abbreviation for p → p for some atom p

Idempotency laws:

♦♦ϕ ≡ ♦ϕ ��ϕ ≡ �ϕ (ϕUψ) Uψ ≡ ϕUψ ϕU (ϕUψ) ≡ ϕUψ

Absorption laws:

�♦�ϕ ≡ ♦�ϕ ♦�♦ϕ ≡ �♦ϕ

Expansion laws:

♦ϕ ≡ ϕ ∨ ©♦ϕ �ϕ ≡ ϕ ∧ ©�ϕ ϕUψ ≡ ψ ∨ (ϕ ∧ ©(ϕUψ))

37

Some Formula Equivalences

Inter-definability laws:

♦ϕ ≡ ¬�¬ϕ �ϕ ≡ ¬♦¬ϕ ♦ϕ ≡ >Uϕ

where > (read “True”) is an abbreviation for p → p for some atom p

Idempotency laws:

♦♦ϕ ≡ ♦ϕ ��ϕ ≡ �ϕ (ϕUψ) Uψ ≡ ϕUψ ϕU (ϕUψ) ≡ ϕUψ

Absorption laws:

�♦�ϕ ≡ ♦�ϕ ♦�♦ϕ ≡ �♦ϕ

Expansion laws:

♦ϕ ≡ ϕ ∨ ©♦ϕ �ϕ ≡ ϕ ∧ ©�ϕ ϕUψ ≡ ψ ∨ (ϕ ∧ ©(ϕUψ))

37

Proving Formula Equivalences

Let us prove the following equivalence:

♦ϕ ≡ ¬�¬ϕ

Fix a labeling function L : S → P(Atoms) and let π be an infinite sequence

s0s1s2 We must prove two things:

(1) π |= ♦ϕ implies π |= ¬�¬ϕ.

(2) π |= ¬�¬ϕ implies π |= ♦ϕ.

38

Proving Formula Equivalences

Let us prove the following equivalence:

♦ϕ ≡ ¬�¬ϕ

Fix a labeling function L : S → P(Atoms) and let π be an infinite sequence

s0s1s2

We must prove two things:

(1) π |= ♦ϕ implies π |= ¬�¬ϕ.

(2) π |= ¬�¬ϕ implies π |= ♦ϕ.

38

Proving Formula Equivalences

Let us prove the following equivalence:

♦ϕ ≡ ¬�¬ϕ

Fix a labeling function L : S → P(Atoms) and let π be an infinite sequence

s0s1s2 We must prove two things:

(1) π |= ♦ϕ implies π |= ¬�¬ϕ.

(2) π |= ¬�¬ϕ implies π |= ♦ϕ.

38

Proving Formula Equivalences

Proving that π |= ♦ϕ implies π |= ¬�¬ϕ:

Assume π |= ♦ϕ.

Hence, by semantics of ♦, there exists an i such that πi |= ϕ.

Hence, by logic, it is not the case that: for all i , πi 6|= ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of �, it is not the case that π |= �¬ϕ.

In other words, π 6|= �¬ ϕ.

Hence, by semantics of ¬, we have π |= ¬�¬ϕ.

39

Proving Formula Equivalences

Proving that π |= ♦ϕ implies π |= ¬�¬ϕ:

Assume π |= ♦ϕ.

Hence, by semantics of ♦, there exists an i such that πi |= ϕ.

Hence, by logic, it is not the case that: for all i , πi 6|= ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of �, it is not the case that π |= �¬ϕ.

In other words, π 6|= �¬ ϕ.

Hence, by semantics of ¬, we have π |= ¬�¬ϕ.

39

Proving Formula Equivalences

Proving that π |= ♦ϕ implies π |= ¬�¬ϕ:

Assume π |= ♦ϕ.

Hence, by semantics of ♦, there exists an i such that πi |= ϕ.

Hence, by logic, it is not the case that: for all i , πi 6|= ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of �, it is not the case that π |= �¬ϕ.

In other words, π 6|= �¬ ϕ.

Hence, by semantics of ¬, we have π |= ¬�¬ϕ.

39

Proving Formula Equivalences

Proving that π |= ♦ϕ implies π |= ¬�¬ϕ:

Assume π |= ♦ϕ.

Hence, by semantics of ♦, there exists an i such that πi |= ϕ.

Hence, by logic, it is not the case that: for all i , πi 6|= ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of �, it is not the case that π |= �¬ϕ.

In other words, π 6|= �¬ ϕ.

Hence, by semantics of ¬, we have π |= ¬�¬ϕ.

39

Proving Formula Equivalences

Proving that π |= ♦ϕ implies π |= ¬�¬ϕ:

Assume π |= ♦ϕ.

Hence, by semantics of ♦, there exists an i such that πi |= ϕ.

Hence, by logic, it is not the case that: for all i , πi 6|= ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of �, it is not the case that π |= �¬ϕ.

In other words, π 6|= �¬ ϕ.

Hence, by semantics of ¬, we have π |= ¬�¬ϕ.

39

Proving Formula Equivalences

Proving that π |= ♦ϕ implies π |= ¬�¬ϕ:

Assume π |= ♦ϕ.

Hence, by semantics of ♦, there exists an i such that πi |= ϕ.

Hence, by logic, it is not the case that: for all i , πi 6|= ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of �, it is not the case that π |= �¬ϕ.

In other words, π 6|= �¬ ϕ.

Hence, by semantics of ¬, we have π |= ¬�¬ϕ.

39

Proving Formula Equivalences

Proving that π |= ♦ϕ implies π |= ¬�¬ϕ:

Assume π |= ♦ϕ.

Hence, by semantics of ♦, there exists an i such that πi |= ϕ.

Hence, by logic, it is not the case that: for all i , πi 6|= ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of �, it is not the case that π |= �¬ϕ.

In other words, π 6|= �¬ ϕ.

Hence, by semantics of ¬, we have π |= ¬�¬ϕ.

39

Proving Formula Equivalences

Proving that π |= ♦ϕ implies π |= ¬�¬ϕ:

Assume π |= ♦ϕ.

Hence, by semantics of ♦, there exists an i such that πi |= ϕ.

Hence, by logic, it is not the case that: for all i , πi 6|= ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of �, it is not the case that π |= �¬ϕ.

In other words, π 6|= �¬ ϕ.

Hence, by semantics of ¬, we have π |= ¬�¬ϕ.

39

Proving Formula Equivalences

Proving that π |= ¬�¬ϕ implies π |= ♦ϕ:

Assume π |= ¬�¬ϕ.

Hence, by semantics of ¬, we have π 6|= �¬ ϕ.

In other words, it is not the case that π |= �¬ϕ.

Hence, by semantics of �, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi 6|= ϕ.

Hence, by logic, there exists an i such that πi |= ϕ.

Hence, by semantics of ♦, we have π |= ♦ϕ.

Note. The proof of “π |= ¬�¬ϕ implies π |= ♦ϕ” is the reverse of the proof

of “π |= ♦ϕ implies π |= ¬�¬ϕ”. So we could have proved directly “π |= ♦ϕ

iff π |= ¬�¬ϕ” by a chain of equivalent (iff-related) statements.

40

Proving Formula Equivalences

Proving that π |= ¬�¬ϕ implies π |= ♦ϕ:

Assume π |= ¬�¬ϕ.

Hence, by semantics of ¬, we have π 6|= �¬ ϕ.

In other words, it is not the case that π |= �¬ϕ.

Hence, by semantics of �, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi 6|= ϕ.

Hence, by logic, there exists an i such that πi |= ϕ.

Hence, by semantics of ♦, we have π |= ♦ϕ.

Note. The proof of “π |= ¬�¬ϕ implies π |= ♦ϕ” is the reverse of the proof

of “π |= ♦ϕ implies π |= ¬�¬ϕ”. So we could have proved directly “π |= ♦ϕ

iff π |= ¬�¬ϕ” by a chain of equivalent (iff-related) statements.

40

Proving Formula Equivalences

Proving that π |= ¬�¬ϕ implies π |= ♦ϕ:

Assume π |= ¬�¬ϕ.

Hence, by semantics of ¬, we have π 6|= �¬ ϕ.

In other words, it is not the case that π |= �¬ϕ.

Hence, by semantics of �, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi 6|= ϕ.

Hence, by logic, there exists an i such that πi |= ϕ.

Hence, by semantics of ♦, we have π |= ♦ϕ.

Note. The proof of “π |= ¬�¬ϕ implies π |= ♦ϕ” is the reverse of the proof

of “π |= ♦ϕ implies π |= ¬�¬ϕ”. So we could have proved directly “π |= ♦ϕ

iff π |= ¬�¬ϕ” by a chain of equivalent (iff-related) statements.

40

Proving Formula Equivalences

Proving that π |= ¬�¬ϕ implies π |= ♦ϕ:

Assume π |= ¬�¬ϕ.

Hence, by semantics of ¬, we have π 6|= �¬ ϕ.

In other words, it is not the case that π |= �¬ϕ.

Hence, by semantics of �, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi 6|= ϕ.

Hence, by logic, there exists an i such that πi |= ϕ.

Hence, by semantics of ♦, we have π |= ♦ϕ.

Note. The proof of “π |= ¬�¬ϕ implies π |= ♦ϕ” is the reverse of the proof

of “π |= ♦ϕ implies π |= ¬�¬ϕ”. So we could have proved directly “π |= ♦ϕ

iff π |= ¬�¬ϕ” by a chain of equivalent (iff-related) statements.

40

Proving Formula Equivalences

Proving that π |= ¬�¬ϕ implies π |= ♦ϕ:

Assume π |= ¬�¬ϕ.

Hence, by semantics of ¬, we have π 6|= �¬ ϕ.

In other words, it is not the case that π |= �¬ϕ.

Hence, by semantics of �, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi 6|= ϕ.

Hence, by logic, there exists an i such that πi |= ϕ.

Hence, by semantics of ♦, we have π |= ♦ϕ.

Note. The proof of “π |= ¬�¬ϕ implies π |= ♦ϕ” is the reverse of the proof

of “π |= ♦ϕ implies π |= ¬�¬ϕ”. So we could have proved directly “π |= ♦ϕ

iff π |= ¬�¬ϕ” by a chain of equivalent (iff-related) statements.

40

Proving Formula Equivalences

Proving that π |= ¬�¬ϕ implies π |= ♦ϕ:

Assume π |= ¬�¬ϕ.

Hence, by semantics of ¬, we have π 6|= �¬ ϕ.

In other words, it is not the case that π |= �¬ϕ.

Hence, by semantics of �, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi 6|= ϕ.

Hence, by logic, there exists an i such that πi |= ϕ.

Hence, by semantics of ♦, we have π |= ♦ϕ.

Note. The proof of “π |= ¬�¬ϕ implies π |= ♦ϕ” is the reverse of the proof

of “π |= ♦ϕ implies π |= ¬�¬ϕ”. So we could have proved directly “π |= ♦ϕ

iff π |= ¬�¬ϕ” by a chain of equivalent (iff-related) statements.

40

Proving Formula Equivalences

Proving that π |= ¬�¬ϕ implies π |= ♦ϕ:

Assume π |= ¬�¬ϕ.

Hence, by semantics of ¬, we have π 6|= �¬ ϕ.

In other words, it is not the case that π |= �¬ϕ.

Hence, by semantics of �, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi 6|= ϕ.

Hence, by logic, there exists an i such that πi |= ϕ.

Hence, by semantics of ♦, we have π |= ♦ϕ.

Note. The proof of “π |= ¬�¬ϕ implies π |= ♦ϕ” is the reverse of the proof

of “π |= ♦ϕ implies π |= ¬�¬ϕ”. So we could have proved directly “π |= ♦ϕ

iff π |= ¬�¬ϕ” by a chain of equivalent (iff-related) statements.

40

Proving Formula Equivalences

Proving that π |= ¬�¬ϕ implies π |= ♦ϕ:

Assume π |= ¬�¬ϕ.

Hence, by semantics of ¬, we have π 6|= �¬ ϕ.

In other words, it is not the case that π |= �¬ϕ.

Hence, by semantics of �, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi 6|= ϕ.

Hence, by logic, there exists an i such that πi |= ϕ.

Hence, by semantics of ♦, we have π |= ♦ϕ.

Note. The proof of “π |= ¬�¬ϕ implies π |= ♦ϕ” is the reverse of the proof

of “π |= ♦ϕ implies π |= ¬�¬ϕ”. So we could have proved directly “π |= ♦ϕ

iff π |= ¬�¬ϕ” by a chain of equivalent (iff-related) statements.

40

Proving Formula Equivalences

Proving that π |= ¬�¬ϕ implies π |= ♦ϕ:

Assume π |= ¬�¬ϕ.

Hence, by semantics of ¬, we have π 6|= �¬ ϕ.

In other words, it is not the case that π |= �¬ϕ.

Hence, by semantics of �, it is not the case that: for all i , πi |= ¬ ϕ.

Hence, by semantics of ¬, it is not the case that: for all i , πi 6|= ϕ.

Hence, by logic, there exists an i such that πi |= ϕ.

Hence, by semantics of ♦, we have π |= ♦ϕ.

Note. The proof of “π |= ¬�¬ϕ implies π |= ♦ϕ” is the reverse of the proof

of “π |= ♦ϕ implies π |= ¬�¬ϕ”. So we could have proved directly “π |= ♦ϕ

iff π |= ¬�¬ϕ” by a chain of equivalent (iff-related) statements.

40

Homework Exercise 4

Choose from the previous two slides any three laws (except for the

propositional tautologies) and prove them.

Hint. Take the approach shown above, using the semantics of formulas and

logical reasoning.

41

Summary of the Discussed Concepts

• LTL = Linear Temporal Logic

• Syntax = formulas built from

• atoms

• propositional connectives

• temporal connectives

• LTL can express some practical specification patterns

• Semantics = the satisfaction relation

• between infinite sequences and formulas

• between LTSs and formulas

• Formula equivalence

42

Further Reading

Sections 5.1.1–5.1.4 of Baier & Katoen’s “Principles of Model Checking”

(MIT Press 2008)

Section 3.2 of Huth & Ryan’s “Logic in Computer Science: Modelling

and Reasoning about Systems” (Cambridge University Press 2004)

Note. Uses another (standard) notation for the temporal connectives:

X instead of ©

F instead of ♦ (think “in the Future”)

G instead of � (think “Globally”)

43

