4507/ 6507 Software and Hardware Verification
Introduction to LTL

Andrei Popescu

University of Sheffield

These slides contain material from Denisa Diaconescu, Georg Struth and Traian Florin Serbanut3



LTL

LTL = Linear(-time) Temporal Logic

Introduced into computer science by Amir Pnueli in 1977

A logic for reasoning about execution paths of systems

One of the most important logics for software and hardware verification




Syntax: LTL formulas
Semantics: labeled transition systems
Practical specification patterns

Formula equivalence



Basic Intuition

e Consider execution paths of a system into the future.

e label states with atomic propositions p, g, r, ... that hold along paths at
various points in time.

e LTL formulas can express regular patterns about these propositions as
execution proceeds.



Basic Intuition

e Consider execution paths of a system into the future.

e label states with atomic propositions p, g, r, ... that hold along paths at
various points in time.

e LTL formulas can express regular patterns about these propositions as
execution proceeds.

while (x < 3) {
print( “hello™);
if (x ==1) print("hi");
if(x==2)x=0;
else x++;



Basic Intuition

e Consider execution paths of a system into the future.

e label states with atomic propositions p, g, r, ... that hold along paths at
various points in time.

e LTL formulas can express regular patterns about these propositions as
execution proceeds.

while (x < 3) {
print( “hello™); Let p be “prints hello”,
if (x ==1) print("hi"); q be “prints hi",
if x==2)x=0; r be “x is even”.
else x++; Say we start in a state where x is 0.



Basic Intuition

e Consider execution paths of a system into the future.

e label states with atomic propositions p, g, r, ... that hold along paths at
various points in time.

e LTL formulas can express regular patterns about these propositions as
execution proceeds.

while (x < 3) {
print( “hello™); Let p be “prints hello”,
if (x ==1) print("hi"); q be “prints hi",
if x==2)x=0; r be “x is even”.
else x++; Say we start in a state where x is 0.

}

p.r

P.9 p.r p.r p.9



Basic Intuition

e Consider execution paths of a system into the future.

e label states with atomic propositions p, g, r, ... that hold along paths at
various points in time.

e LTL formulas can express regular patterns about these propositions as
execution proceeds.

while (x < 3) {
print( “hello™); Let p be “prints hello”,
if (x ==1) print("hi"); q be “prints hi",
if x==2)x=0; r be “x is even”.
else x++; Say we start in a state where x is 0.
¥

p.r P.9 p.r p.r p.9

Always p holds.



Basic Intuition

e Consider execution paths of a system into the future.

e label states with atomic propositions p, g, r, ... that hold along paths at
various points in time.

e LTL formulas can express regular patterns about these propositions as
execution proceeds.

while (x < 3) {
print( “hello™); Let p be “prints hello”,
if (x ==1) print("hi"); q be “prints hi",
if x==2)x=0; r be “x is even”.
else x++; Say we start in a state where x is 0.
¥

p.r P.9 p.r p.r p.9

Always p holds. Always [p implies (q or r)].



Basic Intuition

e Consider execution paths of a system into the future.

e label states with atomic propositions p, g, r, ... that hold along paths at
various points in time.

e LTL formulas can express regular patterns about these propositions as
execution proceeds.

while (x < 3) {
print( “hello™); Let p be “prints hello”,
if (x ==1) print("hi"); q be “prints hi",
if x==2)x=0; r be “x is even”.
else x++; Say we start in a state where x is 0.
¥

p.r P.9 p.r p.r p.9

Always p holds. Always [p implies (q or r)].
Never (q and r) holds.



Basic Intuition

e Consider execution paths of a system into the future.

e label states with atomic propositions p, g, r, ... that hold along paths at
various points in time.

e LTL formulas can express regular patterns about these propositions as
execution proceeds.

while (x < 3) {
print( “hello™); Let p be “prints hello”,
if (x ==1) print("hi"); q be “prints hi",
if x==2)x=0; r be “x is even”.
else x++; Say we start in a state where x is 0.
¥

p.r P.9 p.r p.r p.9

Always p holds. Always [p implies (q or r)].
Never (q and r) holds. Always eventually g holds.



Basic Intuition

e Consider execution paths of a system into the future.

e label states with atomic propositions p, g, r, ... that hold along paths at
various points in time.

e LTL formulas can express regular patterns about these propositions as
execution proceeds.

while (x < 3) {
print( “hello™); Let p be “prints hello”,
if (x ==1) print("hi"); q be “prints hi",
if x==2)x=0; r be “x is even”.
else x++; Say we start in a state where x is 0.
¥

p.r P.9 p.r p.r p.9

Always p holds. Always [p implies (q or r)].
Never (q and r) holds. Always eventually g holds.
Can you think of other patterns?



Assume some set Atoms of atomic propositions (atoms for short) usually
denoted p, g, r etc.



Assume some set Atoms of atomic propositions (atoms for short) usually
denoted p, g, r etc.

LTL formulas, usually denoted ¢, 1 etc., are defined as follows:

o u=ploplovy|end o9 | 0p|0e|Op|eUy



Assume some set Atoms of atomic propositions (atoms for short) usually
denoted p, g, r etc.

LTL formulas, usually denoted ¢, 1 etc., are defined as follows:

¥ ..

plelevy|lenyleo—=9] 0p|0¢|Ue Uy

Examples: O(pU(qUr))



Assume some set Atoms of atomic propositions (atoms for short) usually
denoted p, g, r etc.

LTL formulas, usually denoted ¢, 1 etc., are defined as follows:

¥ ..

ploplevi oAy o= ]| 0plOe|[Op|pUd

Examples: O(pU(qUr)) O0p



Assume some set Atoms of atomic propositions (atoms for short) usually
denoted p, g, r etc.

LTL formulas, usually denoted ¢, 1 etc., are defined as follows:

p o= ploelevylonyle—=9 ]| 0p|0e|Op[eUy

Examples: O(pU(qUr)) O0p

“ w_on "

-, V, A, — are propositional connectives: “not”, “or”, “and”, “implies”.




Assume some set Atoms of atomic propositions (atoms for short) usually
denoted p, g, r etc.

LTL formulas, usually denoted ¢, 1 etc., are defined as follows:

Op|0¢|0¢|eUy

p o= ploeleVvylony =9y

Examples: O(pU(qUr)) O0p

“ ” w_on " ]

-, V, A, — are propositional connectives: “not”, “or”, “and”, “implies”.

O, ¢, O, U are temporal connectives: “next”, “eventually”. “always”,

“until”.



Assume some set Atoms of atomic propositions (atoms for short) usually
denoted p, g, r etc.

LTL formulas, usually denoted ¢, 1 etc., are defined as follows:

e u=plooleVy oAy |e—=¢ | 0p|0p|UepleUy

Examples: O(pU(qUr)) O0p

“ w_on "

-, V, A, — are propositional connectives: “not”, “or”, “and”, “implies”.

O, ¢, O, U are temporal connectives: “next”, “eventually”. “always”,

“until”.
Pronunciation:
e Op — Next ¢
e O — Eventually ¢
e [y — Always ¢
e o Uy — ¢ Until ¢



Assume some set Atoms of atomic propositions (atoms for short) usually
denoted p, g, r etc.

LTL formulas, usually denoted ¢, 1 etc., are defined as follows:

pu=ploglevilerdle—a¢| 0pl0e|OpleUy

Examples: O(pU(qUr)) O0p

“ ” w_on " ]

-, V, A, — are propositional connectives: “not”, “or”, “and”, “implies”.

O, ¢, O, U are temporal connectives: “next”, “eventually”. “always”,

“until”.
Pronunciation: The unary connectives
o Oy — Next ¢ =,0, ¢, have higher

precedence than the binary
connectives A, V, —, U.
E.g., Op V1 is the same as
e p Uy — ¢ Until ¢ (Op) V.

e O — Eventually ¢
e [y — Always ¢



Syntax — Examples and Non-Examples

The following are LTL formulas:

(OpAOq) = (pUr)
O(p—=0r) V(=g U p)
pU(qUr)
O00p — O(qVs)



Syntax — Examples and Non-Examples

The following are LTL formulas:
(OpAOq) = (pUr)
O(p—=0r) V(=g U p)
pU(qgUr)

O00p — O(qVs)

The following are not LTL formulas:

o Ur
e gllp



Syntax — Examples and Non-Examples

The following are LTL formulas:

e (OpAOg) — (pUr)
e O(p—0r)V(=qUp)
e pU(qUr)

e Op — O(qVs)

The following are not LTL formulas:

o Ur
e gllp

Exercise. 1. Give five more examples of correctly constructed formulas.
Include a formula that contains five atoms p, g, r, u, v, and a formula that
contains three occurrences of ), one occurrence of [J and two occurrences of

U. Read aloud the formulas that you have constructed.



Syntax — Examples and Non-Examples

The following are LTL formulas:

e (OpAOg) — (pUr)
e O(p—0r)V(=qUp)
epU(qgUr)

e Op — O(qVs)

The following are not LTL formulas:

o Ur
e gllp

Exercise. 1. Give five more examples of correctly constructed formulas.
Include a formula that contains five atoms p, g, r, u, v, and a formula that
contains three occurrences of ), one occurrence of [J and two occurrences of

U. Read aloud the formulas that you have constructed.

2. Give two examples of incorrectly constructed formulas that do not contain
U or O. 5



Informal Semantics



Informal Semantics

We model time as the stream of natural numbers: 0,1,2,....



Informal Semantics

We model time as the stream of natural numbers: 0,1,2,....

We consider an infinite execution path, which at every point in time reaches a
given state.



Informal Semantics

We model time as the stream of natural numbers: 0,1,2,....

We consider an infinite execution path, which at every point in time reaches a
given state.

For every state on the path, we assume to know which atomic propositions
are true in that state.



Informal Semantics

We model time as the stream of natural numbers: 0,1,2,....

We consider an infinite execution path, which at every point in time reaches a
given state.

For every state on the path, we assume to know which atomic propositions
are true in that state.

LTL formulas are evaluated along this path, looking into the future:



Informal Semantics

We model time as the stream of natural numbers: 0,1,2,....

We consider an infinite execution path, which at every point in time reaches a
given state.

For every state on the path, we assume to know which atomic propositions
are true in that state.

LTL formulas are evaluated along this path, looking into the future:

e An atomic proposition p holds if p is true at the current point in time.



Informal Semantics

We model time as the stream of natural numbers: 0,1,2,....

We consider an infinite execution path, which at every point in time reaches a
given state.

For every state on the path, we assume to know which atomic propositions
are true in that state.

LTL formulas are evaluated along this path, looking into the future:

e An atomic proposition p holds if p is true at the current point in time.
e The propositional connectives —,V, A — have their usual meanings, e.g.,
@ A holds if ¢ holds and % holds.



Informal Semantics

We model time as the stream of natural numbers: 0,1,2,....

We consider an infinite execution path, which at every point in time reaches a
given state.

For every state on the path, we assume to know which atomic propositions
are true in that state.

LTL formulas are evaluated along this path, looking into the future:

e An atomic proposition p holds if p is true at the current point in time.
e The propositional connectives —,V, A — have their usual meanings, e.g.,
@ A holds if ¢ holds and % holds.
e Meaning of temporal connectives:
e O holds if ¢ holds next, i.e., at the next point in time.



Informal Semantics

We model time as the stream of natural numbers: 0,1,2,....

We consider an infinite execution path, which at every point in time reaches a
given state.

For every state on the path, we assume to know which atomic propositions
are true in that state.

LTL formulas are evaluated along this path, looking into the future:

e An atomic proposition p holds if p is true at the current point in time.
e The propositional connectives —,V, A — have their usual meanings, e.g.,
@ A holds if ¢ holds and % holds.
e Meaning of temporal connectives:
e O holds if ¢ holds next, i.e., at the next point in time.

e O holds if ¢ holds eventually, i.e., now or at some future point in time.



Informal Semantics

We model time as the stream of natural numbers: 0,1,2,....

We consider an infinite execution path, which at every point in time reaches a
given state.

For every state on the path, we assume to know which atomic propositions
are true in that state.

LTL formulas are evaluated along this path, looking into the future:

e An atomic proposition p holds if p is true at the current point in time.
e The propositional connectives —,V, A — have their usual meanings, e.g.,
@ A holds if ¢ holds and % holds.
e Meaning of temporal connectives:
e O holds if ¢ holds next, i.e., at the next point in time.
e O holds if ¢ holds eventually, i.e., now or at some future point in time.
e [y holds if ¢ holds always, i.e., now and at all future points in time.



Informal Semantics

We model time as the stream of natural numbers: 0,1,2,....

We consider an infinite execution path, which at every point in time reaches a
given state.

For every state on the path, we assume to know which atomic propositions
are true in that state.

LTL formulas are evaluated along this path, looking into the future:

e An atomic proposition p holds if p is true at the current point in time.
e The propositional connectives —,V, A — have their usual meanings, e.g.,
@ A holds if ¢ holds and % holds.
e Meaning of temporal connectives:
e O holds if ¢ holds next, i.e., at the next point in time.
e O holds if ¢ holds eventually, i.e., now or at some future point in time.
e [y holds if ¢ holds always, i.e., now and at all future points in time.
e U1 holds if ¢ holds until ¥ holds; i.e., 1) holds now or at some point in
the future, and ¢ holds continuously until then.




Informal Semantics — Examples

We assume that enabled, read, write, etc. are all atoms.

By “further up in the future” we will mean “at the current time or later”.



Informal Semantics — Examples

We assume that enabled, read, write, etc. are all atoms.
By “further up in the future” we will mean “at the current time or later”.

[ enabled means:
enabled holds always, i.e., now and at all points in the future.



Informal Semantics — Examples

We assume that enabled, read, write, etc. are all atoms.
By “further up in the future” we will mean “at the current time or later”.
[ enabled means:

enabled holds always, i.e., now and at all points in the future.

([ ] [ ([ ([ ([ ] ([ ([ [ ]
O —(read A write) means:
Always (i.e., now and at all points in the future), it is not the case that

read and write hold. In other words: It is never the case that read and
write hold at the same time.

B DDA @ -

7



Informal Semantics — Examples

OO enabled means:

Always eventually enabled holds. In other words: Now and for all future
points, there is a point further up in the future where enabled holds.
Another way to say this: enabled holds infinitely often.

BB~ -



Informal Semantics — Examples

OO enabled means:

Always eventually enabled holds. In other words: Now and for all future
points, there is a point further up in the future where enabled holds.
Another way to say this: enabled holds infinitely often.

© Iy WG U e W W W

OO enabled means:

Eventually always enabled holds. In other words: Starting now or from a
future point, enabled will hold continuously for all points in the future.

B DDA B A -



Informal Semantics — Examples

O (request — O grant) means:
Always [request implies eventually grant]. In other words: Always (i.e.,
now and at all points in the future), if request holds then eventually

grant holds (i.e., there exists a point further up in the future where grant
holds).

O D@D



Informal Semantics — Examples

O (request — O grant) means:
Always [request implies eventually grant]. In other words: Always (i.e.,
now and at all points in the future), if request holds then eventually

grant holds (i.e., there exists a point further up in the future where grant
holds).

O D@D

(O request) — (O grant) means:
[Always request] implies [eventually grant]. In other words: If request
holds at all points in time, then grant holds at some point in time.

GBSO,



Informal Semantics — Examples

O (request — (request U grant)) means:
Always, request implies [request until grant]. In other words: At every
point in the future, if request holds than here exists a point further up in

the future where grant holds, and request holds continuously until that
point.

10



Informal Semantics — Examples

O (request — (request U grant)) means:
Always, request implies [request until grant]. In other words: At every
point in the future, if request holds than here exists a point further up in
the future where grant holds, and request holds continuously until that
point.

o o [ o o [ [
Exercise. Consider the following LTL formulas:

(a) O (request U grant) (b) OO (request — grant)
(c) OO request — O grant (d) O ¢ O enabled

1. What is the correct way to parenthesize the point (c) formula, based on
the operator precedence?

2. Depict graphically the meaning of these formulas. What is the difference
between the point (d) formula and ¢ [J enabled? 10



Informal Semantics — Examples

Exercise. Consider the following LTL formulas:
(a) O (request U grant) (b) OO (request — grant)
(c) OO request — ¢ grant (d) O ¢ O enabled

1. What is the correct way to parenthesize the point (c) formula, based on the

operator precedence?

2. Depict graphically the meaning of these formulas. What is the difference between
the point (d) formula and ¢ O enabled?

O—(O—O— = O—CO———

11



Practical Specification Patterns

e A process is always active in its starting state:

O (start — active)

12



Practical Specification Patterns

e A process is always active in its starting state:

O (start — active)

e |t is always the case that requests are eventually granted:

O (request — O grant)

12



Practical Specification Patterns

e A process is always active in its starting state:

O (start — active)

e |t is always the case that requests are eventually granted:

O (request — O grant)

e A given process will be enabled infinitely often:

OO enabled

12



Practical Specification Patterns

e A process is always active in its starting state:

O (start — active)

e |t is always the case that requests are eventually granted:

O (request — O grant)

e A given process will be enabled infinitely often:

OO enabled

e |f a process is enabled infinitely often, then it will run infinitely often:

OO enabled — OO run

12



Practical Specification Patterns

e A process will never become permanently inactive:

-O0— active

13



Practical Specification Patterns

e A process will never become permanently inactive:

-O0— active

e It is always the case that, when a lift is at the 2nd floor, travels upwards
and the 5th floor is requested, it will not change direction until the 5th
floor is reached:

13



Practical Specification Patterns

e A process will never become permanently inactive:

-O0— active

e It is always the case that, when a lift is at the 2nd floor, travels upwards
and the 5th floor is requested, it will not change direction until the 5th
floor is reached:

(@2 A upgoing A pressed5 — (upgoing U ©5))

13



Formal Semantics

Let S be a set of states and L : S — P(Atoms) be a labeling function
associating to each state s a set L(s) of all atoms that are true in that state.
Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

14



Formal Semantics

Let S be a set of states and L : S — P(Atoms) be a labeling function
associating to each state s a set L(s) of all atoms that are true in that state.
Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let m be an infinite sequence of states spsis, . ... We think of L(s;) as the set
of all atoms true at point / in time on 7.

14



Formal Semantics

Let S be a set of states and L : S — P(Atoms) be a labeling function
associating to each state s a set L(s) of all atoms that are true in that state.
Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let m be an infinite sequence of states spsis, . ... We think of L(s;) as the set
of all atoms true at point / in time on 7.

For each i, we write 7' for the i'th suffix of 7, namely s;s; 1512 . . ..

E.g., 7lis sisps3... and 72 is sr8354 . ..

14



Formal Semantics

Let S be a set of states and L : S — P(Atoms) be a labeling function
associating to each state s a set L(s) of all atoms that are true in that state.
Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let m be an infinite sequence of states spsis, . ... We think of L(s;) as the set
of all atoms true at point / in time on 7.

For each i, we write 7' for the i'th suffix of 7, namely s;s; 1512 . . ..
E.g., 7lis sisps3... and 72 is sr8354 . ..

For an LTL formula ¢, we define 7 =, ¢, read " satisfies ¢ w.r.t. labeling
L" or "¢ holds for m w.r.t. labeling L” by structural recursion on :

14



Formal Semantics

Let S be a set of states and L : S — P(Atoms) be a labeling function
associating to each state s a set L(s) of all atoms that are true in that state.
Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let m be an infinite sequence of states spsis, . ... We think of L(s;) as the set
of all atoms true at point / in time on 7

For each i, we write 7' for the i'th suffix of 7, namely s;s; 1512 . . ..
E.g., 7lis sisps3... and 72 is sr8354 . ..

For an LTL formula ¢, we define 7 =, ¢, read " satisfies ¢ w.r.t. labeling
L" or "¢ holds for m w.r.t. labeling L” by structural recursion on :

TELP iff  p € L(s)

14



Formal Semantics

Let S be a set of states and L : S — P(Atoms) be a labeling function
associating to each state s a set L(s) of all atoms that are true in that state.
Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let m be an infinite sequence of states spsis, . ... We think of L(s;) as the set
of all atoms true at point / in time on 7.

For each i, we write 7' for the i'th suffix of 7, namely s;s; 1512 . . ..
E.g., 7lis sisps3... and 72 is sr8354 . ..

For an LTL formula ¢, we define 7 =, ¢, read " satisfies ¢ w.r.t. labeling
L" or "¢ holds for m w.r.t. labeling L” by structural recursion on :

T p iff  pe L(s)
TELEAY iff TlELpandTELY

14



Formal Semantics

Let S be a set of states and L : S — P(Atoms) be a labeling function
associating to each state s a set L(s) of all atoms that are true in that state.
Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let m be an infinite sequence of states spsis, . ... We think of L(s;) as the set
of all atoms true at point / in time on 7.

For each i, we write 7' for the i'th suffix of 7, namely s;s; 1512 . . ..
E.g., 7lis sisps3... and 72 is sr8354 . ..

For an LTL formula ¢, we define 7 =, ¢, read " satisfies ¢ w.r.t. labeling
L" or "¢ holds for m w.r.t. labeling L” by structural recursion on :

T p iff  pe L(s)
TELeANY  iff wlELpand T LY
ﬂ"ZL '79\/1./' Iﬂr 7T'=L<POV7T’ZL¢

14



Formal Semantics

Let S be a set of states and L : S — P(Atoms) be a labeling function
associating to each state s a set L(s) of all atoms that are true in that state.
Note: P(Atoms) is the powerset (i.e., set of all subsets) of Atoms.

Let m be an infinite sequence of states spsis, . ... We think of L(s;) as the set
of all atoms true at point / in time on 7.

For each i, we write 7' for the i'th suffix of 7, namely s;s; 1512 . . ..
E.g., 7lis sisps3... and 72 is sr8354 . ..

For an LTL formula ¢, we define 7 =, ¢, read " satisfies ¢ w.r.t. labeling
L" or "¢ holds for m w.r.t. labeling L” by structural recursion on :

T p iff  pe L(s)
TELeANY  iff wlELpand T LY
ﬂ"ZL '79\/1./' Iﬂr 7T'=L<POV7T’ZL¢

TELe =Y iff w=L @ implies T = 9

14



Formal Semantics

-/

S
=
-

— = Av 1
T L C T L e

15



Formal Semantics

T EL Op iff 7'k
L Q¢ iff there exists i > 0 such that 7/ =, ¢

15



Formal Semantics

T EL Op iff 7'k
L Q¢ iff there exists i > 0 such that 7/ =, ¢

7w | Op iff forall i >0 we have 7' =, ¢

15



Formal Semantics

T EL Op iff 7'k
L Q¢ iff there exists i > 0 such that 7/ =, ¢
7w | Op iff forall i >0 we have 7' =, ¢

7L eU  iff  there exists i > 0 such that 7/ =, v and
forall j€{0,...,i —1} we have @/ |=; ¢

15



Formal Semantics

T EL Op iff 7'k
L Q¢ iff there exists i > 0 such that 7/ =, ¢
7w | Op iff forall i >0 we have 7' =, ¢

7L eU  iff  there exists i > 0 such that 7/ =, v and
forall j€{0,...,i —1} we have @/ |=; ¢

= is called the satisfaction relation. It is a relation between formulas and
infinite sequences of states in the presence of a state labeling with atom sets.

15



Formal Semantics

T EL Op iff 7'k
L Q¢ iff there exists i > 0 such that 7/ =, ¢
7w | Op iff forall i >0 we have 7' =, ¢

7L eU  iff  there exists i > 0 such that 7/ =, v and
forall j€{0,...,i —1} we have @/ |=; ¢

= is called the satisfaction relation. It is a relation between formulas and
infinite sequences of states in the presence of a state labeling with atom sets.

When the labeling L is fixed, we can write 7 |= ¢ instead of m =/ .

15



Semantics of Atoms lllustrated

P

O—(—E—(—®

16



Semantics of “Next” lllustrated

17



Semantics of “Eventually” lllustrated

T = Op

18



Semantics of “Always” lllustrated

m = Op

19



Combined Semantics of “Eventually” and “Always” lllustrated

m = OUp

20



Semantics of “Until”’ lllustrated

mE=pUg

21



22



Transition Systems and Paths

23



Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S, —, L)
consisting of:

23



Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S, —, L)
consisting of:

e S a finite set of states

23



Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S, —, L)
consisting of:

e S a finite set of states

e — C S x S atransition relation

23



Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S, —, L)
consisting of:

e S a finite set of states
e — C S x S atransition relation

e L :S — P(Atoms) a labeling function

23



Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S, —, L)
consisting of:

e S a finite set of states
e — C S x S atransition relation

e L :S — P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s; € S there exists
S € S with 51 — 5.

23



Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S, —, L)
consisting of:

e S a finite set of states
e — C S x S atransition relation

e L :S — P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s; € S there exists
S € S with 51 — 5.

A path 7 in an LTS M = (5, —, L) is an infinite sequence of states sps15; . ..
such that for all / > 0, s; — sj41.

23



Transition Systems and Paths

A labeled transition system (LTS for short) is a triple M = (S, —, L)
consisting of:

e S a finite set of states
e — C S x S atransition relation

e L :S — P(Atoms) a labeling function

such that every state has an outward transition, i.e., for all s; € S there exists
S € S with 51 — 5.

A path 7 in an LTS M = (5, —, L) is an infinite sequence of states sps15; . ..
such that for all / > 0, s; — sj41.

Paths are written as m = sy — 51 — S — ...

23



Transition Systems and Paths — Example

Recall the example with two parallel processes, where, for i € {1,2}:
e 1n; denotes “process i not in critical section”

e r; denotes “process i requesting to enter critical section”
e ¢; denotes “process i in critical section”

Atoms = {nla np, r,nr,c, CZ}

24



Transition Systems and Paths — Example

Recall the example with two parallel processes, where, for i € {1,2}:
e 1n; denotes “process i not in critical section”

e r; denotes “process i requesting to enter critical section”
e ¢; denotes “process i in critical section”

Atoms = {nla np, r,nr,c, CZ}
nin2

Cin2

Cir2 rica 24



Transition Systems and Paths — Example

Recall the example with two parallel processes, where, for i € {1,2}:
e 1n; denotes “process i not in critical section”

e r; denotes “process i requesting to enter critical section”
e ¢; denotes “process i in critical section”

Atoms = {nla np, r,nr,c, CZ}

ning

M = (S,—, L) where
e S={sy,51,...,57}
— = {(s0,51), (50, 55),---}
L(s0) = {n1, m}
L(s1) ={n,m}

Cin2

Cir2 rica 24



Unwinding a Transition System

Visualise all paths from a given state sy by unwinding the LTS to obtain an
infinite tree.

25



Unwinding a Transition System

Visualise all paths from a given state sy by unwinding the LTS to obtain an
infinite tree. For example:

25



Unwinding a Transition System

Visualise all paths from a given state sy by unwinding the LTS to obtain an

infinite tree. For example:
P,

()
RS
2 ®

q,r

25



Unwinding a Transition System

Visualise all paths from a given state sy by unwinding the LTS to obtain an

infinite tree. For example: °
P,

All possible paths starting in sp:

25



Unwinding a Transition System

Visualise all paths from a given state sy by unwinding the LTS to obtain an

infinite tree. For example: °
P,

All possible paths starting in sp:
(So — S1 _>)oo

25



Unwinding a Transition System

Visualise all paths from a given state sy by unwinding the LTS to obtain an

infinite tree. For example:
P,

(=)
F NI
e SRR
=

q,r r ar

All possible paths starting in sp:
(So — S1 _>)oo
(sp =51 —=)" (52 =) forn>1

25



Unwinding a Transition System

Visualise all paths from a given state sy by unwinding the LTS to obtain an

infinite tree. For example: e
P,

All possible paths starting in sp:
(So — S1 _>)oo
(sp =51 —=)" (52 =) forn>1
(so = s1—)"so— (52 =) forn>0 25



Formal Semantics Continued: Satisfaction Relation for LTSs

Let M = (S,—, L) be an LTS and ¢ be an LTL formula.

We extend the satisfaction relation from infinite sequences to LTSs as follows:

For a state s € S, we define M, s |= ¢, read M satisfies o in state s or ¢
holds for M in state s, to mean that = =, ¢ for every path = of M starting
at state s.

26



Satisfaction Relation for LTSs — Example

27



Satisfaction Relation for LTSs — Example

L. M,ss EpAg

27



Satisfaction Relation for LTSs — Example

L. M,ss EpAg
2. M, s |=—r

27



Satisfaction Relation for LTSs — Example

1. MyssEpAg
2. M, s |=—r
3. M,so EOr

27



Satisfaction Relation for LTSs — Example

Pwon e
%
T
O)
=

27



Satisfaction Relation for LTSs — Example

M;so EpAg
M, sy = —r

M,so EOr

M, so FEO(gAT)
M,so EO=(pATr)

s> ®

27



Satisfaction Relation for LTSs — Example

M;so EpAg
M, sy = —r

M,so EOr

M, so FEO(gAT)
M,so EO=(pATr)

s> ®

27



s> ®

Satisfaction Relation for LTSs — Example

M;so EpAg
M, sy = —r

M,so EOr

M, so FEO(gAT)
M,so EO=(pATr)

27



s> ®

Satisfaction Relation for LTSs — Example

M;so EpAg
M, sy = —r

M,so EOr

M, so FEO(gAT)
M,so EO=(pATr)

6. M,S2 ‘: Clr

7. M,SO ’:
O(—gAr)— o0r

8. M750 bé DO,D

27



s> ®

Satisfaction Relation for LTSs — Example

M;so EpAg
M, sy = —r

M,so EOr
M, so FEO(gAT)
M,so EO=(pATr)

O oo

. M,S2 ‘: Cr

o M,So ’:
O(—gAr)— o0r

. M750 bé DO,D
. M,so EOOp — OOr

27



s> ®

Satisfaction Relation for LTSs — Example

M;so EpAg
M, sy = —r

M,so EOr
M, so FEO(gAT)
M,so EO=(pATr)

10.

M,S2 ‘: Cr

M, s =
O(—gAr)— o0r

M750 %Dop
M, s =EO0p — O0r
M, s EOOr — O0p

27



Homework Exercise 1

P

P, r P, q

Consider the LTS shown in the picture:

1. Write down the mathematical definitions of its components S, — and L.

2. Draw its unwinding tree.

3. Describe all its possible paths that start at state sg.

4. Determine which of the following are true, and explain why or why not:
siEPAT soFEOr
so = O(pVr) s E=0Op
ssE(pVag)Ur ssE(pA—-r)Ugqg

5. Give your own examples of LTL formulas and states such that the formula
holds or does not hold in the given state, and in each case explain why. 28



Homework Exercise 2

In the example with the two processes executed in parallel, determine whether
the following properties are expressible in LTL; and if yes, whether they hold.

e The safety property: Only one process may execute critical section code
at any point

e The liveness property: Whenever a process requests to enter its critical
section, it will eventually be allowed to do so.

e The non-blocking property: A process can always request to enter its
critical section.

29



Transition Systems and Paths — Example

Recall the example with two parallel processes, where, for i € {1,2}:
e 1n; denotes “process i not in critical section”

e r; denotes “process i requesting to enter critical section”
e ¢; denotes “process i in critical section”

Atoms = {nla np, r,nr,c, CZ}

ning

M = (S,—, L) where
e S={sy,51,...,57}
— = {(s0,51), (50, 55),---}
L(s0) = {n1, m}
L(s1) ={n,m}

Cin2

Cir2 rica 30



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

31



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ¢ = O (=(c1 A 2)).

31



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ¢ = O (—=(c1 A 2)). Let's prove that M, s |= .

31



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ¢ = O (—=(c1 A 2)). Let's prove that M, s |= .

M, s =

31



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ¢ = O (—=(c1 A 2)). Let's prove that M, s |= .

M, s =

means (by the semantics in an LTS)
for all m € Pathsq,(M), 7 =L ¢

31



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.
An LTL formula expressing this is ¢ = O (—=(c1 A 2)). Let's prove that M, s |= .

M;so =

means (by the semantics in an LTS)

for all m € Pathsq,(M), 7 =L ¢

which means (by the semantics of (1)

for all € Pathss (M), for all i >0, 7' =1 =(c1 A @)

31



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.

An LTL formula expressing this is ¢ = O (—=(c1 A 2)). Let's prove that M, s |= .
M, so = ¢

means (by the semantics in an LTS)

for all m € Pathsq,(M), 7 =L ¢

which means (by the semantics of (1)

for all € Pathss (M), for all i >0, 7' =1 =(c1 A @)

which means (by the semantics of the propositional connectives and atoms)

for all m = totits ... € Pathsg, (M), for all i > 0, not (a1 € L(t;) and o € L(t7))

31



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.
An LTL formula expressing this is ¢ = O (—=(c1 A 2)). Let's prove that M, s |= .
M, so = ¢

means (by the semantics in an LTS)

for all m € Pathsq,(M), 7 =L ¢

which means (by the semantics of (1)

for all € Pathss (M), for all i >0, 7' =1 =(c1 A @)

which means (by the semantics of the propositional connectives and atoms)

for all m = totits ... € Pathsg, (M), for all i > 0, not (a1 € L(t;) and o € L(t7))
which is implied by

forall s € S, not (c1 € L(s) and &z € L(s))

31



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.
An LTL formula expressing this is ¢ = O (—=(c1 A 2)). Let's prove that M, s |= .
M, so = ¢

means (by the semantics in an LTS)

for all m € Pathsq,(M), 7 =L ¢

which means (by the semantics of (1)

for all € Pathss (M), for all i >0, 7' =1 =(c1 A @)

which means (by the semantics of the propositional connectives and atoms)

for all m = totits ... € Pathsg, (M), for all i > 0, not (a1 € L(t;) and o € L(t7))
which is implied by

forall s € S, not (c1 € L(s) and &z € L(s))

which is true — can be checked by inspecting the system.

31



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.
An LTL formula expressing this is ¢ = O (—=(c1 A 2)). Let's prove that M, s |= .
M, so = ¢

means (by the semantics in an LTS)

for all m € Pathsq,(M), 7 =L ¢

which means (by the semantics of (1)

for all € Pathss (M), for all i >0, 7' =1 =(c1 A @)

which means (by the semantics of the propositional connectives and atoms)

for all m = totits ... € Pathsg, (M), for all i > 0, not (a1 € L(t;) and o € L(t7))
which is implied by

forall s € S, not (c1 € L(s) and &z € L(s))

which is true — can be checked by inspecting the system.

We conclude that M, sy = .
31



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

Safety property: Only one process may execute critical section code at any point.
An LTL formula expressing this is ¢ = O (—=(c1 A 2)). Let's prove that M, s |= .
M, so = ¢

means (by the semantics in an LTS)

for all m € Pathsq,(M), 7 =L ¢

which means (by the semantics of (1)

for all € Pathss (M), for all i >0, 7' =1 =(c1 A @)

which means (by the semantics of the propositional connectives and atoms)

for all m = totits ... € Pathsg, (M), for all i > 0, not (a1 € L(t;) and o € L(t7))
which is implied by

forall s € S, not (c1 € L(s) and &z € L(s))

which is true — can be checked by inspecting the system.

We conclude that M, sy = .
This was backwards reasoning, reducing the goal to something true. 31



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.

32



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it

will eventually be allowed to do so.
An LTL formula expressing this is ¢ = 0 ((n — 0a) A (n — O0c)).

32



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it
will eventually be allowed to do so.

An LTL formula expressing this is ¢ = 0 ((n — 0a) A (n — O0c)).

Let's prove that M, sp [~ ¢.

32



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it
will eventually be allowed to do so.

An LTL formula expressing this is ¢ = 0 ((n — 0a) A (n — O0c)).

Let's prove that M, sp [~ ¢.

By the semantics in an LTS, it suffices to find one 7 € Pathg, (M) such that 7 &, .

32



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it
will eventually be allowed to do so.

An LTL formula expressing this is ¢ = 0 ((n — 0a) A (n — O0c)).

Let's prove that M, sp [~ ¢.

By the semantics in an LTS, it suffices to find one 7 € Pathg, (M) such that 7 &, .

We take m = sp(s15357)°.

L

32



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it
will eventually be allowed to do so.

An LTL formula expressing this is ¢ = 0 ((n — 0a) A (n — O0c)).

Let's prove that M, sp [~ ¢.

By the semantics in an LTS, it suffices to find one 7 € Pathg, (M) such that 7 &, .

We take m = sp(s15357)°.

T
implies, by the semantics of [J and A

(s1s3857)® FEL i — Oa

32



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it
will eventually be allowed to do so.

An LTL formula expressing this is ¢ = 0 ((n — 0a) A (n — O0c)).

Let's prove that M, sp [~ ¢.

By the semantics in an LTS, it suffices to find one 7 € Pathg, (M) such that 7 &, .
We take m = sp(s15357)°.

T

implies, by the semantics of [J and A

(s185357)° L n — Qa

which implies, by the semantics of — and atoms (since nn € L(s1))

(s15357)>° =L Qa

32



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it
will eventually be allowed to do so.

An LTL formula expressing this is ¢ = 0 ((n — 0a) A (n — O0c)).

Let's prove that M, sp [~ ¢.

By the semantics in an LTS, it suffices to find one 7 € Pathg, (M) such that 7 &, .
We take m = sp(s15357)°.

T

implies, by the semantics of [J and A

(s1s3857)® FEL i — Oa
which implies, by the semantics of — and atoms (since ri € L(s1))

(s15357)™ L Qa
which implies, by the semantics of {) and atoms
c € L(s1) or a1 € L(s3) or 1 € L(s7)

32



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it
will eventually be allowed to do so.

An LTL formula expressing this is ¢ = 0 ((n — 0a) A (n — O0c)).

Let's prove that M, sp [~ ¢.

By the semantics in an LTS, it suffices to find one 7 € Pathg, (M) such that 7 &, .
We take m = sp(s15357)°.

T

implies, by the semantics of [J and A

(s1s3857)® FEL i — Oa

which implies, by the semantics of — and atoms (since ri € L(s1))
(s15357)™ L Qa

which implies, by the semantics of {) and atoms

c € L(s1) or a1 € L(s3) or 1 € L(s7)

which is false — as can be seen by inspecting the system.
32



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The liveness property: Whenever a process requests to enter its critical section, it
will eventually be allowed to do so.

An LTL formula expressing this is ¢ = 0 ((n — 0a) A (n — O0c)).

Let's prove that M, sp [~ ¢.

By the semantics in an LTS, it suffices to find one 7 € Pathg, (M) such that 7 &, .
We take m = sp(s15357)°.

TEL

implies, by the semantics of [J and A

(s1s3857)® FEL i — Oa

which implies, by the semantics of — and atoms (since ri € L(s1))
(s15357)™ L Qa

which implies, by the semantics of {) and atoms

c € L(s1) or a1 € L(s3) or 1 € L(s7)

which is false — as can be seen by inspecting the system.

Since the assumption 7 =; ¢ leads to a contradiction, we conclude 7 £, . 52



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section

(provided it is not there already).

33



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section
(provided it is not there already).

Let's call a state t reachable from a state s if there is a finite path in M from s to t.

33



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section
(provided it is not there already).

Let's call a state t reachable from a state s if there is a finite path in M from s to t.

We can express the non-blocking property for process 1 as follows:
NB1: For all states s reachable from sp such that c1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

33



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section

(provided it is not there already).
Let's call a state t reachable from a state s if there is a finite path in M from s to t.

We can express the non-blocking property for process 1 as follows:

NB1: For all states s reachable from sp such that c1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

And similarly NB2 for process 2. Our property is therefore NB = “NB1 and NB2".

33



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section

(provided it is not there already).
Let's call a state t reachable from a state s if there is a finite path in M from s to t.

We can express the non-blocking property for process 1 as follows:

NB1: For all states s reachable from sp such that c1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

And similarly NB2 for process 2. Our property is therefore NB = “NB1 and NB2".

The properties NB1 and NB2 (hence NB as well) are true about the system M.
This can be routinely checked by:

- looking at all the states s reachable from sy such that ¢; & L(s)

- and, for of them, finding a state t reachable from s such that n € L(t).

33



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section
(provided it is not there already).

Let's call a state t reachable from a state s if there is a finite path in M from s to t.

We can express the non-blocking property for process 1 as follows:

NB1: For all states s reachable from sp such that c1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

And similarly NB2 for process 2. Our property is therefore NB = “NB1 and NB2".

The properties NB1 and NB2 (hence NB as well) are true about the system M.
This can be routinely checked by:

- looking at all the states s reachable from sy such that ¢; & L(s)

- and, for of them, finding a state t reachable from s such that n € L(t).

But NB1, NB2 and NB are not expressible as LTL formulas.

33



Homework Exercise 2 — Solution

In the example with the two processes executed in parallel, determine whether the
following properties are expressible in LTL; and if yes, whether they hold (for sp).
Let M = (S, —, L) be that transition system.

The non-blocking property: A process can always request to enter its critical section

(provided it is not there already).
Let's call a state t reachable from a state s if there is a finite path in M from s to t.

We can express the non-blocking property for process 1 as follows:

NB1: For all states s reachable from sp such that c1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

And similarly NB2 for process 2. Our property is therefore NB = “NB1 and NB2".

The properties NB1 and NB2 (hence NB as well) are true about the system M.
This can be routinely checked by:

- looking at all the states s reachable from sy such that ¢; & L(s)

- and, for of them, finding a state t reachable from s such that n € L(t).

But NB1, NB2 and NB are not expressible as LTL formulas.

Can we prove this? Hmm. .. what does it even mean?
33]



Expressibility in LTL

NB1: For all states s reachable from sy such that ¢1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

34



Expressibility in LTL

NB1: For all states s reachable from sy such that ¢1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

NB1 expressible in LTL means: There exists an LTL formula ¢ such that, for all
LTSs M = (S, —, L) and states so € S, NB1 is true for M and s iff M, s = .

34



Expressibility in LTL

NB1: For all states s reachable from sy such that ¢1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

NB1 expressible in LTL means: There exists an LTL formula ¢ such that, for all
LTSs M = (S, —, L) and states so € S, NB1 is true for M and s iff M, s = .

Let's assume NB1 expressible in LTL, and let ¢ be an LTL formula as above.

34



Expressibility in LTL

NB1: For all states s reachable from sy such that ¢1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

NB1 expressible in LTL means: There exists an LTL formula ¢ such that, for all
LTSs M = (S, —, L) and states so € S, NB1 is true for M and s iff M, s = .

Let's assume NB1 expressible in LTL, and let ¢ be an LTL formula as above.
Let M = (S,—,L) and M’ = (S, =, L") be the LTSs shown on the left and on

r

the right, respectively. Y\/@

34



Expressibility in LTL

NB1: For all states s reachable from sy such that ¢1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

NB1 expressible in LTL means: There exists an LTL formula ¢ such that, for all
LTSs M = (S, —, L) and states so € S, NB1 is true for M and s iff M, s = .

Let's assume NB1 expressible in LTL, and let ¢ be an LTL formula as above.
Let M = (S,—,L) and M’ = (S, =, L") be the LTSs shown on the left and on

r

the right, respectively. Y\/G)

Clearly, NB1 is true for M and s, but NB1 is not true for M’ and so.

34



Expressibility in LTL

NB1: For all states s reachable from sy such that ¢1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

NB1 expressible in LTL means: There exists an LTL formula ¢ such that, for all
LTSs M = (S, —, L) and states so € S, NB1 is true for M and s iff M, s = .

Let's assume NB1 expressible in LTL, and let ¢ be an LTL formula as above.
Let M = (S,—,L) and M’ = (S, =, L") be the LTSs shown on the left and on

r

the right, respectively. Y\/G)

Clearly, NB1 is true for M and s, but NB1 is not true for M’ and so.
Then, by the choice of ¢, we have M, s, = .

34



Expressibility in LTL

NB1: For all states s reachable from sy such that ¢1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

NB1 expressible in LTL means: There exists an LTL formula ¢ such that, for all
LTSs M = (S, —, L) and states so € S, NB1 is true for M and s iff M, s = .

Let's assume NB1 expressible in LTL, and let ¢ be an LTL formula as above.
Let M = (S,—,L) and M’ = (S, =, L") be the LTSs shown on the left and on

r

the right, respectively. Y\/G)

Clearly, NB1 is true for M and s, but NB1 is not true for M’ and so.

Then, by the choice of ¢, we have M, s, = .

And since Paths,(M’) C Paths,(M) and L(sp) = L'(s0) (M’ is a subsystem of M),
from the above we have M’ s = ¢.

34



Expressibility in LTL

NB1: For all states s reachable from sy such that ¢1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

NB1 expressible in LTL means: There exists an LTL formula ¢ such that, for all
LTSs M = (S, —, L) and states so € S, NB1 is true for M and s iff M, s = .

Let's assume NB1 expressible in LTL, and let ¢ be an LTL formula as above.
Let M = (S,—,L) and M’ = (S, =, L") be the LTSs shown on the left and on

r

the right, respectively. Y\/G)

Clearly, NB1 is true for M and s, but NB1 is not true for M’ and so.

Then, by the choice of ¢, we have M, s, = .

And since Paths,(M’) C Paths,(M) and L(sp) = L'(s0) (M’ is a subsystem of M),
from the above we have M’ s = ¢.

Hence, by the choice of ¢, NB1 is true for M’ and sy, which yields a contradiction.

34



Expressibility in LTL

NB1: For all states s reachable from sy such that ¢1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

NB1 expressible in LTL means: There exists an LTL formula ¢ such that, for all
LTSs M = (S, —, L) and states so € S, NB1 is true for M and s iff M, s = .

Let's assume NB1 expressible in LTL, and let ¢ be an LTL formula as above.
Let M = (S,—,L) and M’ = (S, =, L") be the LTSs shown on the left and on

r

the right, respectively. Y\—@

Clearly, NB1 is true for M and s, but NB1 is not true for M’ and so.

Then, by the choice of ¢, we have M, s, = .

And since Paths,(M’) C Paths,(M) and L(sp) = L'(s0) (M’ is a subsystem of M),
from the above we have M', sy = ¢.

Hence, by the choice of ¢, NB1 is true for M’ and sy, which yields a contradiction.
We've reached a contradiction, meaning our assumption is false. So NB1 is not

expressible in LTL.
34



Expressibility in LTL

NB1: For all states s reachable from sy such that ¢1 & L(s), there exists a state ¢t
reachable from s such that 1 € L(t).

NB1 expressible in LTL means: There exists an LTL formula ¢ such that, for all
LTSs M = (S, —, L) and states so € S, NB1 is true for M and s iff M, s = .

Let's assume NB1 expressible in LTL, and let ¢ be an LTL formula as above.
Let M = (S,—,L) and M’ = (S, =, L") be the LTSs shown on the left and on

r

the right, respectively. Y\—@

Clearly, NB1 is true for M and s, but NB1 is not true for M’ and so.

Then, by the choice of ¢, we have M, s, = .

And since Paths,(M’) C Paths,(M) and L(sp) = L'(s0) (M’ is a subsystem of M),
from the above we have M', sy = ¢.

Hence, by the choice of ¢, NB1 is true for M’ and sy, which yields a contradiction.
We've reached a contradiction, meaning our assumption is false. So NB1 is not
expressible in LTL.

Homework: Modify the proof to show that NB is not expressible in LTL. 34




Formula Equivalence

Two formulas ¢ and 1 are equivalent, denoted ¢ = 1), if they are satisfied by
(i.e., hold for) exactly the same state labelings and infinite sequences of states:
Given any labeling L : S — P(Atoms) and any infinite sequence of states ,
we have that 7 = ¢ iff 7 =L ¢

35



Formula Equivalence

Two formulas ¢ and 1 are equivalent, denoted ¢ = 1), if they are satisfied by
(i.e., hold for) exactly the same state labelings and infinite sequences of states:
Given any labeling L : S — P(Atoms) and any infinite sequence of states ,
we have that m =, ¢ iff m = %; in other words:

(1) 7 =L @ implies 7 =1 ¢

and
(2) 7 =L ¥ implies m =1 .

35



Formula Equivalence

Two formulas ¢ and 1 are equivalent, denoted ¢ = 1), if they are satisfied by
(i.e., hold for) exactly the same state labelings and infinite sequences of states:
Given any labeling L : S — P(Atoms) and any infinite sequence of states ,
we have that m =, ¢ iff m = %; in other words:

(1) 7 =L @ implies 7 =1 ¢
and

(2) 7 =L ¥ implies m =1 .

Note. If o = 1, then ¢ and ¢ will also be satisfied by the same LTSs in the
same states: Given any LTS M = (S, —, L) and any s € S, we have that
M,s = iff M,s = 1.

35



Formula Equivalence

Two formulas ¢ and 1 are equivalent, denoted ¢ = 1), if they are satisfied by
(i.e., hold for) exactly the same state labelings and infinite sequences of states:
Given any labeling L : S — P(Atoms) and any infinite sequence of states ,
we have that m =, ¢ iff m = %; in other words:

(1) 7 =L @ implies 7 =1 ¢
and

(2) m =1 ¢ implies 7 =1 .

Note. If o =), then ¢ and v will also be satisfied by the same LTSs in the
same states: Given any LTS M = (S, —, L) and any s € S, we have that
M,s = iff M,s = 1.

Homework Exercise 3: Explain why this is the case.

35



Some Formula Equivalences

Propositional tautologies:

36



Some Formula Equivalences

Propositional tautologies:

—(pAY) =@V —(p V1Y) =—pA
Duality laws:
T0p=0"w Hp=0-¢ 20p=0-9p

36



Some Formula Equivalences

Propositional tautologies:

—(pAY) =@V —(p V1Y) =—pA
Duality laws:
"TOPp=0"y =0 =0-¢ —Qp =0-¢p

Distributive laws:

O(e Ay) =0 A0y Ol V)= 0pV Oy O

36



Some Formula Equivalences

Propositional tautologies:

—(pAY) =@V —(p V1Y) =—pA
Duality laws:
T0p=0" 0p=0-¢ —0p=0O-p

Distributive laws:

O(e Ay) =0 A0y Ol V)= 0pV Oy O

Note:
O(p V) ZDOep v Oy Ol ANY) Z Qo A QY

7

36



Some Formula Equivalences

Inter-definability laws:

Op=-U-p Op=-0-9 OQp=TUp

where T (read “True”) is an abbreviation for p — p for some atom p

37



Some Formula Equivalences

Inter-definability laws:

O

- O-yp Op=-0- Cp=TUyp
where T (read “True”) is an abbreviation for p — p for some atom p

Idempotency laws:

OO = Qv OO0 =0 (eU)Uy =pUqy eU(pUy)=pUy

37



Some Formula Equivalences

Inter-definability laws:

O

—O-p Op=-90-9 Qp=TUyp

where T (read “True”) is an abbreviation for p — p for some atom p
Idempotency laws:

00p=0p OOp=0¢p (pUy)Uy=9pUyp  pU(pUyp)=pUy
Absorption laws:

OO00p =000  O00e =00¢

37



Some Formula Equivalences

Inter-definability laws:

O

- O-yp Op=-0- Cp=TUyp
where T (read “True”) is an abbreviation for p — p for some atom p

Idempotency laws:

OO0

Op OO0 =0 (eU)Uy =pUqy oU(pUy)=pUy
Absorption laws:
OO00p =000  O00e =00¢

Expansion laws:

O

VOO

AS)
O
S
Il
S
>
]
S
S
c
I
<
3
>
O
AS)
[

37



Proving Formula Equivalences

Let us prove the following equivalence:

Op=-U-gp

38



Proving Formula Equivalences

Let us prove the following equivalence:
Op=-U-gp

Fix a labeling function L : S — P(Atoms) and let 7w be an infinite sequence
E0S1ER 0 0 0o

38



Proving Formula Equivalences

Let us prove the following equivalence:

Op

Fix a labeling function L : S — P(Atoms) and let 7w be an infinite sequence

505152 - - .. We must prove two things:
(1) 7 = Op implies m = 20— .
(2) 7 | =O-¢ implies ™ = Q.

38



Proving Formula Equivalences

Proving that © = O implies 7 = = O-¢:

39



Proving Formula Equivalences

Proving that © = O implies 7 = = O-¢:

Assume 7 = Q.

39



Proving Formula Equivalences

Proving that © = O implies 7 = = O-¢:
Assume 7 = Q.

Hence, by semantics of ¢, there exists an / such that 7l E .

39



Proving Formula Equivalences

Proving that © = O implies 7 = = O-¢:
Assume 7 = Q.
Hence, by semantics of ¢, there exists an / such that 7l E .

Hence, by logic, it is not the case that: for all /, mf .

39



Proving Formula Equivalences

Proving that © = O implies 7 = = O-¢:

Assume 7 = Q.

Hence, by semantics of ¢, there exists an / such that 7l E .
Hence, by logic, it is not the case that: for all /, mf .

Hence, by semantics of —, it is not the case that: for all i, 7/ E .

39



Proving Formula Equivalences

Proving that © = O implies 7 = = O-¢:

Assume 7 = Q.

Hence, by semantics of ¢, there exists an / such that 7l E .
Hence, by logic, it is not the case that: for all /, mf .

Hence, by semantics of —, it is not the case that: for all i, 7/ E .

Hence, by semantics of [J, it is not the case that 7 = O- .

39



Proving Formula Equivalences

Proving that © = O implies 7 = = O-¢:

Assume 7 = Q.

Hence, by semantics of ¢, there exists an / such that 7l E .
Hence, by logic, it is not the case that: for all /, mf .

Hence, by semantics of —, it is not the case that: for all i, 7/ E .
Hence, by semantics of [J, it is not the case that 7 = O- .

In other words, 7 [= 00— ¢.

39



Proving Formula Equivalences

Proving that © = O implies 7 = = O-¢:

Assume 7 = Q.

Hence, by semantics of ¢, there exists an / such that 7l E .

Hence, by logic, it is not the case that: for all /, mf .

Hence, by semantics of —, it is not the case that: for all i, 7/ E .
Hence, by semantics of [J, it is not the case that 7 = O- .

In other words, 7 [= 00— ¢.

Hence, by semantics of —, we have 7 |= == .

39



Proving Formula Equivalences

Proving that # = = [O= ¢ implies m = Q¢

40



Proving Formula Equivalences

Proving that # = = [O= ¢ implies m = Q¢

Assume 7 = == .

40



Proving Formula Equivalences

Proving that # = = [O= ¢ implies m = Q¢
Assume 7 = == .

Hence, by semantics of —, we have 7 = - .

40



Proving Formula Equivalences

Proving that # = = [O= ¢ implies m = Q¢
Assume 7 = == .
Hence, by semantics of —, we have 7 = - .

In other words, it is not the case that 7 |= O— .

40



Proving Formula Equivalences

Proving that # = = [O= ¢ implies m = Q¢
Assume 7 = == .

Hence, by semantics of —, we have 7 = - .
In other words, it is not the case that 7 |= O— .

Hence, by semantics of [, it is not the case that: for all i, 7/ E -

40



Proving Formula Equivalences

Proving that # = = [O= ¢ implies m = Q¢

Assume 7 = == .

Hence, by semantics of —, we have 7 = - .

In other words, it is not the case that 7 |= O— .

Hence, by semantics of [, it is not the case that: for all i, 7/ E -

Hence, by semantics of —, it is not the case that: for all i, 7/ K o.

40



Proving Formula Equivalences

Proving that # = = [O= ¢ implies m = Q¢

Assume 7 = == .

Hence, by semantics of —, we have 7 = - .

In other words, it is not the case that 7 |= O— .

Hence, by semantics of [, it is not the case that: for all i, 7/ E -
Hence, by semantics of —, it is not the case that: for all i, 7/ K o.

Hence, by logic, there exists an i such that ot E .

40



Proving Formula Equivalences

Proving that # = = [O= ¢ implies m = Q¢

Assume 7 = == .

Hence, by semantics of —, we have 7 = - .

In other words, it is not the case that 7 |= O— .

Hence, by semantics of [, it is not the case that: for all i, 7/ E -
Hence, by semantics of —, it is not the case that: for all i, 7/ K o.
Hence, by logic, there exists an i such that ot E .

Hence, by semantics of ¢, we have 7 = Q.

40



Proving Formula Equivalences

Proving that # = = [O= ¢ implies m = Q¢

Assume 7 = == .

Hence, by semantics of —, we have 7 = - .

In other words, it is not the case that 7 |= O— .

Hence, by semantics of [, it is not the case that: for all i, 7/ E -
Hence, by semantics of —, it is not the case that: for all i, 7/ K o.
Hence, by logic, there exists an i such that ot E .

Hence, by semantics of ¢, we have 7 = Q.

Note. The proof of "7 |= ==y implies 7 |= Q" is the reverse of the proof
of “m = Oy implies m = —[0—¢". So we could have proved directly “m = Q¢
iff 7 = —0—-¢" by a chain of equivalent (iff-related) statements.

40



Homework Exercise 4

Choose from the previous two slides any three laws (except for the
propositional tautologies) and prove them.

Hint. Take the approach shown above, using the semantics of formulas and

logical reasoning.

41



Summary of the Discussed Concepts

e LTL = Linear Temporal Logic

Syntax = formulas built from
e atoms
e propositional connectives
e temporal connectives

LTL can express some practical specification patterns

Semantics = the satisfaction relation

e between infinite sequences and formulas
e between LTSs and formulas

Formula equivalence

42



Further Reading

Sections 5.1.1-5.1.4 of Baier & Katoen's “Principles of Model Checking”
(MIT Press 2008)

Section 3.2 of Huth & Ryan’s “Logic in Computer Science: Modelling
and Reasoning about Systems” (Cambridge University Press 2004)
Note. Uses another (standard) notation for the temporal connectives:

X instead of O

F instead of ¢ (think “in the Future")

G instead of O (think “Globally”)

43



