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Overview

The LTL model checking problem

The model checking algorithm in three steps

Generalized Nondeterministic Büchi Automata (GNBA)

• Translation of LTL formulas to automata

• Product automata

• Emptiness decision problem

We will see

• not only what needs to be done

• but also why it works – and we will give proofs for that
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Preliminaries: Atom-Set Traces

Recall: For a set of states S , a labeling function L : S → P(Atoms), an

infinite sequence of states π = s0s1s2 . . . and a formula ϕ, we know what

π |=L ϕ (π satisfies ϕ w.r.t. labeling L) means.

Important observation: This concept does not depend on the exact S and L,

but only on the image of L through S . More precisely, given:

• S , L and π = s0s1s2 . . . infinite sequence of states in S

• S ′, L′ and π′ = s ′0s
′
1s
′
2 . . . infinite sequence of states in S ′

then, assuming L(si ) = L′(s ′i ) for all i ≥ 0, we have

π |=L ϕ iff π′ |=L′ ϕ

In other words, it is only the infinite sequence of atom sets L(s0)L(s1)L(s2) . . .

that matters – we call this the atom-set trace of π = s0s1s2 . . . through L.

Example: If L(s0) = {a, b}, L(s1) = {a} and L(s2) = {b}, then the atom-set

trace of s0s2s1s2s0 . . . is {a, b} {b} {a} {b} {a, b} . . .
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The LTL Model Checking Problem

Let M = (S ,→, L) be an LTS, s0 ∈ S , and ϕ an LTL formula.

The LTL model checking problem is to determine whether M, s0 |= ϕ, i.e.,

whether M satisfies ϕ in state s0.

(Remember that this means: π |=L ϕ for all π ∈ Pathss0 (M), where we write

Pathss0 (M) for the set of paths of M that start in s0.)

We will see that there is an algorithmic solution to this problem.

In-class exercise. Please discuss the flaws of the following argument: It is

obvious that the LTL model checking problem has an algorithmic solution,

because both the LTS and the formula are finite objects, so whether the LTS

satisfies a formula in a given state should be decidable by simply applying the

definition of satisfaction and doing an exhaustive check through the finite set

of states.
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The Model Checking Algorithm – High Level

The algorithm has three steps:

Step 1. Construct an automaton for the formula ¬ϕ.

• We write Autψ for the automaton of a formula ψ. Thus we construct

Aut¬ϕ.

• The automaton has a notion of acceped word, where a word will be an

infinite sequence A0A1A2 . . . of atom sets: for all i ≥ 0, Ai ∈ P(Atoms).

The set of its accepted words forms its accepted language.

• It has the property that for any formula ψ, set of states S , labeling

function L : S → P(Atoms) and infinite sequences of states π,

π |=L ψ iff the atom-set trace of π through L is accepted by Autψ
(Autψ accepts precisely the atom-set traces of sequences that satisfy ψ)

• Thus, Aut¬ϕ accepts precisely the atom-set traces of sequences that do

not satisfy ϕ.
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The Model Checking Algorithm – High Level

Step 2. Combine the LTS M = (S ,→, L) and its target state s0 with the

automaton Aut¬ϕ.

This results in a product automaton (M, s0)×Aut¬ϕ whose accepted words

are those coming from the paths π of M that start in s0 and do not satisfy ϕ:

π ∈ Pathss0 (M) and π 6|=L ϕ

iff

the atom-set trace of π through L is accepted by (M, s0)×Aut¬ϕ

Step 3. Check whether the product automaton (M, s0)×Aut¬ϕ has its

accepted language empty.

• If the accepted language is empty, it means that π |=L ϕ for all

π ∈ Pathss0 (M). So we conclude Yes, it is the case that M, s0 |= ϕ.

• If the accepted language is non-empty, we obtain π ∈ Pathss0 (M) such

that π 6|=L ϕ. So we conclude No, it is not the case that M, s0 |= ϕ.
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The Model Checking Algorithm – Remaining Details

Step 1. Construct an automaton Aψ for any formula ψ such that, for any set

of states S , labeling L : S → P(Atoms) and infinite sequences of states π:

π |=L ψ iff the atom-set trace of π through L is accepted by Autψ

What type of automaton do we construct? How do we construct it? Why

does it satisfy the required property?

Step 2. From M = (S ,→, L) and Aut¬ϕ, build (M, s0)×Aut¬ϕ such that,

for all π: π ∈ Pathss0 (M) and π 6|=L ϕ iff the atom-set trace of π through L

is accepted by (M, s0)×Aut¬ϕ.

What is exactly the product automaton? Why does it satisfy the required

property?

Step 3. Check whether the language accepted by the automaton

(M, s0)×Aut¬ϕ is empty.

If so, conclude M, s |= ϕ; otherwise conclude M, s 6|= ϕ.

How is the check done? Why are the conclusions correct?
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GNBAs



Step 1: What Type of Automaton Do We Use?

Think: nondeteministic finite automata, but used for infinite words

A Generalized Nondeterministic Büchi Automaton (GNBA for short) is a

5-tuple Aut = (Σ,Q, I ,→,F) where:

• Σ is a finite set of letters, called the alphabet

• Q is a finite set of states

• I ⊆ Q is a set of initial states

• → ⊆ Q × Σ×Q is a transition relation (write q
a→ q′ for (q, a, q′) ∈ →)

• F ⊆ P(Q); the elements of F are sets of states called accepting sets

A word is an infinite sequence of letters w = x0x1x2 . . . with each xi ∈ Σ.

Given a word w = x0x1x2 . . ., a run for w is an infinite sequence of states

q0q1q2 . . . with q0 ∈ I that transit via its letters: qi
xi→ qi+1 for each i ≥ 0.

A run q0q1q2 . . . for w is called accepting if it visits infinitely often each of

the accepting sets: for all F ∈ F , the set {i ≥ 0 | qi ∈ F} is infinite.

A word w is said to be accepted by Aut if it has an accepting run in Aut.

The language accepted by Aut is the set of words accepted by Aut.
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GNBA – Example

Aut = (Σ,Q, I ,→,F) where:

Σ = {x , y} Q = {q0, q1, q2}
I = {q0} F = {{q2}}
→ = { (q0, x , q1), (q1, x , q1), (q1, y , q2),

(q2, y , q1), (q2, y , q2) }

q0 q1 q2
x y

x y

y

Note: Here, a run is accepting iff q2 appears in it infinitely often.

x∞ has a run, namely q0q
∞
1 , but not accepting.

x y∞ has an accepting run, namely q0q1q
∞
2 .

x y2x∞ has a run, namely q0q1q2q
∞
1 , but not accepting.

y∞ has no run. x y x∞ has no run.

How about x (x y2)∞? It has an accepting run, namely q0q1(q1q2q1)∞.

Lang(Aut) contains x y∞ and x (x y2)∞, but not x∞, x y2x∞, y∞, x y x∞.

Lang(Aut) = {xm1yn1xm2yn2 . . . xmpynpxmp+1y∞ | p ≥ 0,mi > 0, ni > 1} ∪
{xm1yn1xm2yn2 . . . | mi > 0, ni > 1}
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→ = { (q0, x , q1), (q1, x , q1), (q1, y , q2),

(q2, y , q1), (q2, y , q2) }

q0 q1 q2
x y

x y

y

Note: Here, a run is accepting iff q2 appears in it infinitely often.

x∞ has a run, namely q0q
∞
1 , but not accepting.

x y∞ has an accepting run, namely q0q1q
∞
2 .

x y2x∞ has a run, namely q0q1q2q
∞
1 , but not accepting.

y∞ has no run. x y x∞ has no run.

How about x (x y2)∞? It has an accepting run, namely q0q1(q1q2q1)∞.

Lang(Aut) contains x y∞ and x (x y2)∞, but not x∞, x y2x∞, y∞, x y x∞.

Lang(Aut) = {xm1yn1xm2yn2 . . . xmpynpxmp+1y∞ | p ≥ 0,mi > 0, ni > 1} ∪
{xm1yn1xm2yn2 . . . | mi > 0, ni > 1}
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Homework Exercise

Consider the following GNBA:

Aut = (Σ,Q, I ,→,F) where:

Σ = {x , y} Q = {q0, q1, q2}
I = {q0} F = {{q1}, {q2}}
→ = { (q0, y , q1), (q1, x , q1), (q1, x , q2),

(q2, y , q1), (q2, y , q2) }

q0 q1 q2
y x

x y

y

Note: Here, a run is accepting iff both q1 and q2 appear in it infinitely often.

1. Which of the following words have runs, and which have accepting runs:

y x∞, y x y∞, x∞, (y x)∞, y (x5 y3)∞ ?

2. Can you describe the language accepted by Aut?

9



Homework Exercise

Same questions as before, but for a slightly different GNBA – the only

difference is shown in brown:

Aut = (Σ,Q, I ,→,F) where:

Σ = {x , y} Q = {q0, q1, q2}
I = {q0} F = {{q1, q2}}
→ = { (q0, y , q1), (q1, x , q1), (q1, x , q2),

(q2, y , q1), (q2, y , q2) }

q0 q1 q2
y x

x y

y

Note: Here, a run is accepting iff either q1 or q2 appear in it infinitely often.

1. Which of the following words have runs, and which have accepting runs:

y x∞, y x y∞, x∞, (y x)∞, y (x5 y3)∞ ?

2. Can you describe the language accepted by Aut?
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Step 1: From LTL Formulas to GNBAs

Given an LTL formula ψ, we wish to construct a GNBA Autψ that accepts

precisely the atom-set traces of infinite sequences of states that satisfy ψ.

Autψ will have the form (Σ,Q, I ,→,F).

The alphabet Σ of Autψ is P(Atoms), so that words over this alphabet are

atom-set traces.

We still need to define Q, I , → and F .

Main idea of the construction: We consider all possible “scenarios” that

would make ψ true or false on a presumptive infinite sequence starting in

some state, by looking at what can happen with its subformulas.

So, for all subformulas of ψ, we look at all the scenarios of them being true or

false in a consistent (i.e., non-contradictory) manner.

We will often write ϕ instead of ¬ϕ for any formula ϕ.

Important: We will identify (treat as if they are the same) ϕ with ϕ – this is

OK thanks to the Double Negation property.
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Step 1: From LTL Formulas to GNBAs

By the subformulas of ψ, we mean all the formulas that appear as part of ψ.

Examples:

An atom a has only one subformula: a itself.

�a has two subformulas: a and �a.

�♦a has three subformulas: a, ♦a and �♦a.

�(�a ∨ b) has six subformulas a, b, �a, �a, �a ∨ b and �(�a ∨ b).

The above is a “definition by example”. Can you define the set of

subformulas of a formula rigorously?
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Step 1: From LTL Formulas to GNBAs – Discussion

Take ψ to be �a.

For �a to be true:

• we demand a to be true

• we also demand that �a will be true in the next state

For �a to be false:

• we either demand a to be false

• or allow a to be true, but demand that �a will be false in the next state

Thus, for the current state we have the following three possible scenarios:

{a, �a} {a, �a} {a, �a}
And we’ll also have some requirements on moving forward to the next state.

Note that {a, �a} is not a possible scenario: It would be self-contradictory!

13
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Step 1: From LTL Formulas to GNBAs – Discussion

Take ψ to be ♦a.

For ♦a to be true:

• we either demand a to be true

• or allow a to be false, but demand that ♦a will be true in the next state

For ♦a to be false:

• we demand a to be false

• we also demand that ♦a will be false in the next state

Thus, for the current state we have the following three possible scenarios:

{a,♦a} {a,♦a} {a, ♦a}
And again, we’ll have some requirements on moving forward to the next state.

Note that {a, ♦a} is not a possible scenario: It would be self-contradictory.

Homework Question: In which way is this similar to the discussion on the

previous slide? Hint: ♦ and � are dual to each other.

In summary: We compute all possible scenarios for the correct state,

and also remember some unfinished business for the next state.
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Step 1: From LTL Formulas to GNBAs – Discussion

Take ψ to be �♦a. For �♦a to be true:

• we demand ♦a to be true, hence:

• we either demand a to be true

• or allow a to be false, but demand that ♦a will be true in the next state

• and demand �♦a to be true in the next state

For �♦a to be false:

• we either demand ♦a to be false, which also means that a is false

• or allow ♦a to be true (but demand that �♦a will be false in the next

state), in which case:

• either a is true

• or a is false but ♦a will be true in the next state

Thus, for the current state we have five possible scenarios:

{a,♦a,�♦a} {a,♦a,�♦a} {a,♦a,�♦a} {a,♦a,�♦a} {a,♦a,�♦a}
And we’ll also have some requirements on moving forward to the next state.

Note that {a,♦a,�♦a} is not a possible scenario. Why? Also, can you

identify and explain other impossible scenarios?
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Step 1: From LTL Formulas to GNBAs – Discussion

Take ψ to be �(�a ∨ b).

For �(�a ∨ b) to be true:

• we demand �a ∨ b to be true, hence:
1. we either demand �a to be true, in which case:

1.1. we either demand a to be false

1.2. or we allow it to be true, but demand that �a will be false in the next state

2. or allow �a to be false, and demand b to be true

• we also demand that �(�a ∨ b) will be true in the next state

And a similar analysis yields all possibilities for �(�a ∨ b) to be false.

Thus, for the current state we have the following possible scenarios:

1.1. {a, b, �a, �a ∨ b, �(�a ∨ b)} {a, b, �a, �a ∨ b, �(�a ∨ b)}
1.2. {a, b, �a, �a ∨ b, �(�a ∨ b)} {a, b, �a, �a ∨ b, �(�a ∨ b)}
2. {a, b, �a, �a ∨ b, �(�a ∨ b)}
... together with those for �(�a ∨ b) to be false (not shown here).

And we’ll also have some requirements on moving forward to the next state.

Note. These scenarios are complete, i.e., answer the truth question on all

subformulas, and consistent, i.e., they do not have contradictions, e.g.,

containing both ϕ and ϕ, or containing �ϕ but not ϕ.
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Step 1: From LTL Formulas to GNBAs – Definition

Autψ = (Σ,Q, I ,→,F)

Σ = P(Atoms), so that words over this alphabet will be atom-set traces.

We define Cl(ψ), the closure of ψ, to be the set of all subformulas of ψ and

their negations. For example:

Cl (a) = {a, a }
Cl (�a) = {a, a, �a, �a }
Cl (�♦a) = {a, a, ♦a, ♦a, �♦a, �♦a }
Cl (�(�a ∨ b)) =

{a, a, b, b, �a,�a, �a ∨ b, �a ∨ b, �(�a ∨ b), �(�a ∨ b) }

�a is not shown in Cl (�(�a ∨ b)), because it is the same as �a.
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Step 1: From LTL Formulas to GNBAs – Definition

Autψ = (Σ,Q, I ,→,F) Recall: Q is the set of states of Autψ.

We define Q = the set of all sets K ⊆ Cl(ψ) that are elementary where

• elementary means: complete and propositionally / temporally consistent

• complete means: for all ϕ ∈ Cl(ψ), we have ϕ ∈ K or ϕ ∈ K

• propositionally consistent means: for all ϕ,ϕ1, ϕ2

• if ϕ ∈ Cl(ψ), then ϕ ∈ K implies ϕ 6∈ K

• if ϕ1 ∧ ϕ2 ∈ Cl(ψ), then ϕ1 ∧ ϕ2 ∈ K iff ϕ1 ∈ K and ϕ2 ∈ K

• if ϕ1 ∨ ϕ2 ∈ Cl(ψ), then ϕ1 ∨ ϕ2 ∈ K iff ϕ1 ∈ K or ϕ2 ∈ K

• if ϕ1 → ϕ2 ∈ Cl(ψ), then ϕ1 → ϕ2 ∈ K iff [ϕ1 ∈ K implies ϕ2 ∈ K ]

What do these conditions remind you of?

• temporally consistent means:

• if �ϕ ∈ Cl(ψ), then �ϕ ∈ K implies ϕ ∈ K

• if ♦ϕ ∈ Cl(ψ), then ϕ ∈ K implies ♦ϕ ∈ K

• if ϕ1 Uϕ2 ∈ Cl(ψ), then ϕ2 ∈ K implies ϕ1Uϕ2 ∈ K

• if ϕ1 Uϕ2 ∈ Cl(ψ), then ϕ1 Uϕ2 ∈ K and ϕ2 6∈ K implies ϕ1 ∈ K

In short: Q consists of all the scenarios for the truth or falsehood of the

subformulas of ψ that are complete (do not let anything unsettled) and

consistent (do not contain contradictions).
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Step 1: From LTL Formulas to GNBAs – Definition

Autψ = (Σ,Q, I ,→,F) Recall: I is the set of initial states of Autψ.

We define I = the set of all sets K in Q that contain ψ.

So I incorporates all those scenarios where ψ is true.

Intuition: The automaton will accept only the atom-set traces of sequences

satisfying ψ, which therefore must start in scenarios where ψ is true.

Example, taking ψ to be �♦a. Q consists of the following five sets, and I of

only those that contain �♦a (the two ones shown in blue):

{a,♦a,�♦a} {a,♦a,�♦a} {a,♦a,�♦a} {a,♦a,�♦a} {a,♦a,�♦a}

In-class exercise: Please check this example against the definitions of Q and I .
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Step 1: From LTL Formulas to GNBAs – Definition

Autψ = (Σ,Q, I ,→,F) Recall: → ⊆ Q × Σ× Q is Autψ’s transition relation.

Also, recall that Σ = P(Atoms) and Q ⊆ P(Formulas).

Given A ∈ Σ and K ,K ′ ∈ Q, we define K
A→ K ′ to mean the following:

1. A = K ∩ Atoms (i.e., A consists of all the atoms of K)

Intuition: A is the set of atoms that are true in the scenario represented by K

(hence can make a valid labeling at that state)

2. For all ϕ,ϕ1, ϕ2

• If ©ϕ ∈ Cl(ψ), then ©ϕ ∈ K iff ϕ ∈ K ′

• If �ϕ ∈ Cl(ψ), then �ϕ ∈ K iff ϕ ∈ K and �ϕ ∈ K ′

• If ♦ϕ ∈ Cl(ψ), then ♦ϕ ∈ K iff ϕ ∈ K or ♦ϕ ∈ K ′

• If ϕ1Uϕ2 ∈ Cl(ψ), then ϕ1Uϕ2 ∈ K iff ϕ2 ∈ K or [ϕ1 ∈ K and ϕ1Uϕ2 ∈ K ′]

Intuition: K is the “now” scenario, and K ′ is the “next” scenario. The

conditions state that these two are mutually consistent w.r.t. the temporal

connectives, e.g.:

• ©ϕ true “now” means that ϕ will be true “next”

• ♦ϕ true “now” means that either ϕ is true “now” or ♦ϕ will be

postponed to “next” (part of the “unfinished business”)
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Step 1: From LTL Formulas to GNBAs – Definition

Autψ = (Σ,Q, I ,→,F) Recall: F ⊆ P(Q) is Autψ’s set of accepting sets.

Also, recall that Σ = P(Atoms) and Q ⊆ P(Formulas).

We define F = {Fulfill(�ϕ) | �ϕ ∈ Cl(ψ)} ∪ {Fulfill(♦ϕ) | ♦ϕ ∈ Cl(ψ)} ∪
{Fulfill(ϕ1 Uϕ2) | ϕ1 Uϕ2 ∈ Cl(ψ)} where:

• Fulfill(�ϕ) = {K ∈ Q | ϕ ∈ K implies �ϕ ∈ K}
• Fulfill(♦ϕ) = {K ∈ Q | ♦ϕ ∈ K implies ϕ ∈ K}
• Fulfill(ϕ1 Uϕ2) = {K ∈ Q | ϕ1Uϕ2 ∈ K implies ϕ2 ∈ K}

Intuition – the long-term fulfillment of the “unfinished business” aspect:
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Running Example

Let ψ be ♦a. Note that Cl(ψ) = { a, a, ♦a, ♦a }

Autψ = (Σ,Q, I ,→,F) consists of the following:

Σ = P({a}) = { ∅, {a} }

Q consists of all elementary subsets of Cl(ψ)

Remember: Elementary = propositionally and temporally consistent, and complete

Thus: Q = { {a, ♦a}, {a, ♦a}, {a, ♦a} }

I consists of all sets from Q that contain ψ

Thus: I = { {a, ♦a}, {a, ♦a} }

F contains one set, Fulfill(♦a).

Fulfill(♦a) contains those sets K from Q with the following property:

♦a ∈ K implies a ∈ K .

This is true about all sets from Q, except for the one that contains ♦a but not a,

hence Fulfill(♦a) = { {a, ♦a}, {a, ♦a} }
Thus: F = {Fulfill(♦a) } = { { {a, ♦a}, {a, ♦a} } }

Note: Σ is a set of sets of atoms; Q, I and Fulfill(♦a) are sets of sets of formulas;

F is a set of sets of sets of formulas.
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Let ψ be ♦a. Note that Cl(ψ) = { a, a, ♦a, ♦a }

Autψ = (Σ,Q, I ,→,F) consists of the following:
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F contains one set, Fulfill(♦a).
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Running Example

The transition relation → is shown below:

{a, ♦a}

q0

{a, ♦a}

q1

{a, ♦a}

q2

{a}

{a}

{a}

∅

∅

∅

Note that for any K ,K ′ ∈ Q and A ∈ Σ, the conditions defining K
A→ K ′ are:

1. A consists of all the atoms in K . This means that showing A is redundant, since

it is determined by the source K of the transition:

• All transitions coming out of {a, ♦a} have A = {a}

• All transitions coming out of {a, ♦a} have A = ∅

• All transitions coming out of {a, ♦a} have A = ∅
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q2

{a}
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Note that for any K ,K ′ ∈ Q and A ∈ Σ, the conditions defining K
A→ K ′ are:

2. ♦a ∈ K iff a ∈ K or ♦a ∈ K ′. So, for example:

• There is a transition between {a, ♦a} and itself, since this condition holds for

K = K ′ = {a, ♦a}
• There is a transition between {a, ♦a} and {a, ♦a}, since this condition holds

for K = {a, ♦a} and K ′ = {a, ♦a}
• There is no transition between {a, ♦a} and {a, ♦a}, since this condition fails

for K = {a, ♦a} and K ′ = {a, ♦a} – indeed, ♦a ∈ K ′ but ♦a 6∈ K
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{a, ♦a}

q0

{a, ♦a}

q1

{a, ♦a}

q2

{a}

{a}

{a}

∅

∅

∅

I = { {a, ♦a}, {a, ♦a} }

F = {Fulfill(♦a)} = { { {a, ♦a}, {a, ♦a} } }

Accepted language of Aut♦a?

All words of the form A0A1A2 . . . (with each Ai ⊆ {a}) such that there exists j ≥ 0

with Ai = {a}.

... and this is exactly the property we need from the atom-set trace of a sequence π

satisfying ♦a.
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Step 1: From LTL Formulas to GNBAs – Correctness

Next, we will prove the following:

Correctness Theorem for Step 1. For any set of states S , infinite sequence of

states π and labeling functions L : S → P(Atom)

π |=L ψ iff Autψ accepts the atom-set trace of π through L.
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Step 1: From LTL Formulas to GNBAs – Correctness

Left-to-Right Implication of Correctness Theorem for Step 1. For any set of

states S , infinite sequence of states π and labeling functions L : S → P(Atom):

If π |=L ψ then Autψ accepts the atom-set trace of π through L.

Proof idea. Assume π |=L ψ. Assume π = s0s1s2 . . . and let Ai = L(si ) for all i ≥ 0.

We must show that Autψ accepts A0A1A2 . . ., i.e., it has an accepting run for it.

We take the run to be K0K1K2 . . . where Ki = {ϕ ∈ Cl(ψ) | πi |=L ϕ}.
We can check that:

(1) K0K1K2 . . . is a run, meaning:

• Ki ∈ Q, i.e., Ki is elementary – thanks to the properties of satisfaction

• K0 ∈ I , i.e., ψ ∈ K0 – immediate, since π |=L ψ.

• Ki
Ai→ Ki+1 – thanks to the properties of satisfaction, incl. the expansion laws

(2) K0K1K2 . . . is accepting, meaning that it visits infinitely often the sets in F –

also thanks to the properties of satisfaction. For example:

Given ♦ϕ ∈ Cl(ψ), we must check that ♦ϕ ∈ Ki , i.e., πi |=L ♦ϕ, implies

ϕ ∈ Ki , i.e., πi |=L ϕ, for infinitely many i ’s.

This is true because πi |=L ♦ϕ implies that there exists j ≥ i such that

πj |=L ♦ϕ and πj |=L ϕ. TYU: Prove this last statement.
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Step 1: From LTL Formulas to GNBAs – Correctness

Right-to-Left Implication of Correctness Thm. for Step 1. For any S , π and L:

If Autψ accepts the atom-set trace of π through L, then π |=L ψ.

Proof idea. Assume π = s0s1s2 . . . and let Ai = L(si ) for all i ≥ 0. Assuming Autψ

has an accepting run K0K1K2 . . . for A0A1A2 . . ., we must show that π |=L ψ.

We can show something more general. Remember that being an accepting run

means the following:

(1) K0K1K2 . . . is a run, meaning:

(1.1) Ki ∈ Q, i.e., Ki is elementary; (1.2) K0 ∈ I (i.e., ψ ∈ K0); (1.3) Ki
Ai→ Ki+1.

(2) K0K1K2 . . . is accepting, meaning that it visits infinitely often the sets in F .

Our generalization involves:

• replacing our fixed formula ψ with an arbitrary ϕ ∈ K0

• renouncing the hypothesis (1.2) (of starting in an initial state)

• strengthening “ϕ ∈ K0 implies π |=L ϕ” to an “iff” statement, namely:

(*) for all ϕ ∈ Cl(ψ), we have ϕ ∈ K0 iff π |=L ϕ

So we prove (1.1), (1.3) and (2) imply (*). TYU: Why is this more general?
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Step 1: From LTL Formulas to GNBAs – Correctness

Assume π = s0s1s2 . . . and let Ai = L(si ) for all i ≥ 0. Assume:

(1.1) Ki is elementary; (1.3) Ki
Ai→ Ki+1;

(2) K0K1K2 . . . visits infinitely often the sets in F .

We must show: for all ϕ ∈ Cl(ψ), we have ϕ ∈ K0 iff π |=L ϕ.

The proof goes by induction on the structure of ϕ. Some representative cases:

Assume ϕ is an atom p. We have a chain of equivalent statements:

p ∈ K0

iff (by the definition of Autψ’s transition relation →)

p ∈ A0 = L(s0)

iff (by the definition of the satisfaction relation)

π |=L p

This was an easy case.
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We must show: for all ϕ ∈ Cl(ψ), we have ϕ ∈ K0 iff π |=L ϕ.

The proof goes by induction on the structure of ϕ. Some representative cases:

Assume ϕ has the form ϕ1 ∧ ϕ2. We have a chain of equivalent statements:

ϕ1 ∧ ϕ2 ∈ K0

iff (since K0 is elementary, in particular propositionally consistent)

ϕ1 ∈ K0 and ϕ2 ∈ K0

iff (by the induction hypothesis)

TYU: OK to apply the induction hypothesis?

π |=L ϕ1 and π |=L ϕ2

iff (by the definition of the satisfaction relation)

π |=L ϕ1 ∧ ϕ2

This case is entirely routine; and the same is true for all propositional connectives.
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π 6|=L ϕ1

iff (by the definition of the satisfaction relation)

π |=L ¬ϕ1

This case is also entirely routine; but only because the statement to be proved is

strong enough! An “implies” instead of “iff” would not work.
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We must show: for all ϕ ∈ Cl(ψ), we have ϕ ∈ K0 iff π |=L ϕ.

The proof goes by induction on the structure of ϕ. Some representative cases:

Assume ϕ has the form ©ϕ1.

Let the atom-set trace K ′0K ′1K ′2 . . . be defined as

K ′i = Ki+1 for all i ≥ 0. In other words, K ′0K ′1K ′2 . . . is K1K2K3 . . . We have:

©ϕ1 ∈ K0

iff (by the definition of Autψ’s transition relation →)

ϕ1 ∈ K1, i.e., ϕ1 ∈ K ′0
iff (by the induction hypothesis applied to K ′0K ′1K ′2 . . . and π1)

π1 |=L ϕ1

iff (by the definition of the satisfaction relation)

π |=L ©ϕ1

This case required applying the induction hypothesis not to K0K1K2 . . . and π, but

to their shifted versions K1K2K3 . . . and π1.
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We must show: for all ϕ ∈ Cl(ψ), we have ϕ ∈ K0 iff π |=L ϕ.

The proof goes by induction on the structure of ϕ. Some representative cases:

Assume ϕ has the form ♦ϕ1.

Let, for each j ≥ 0, the atom-set trace K j
0K j

1K j
2 . . . be

defined as K j
i = Ki+j for all i ≥ 0. I.e., K j

0K j
1K j

2 . . . is KjKj+1Kj+2 . . . We have:

♦ϕ1 ∈ K0

iff (by a lemma)

ϕ1 ∈ Kj , i.e., ϕ1 ∈ K j
0 for some j ≥ 0

iff (by the induction hypothesis applied to K j
0K j

1K j
2 . . . and πj)

πj |=L ϕ1 for some j ≥ 0

iff (by the definition of the satisfaction relation)

π |=L ♦ϕ1

This case required applying the induction hypothesis not to K0K1K2 . . . and π, but to

their j-shifted versions KjKj+1Kj+2 . . . and πj . CYA: Anything missing in this proof?
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0K j

1K j
2 . . . be

defined as K j
i = Ki+j for all i ≥ 0. I.e., K j
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1K j

2 . . . is KjKj+1Kj+2 . . . We have:

♦ϕ1 ∈ K0

iff (by a lemma)

ϕ1 ∈ Kj , i.e., ϕ1 ∈ K j
0 for some j ≥ 0

iff (by the induction hypothesis applied to K j
0K j

1K j
2 . . . and πj)

πj |=L ϕ1 for some j ≥ 0

iff (by the definition of the satisfaction relation)

π |=L ♦ϕ1

This case required applying the induction hypothesis not to K0K1K2 . . . and π, but to

their j-shifted versions KjKj+1Kj+2 . . . and πj . CYA: Anything missing in this proof? 34



Step 1: From LTL Formulas to GNBAs – Correctness

Lemma: For all ϕ such that ♦ϕ ∈ Cl(ψ), we have

♦ϕ ∈ K0 iff ϕ ∈ Kj for some j ≥ 0

Proof idea.

For the left-to-right direction, assume ♦ϕ ∈ K0.

Since K0
A0→ K1

A1→ K2 → . . ., from the definition of → we have that:

- Either (1) ϕ ∈ K0 or (2) [ϕ 6∈ K0 and ♦ϕ ∈ K1]

Case (1) means fulfilling the eventuality, whereas case (2) means postponing it to

next time – remember the “unfinished business” situation.

- If case (2) holds, then either (1) ϕ ∈ K1 or (2) [ϕ 6∈ K1 and ♦ϕ ∈ K2]

- If case (2) holds again, then either (1) ϕ ∈ K2 or (2) [ϕ 6∈ K2 and ♦ϕ ∈ K3]

- And so on.

Moreover, K0K1K2 . . . is an accepting run in Autψ, which means that infinitely

often for j ≥ 0, ♦ϕ ∈ Kj implies ϕ ∈ Kj .

So case (2) cannot hold infinitely, meaning that case (1) will hold at some point j .

We thus obtain j such that ϕ ∈ Kj , as desired.
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Step 1: From LTL Formulas to GNBAs – Correctness

Lemma: For all ϕ such that ♦ϕ ∈ Cl(ψ), we have

♦ϕ ∈ K0 iff ϕ ∈ Kj for some j ≥ 0

Proof idea.

For the right–to-left direction, assume ϕ ∈ Kj for some j ≥ 0.

Since Kj is elementary, in particular temporally consistent, we also have ♦ϕ ∈ Kj .

We have two cases:

Case 1: j = 0. Then we are done, since ♦ϕ ∈ K0.

Case 2: j > 0. Let j ′ = j − 1.

Since ♦ϕ ∈ Kj and Kj′
Aj′→ Kj , from the definition of → we have that ♦ϕ ∈ Kj′ .

And we continue the same reasoning for j ′ instead of j.

At some point, case 1 must hold, since j keeps decreasing. (Strictly speaking, this is

an induction on j .)

So we obtain ♦ϕ ∈ K0, as desired.
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Homework Exercise

Assume π = s0s1s2 . . . and let Ai = L(si ) for all i ≥ 0. Assume:

(1.1) Ki is elementary; (1.3) Ki
Ai→ Ki+1;

(2) K0K1K2 . . . visits infinitely often the sets in F .

We must show: for all ϕ ∈ Cl(ψ), we have ϕ ∈ K0 iff π |=L ϕ.

The proof goes by induction on the structure of ϕ.

Do the proofs for the remaining cases:

Assume ϕ has the form ϕ1 ∨ ϕ2. . . . Routine

Assume ϕ has the form ϕ1 → ϕ2. . . . Routine

Assume ϕ has the form �ϕ1. . . . Interesting. You will need a lemma like for ♦.

Assume ϕ has the form ϕ1 Uϕ2. . . . Interesting. You will need a lemma like for ♦.
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Summary and Outlook

For any formula ψ, we defined the GNBA Autψ = (Σ,Q, I ,→,F).

We proved the following:

Correctness Theorem for Step 1. For any set of states S , infinite sequence of

states π and labeling functions L : S → P(Atom)

π |=L ψ iff Autψ accepts the atom-set trace of π through L.

We can say that automaton Autψ mimics, or simulates, or encodes, the

semantic behavior of ψ.

Next, we look into how to encode satisfaction of a formula by an LTS (in a

state) using GNBAs – this is Step 2.

Finally, we will look into how to algorithmically decide satisfaction, once

encoded – this is Step 3.
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Homework Exercise

Describe the automaton Autψ in the following cases:

• Atoms = {a} and ψ = �a.

• Atoms = {a, b} and ψ = a U b

• Atoms = {a, b} and ψ = ♦(a ∧ b)
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Step 2: Product GNBA



Step 2: Product GNBA – Definition

So we have Autψ = (Σ,Q, I ,→,F), where Σ = P(Atoms).

Side note: The next construction works not only for Autψ, but for any GNBA

whose alphabet is P(Atoms).

Let M = (S ,→, L) be an LTS and s0 ∈ S . Remember that →⊆ S × S and

L : S → P(Atoms).

Note: We write → for both the transition relation →⊆ Q ×Σ×Q of Autψ and the

transition relation →⊆ S × S of M.

We define the product of (M, s0) and Autψ to be the GNBA

(M, s0)×Autψ = (Σ,Q×, I×,→×,F×) whose components are as follows:

Q× = {(s,K) | s ∈ S , K ∈ Q and L(s) = Atoms ∩ K}

I× = {(s0,K) | (s0,K) ∈ Q× and K ∈ I}

(s,K)
A→× (s ′,K ′) iff s → s ′ and K

A→ K ′ (Note: L(s) = Atoms ∩ K = A)

F× = { {(s,K) | (s,K) ∈ Q and K ∈ F} | F ∈ F }
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Running Example (Continued)

Consider the LTS M = (S ,→, L) shown in the picture on the left.

Remember that, taking ψ to be ♦a, the GNBA Autψ = (Σ,Q, I ,→,F) has set of

states Q and transition relation → shown in the picture on the right. Also,

I = { {a,♦a}, {a,♦a} } and F = { { {a,♦a}, {a,♦a} } }.

s0

∅

s1

{a}
{a,♦a}

q0

{a,♦a}

q1

{a,♦a}

q2

{a}

{a}

{a}
∅

∅

∅

The product GNBA

(M, s0)×Autψ = (Σ,Q×, I×,→×,F×)

has Q× and →× shown on the right

,

and has I× = { (s0, {a,♦a}) } and

F× = { { (s1, {a,♦a}), (s0, {a,♦a}) } }
E.g., Q× contains (s1, {a,♦a})
since L(s1) = {a} = {a,♦a} ∩ Atoms

(s1, {a,♦a})

q0

(s0, {a,♦a})

q1

(s0, {a,♦a})

q2

{a}

{a}
∅

∅

∅
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Running Example (Continued)
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Step 2: Product GNBA – Correctness

Context: M = (S ,→, L) is an LTS, s0 ∈ S , and Autψ = (Σ,Q, I ,→,F) is

the GNBA of an LTL formula ψ.

We have defined the product GNBA (M, s0)×Autψ = (Σ,Q×, I×,→×,F×).

Correctness Theorem for Step 2. Let A0A1A2 . . . be an infinite sequence of

atom sets. Then

(M, s0)×Autψ accepts A0A1A2 . . .

iff

there exists π ∈ Pathss0 (M) such that A0A1A2 . . . is the

atom-set trace of π through L and Autψ accepts A0A1A2 . . .

This has a routine proof, applying the definition of the product automaton.
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Step 2: Product GNBA – Correctness

Proof. We have the following chain of equivalent statements:

(M, s0)×Autψ accepts A0A1A2 . . .

iff

There exists in (M, s0)×Autψ an accepting run (s0,K0)(s1,K1)(s2,K2) . . . for

A0A1A2 . . .

iff (by the definition of accepting runs and of Q×, I× and →×)

There exist s0s1s2 . . . and K0K1K2 . . . such that: K0 ∈ I ,

for all i ≥ 0: Ai = L(si ), si → si+1 and Ki
Ai→ Ki+1

and for all G ∈ F×, we have (si ,Ki ) ∈ G for infinitely many i ≥ 0

iff (by the definition of F×)

There exist s0s1s2 . . . and K0K1K2 . . . such that: K0 ∈ I ,

for all i ≥ 0: Ai = L(si ), si → si+1 and Ki
Ai→ Ki+1

and for all F ∈ F , we have Ki ∈ F for infinitely many i ≥ 0

iff (by the definition of accepting runs, of paths and of “atom-set trace of”)

There exist π = s0s1s2 . . .∈ Pathss0 (M) and K0K1K2 . . . such that:

A0A1A2 . . . is the atom-set trace of π through L and

K0K1K2 . . . is an accepting run (in Autψ) for A0A1A2 . . .

44



Step 2: Product GNBA – Correctness

Proof. We have the following chain of equivalent statements:

(M, s0)×Autψ accepts A0A1A2 . . .

iff

There exists in (M, s0)×Autψ an accepting run (s0,K0)(s1,K1)(s2,K2) . . . for

A0A1A2 . . .

iff (by the definition of accepting runs and of Q×, I× and →×)

There exist s0s1s2 . . . and K0K1K2 . . . such that: K0 ∈ I ,

for all i ≥ 0: Ai = L(si ), si → si+1 and Ki
Ai→ Ki+1

and for all G ∈ F×, we have (si ,Ki ) ∈ G for infinitely many i ≥ 0

iff (by the definition of F×)

There exist s0s1s2 . . . and K0K1K2 . . . such that: K0 ∈ I ,

for all i ≥ 0: Ai = L(si ), si → si+1 and Ki
Ai→ Ki+1

and for all F ∈ F , we have Ki ∈ F for infinitely many i ≥ 0

iff (by the definition of accepting runs, of paths and of “atom-set trace of”)

There exist π = s0s1s2 . . .∈ Pathss0 (M) and K0K1K2 . . . such that:

A0A1A2 . . . is the atom-set trace of π through L and

K0K1K2 . . . is an accepting run (in Autψ) for A0A1A2 . . .

44



Step 2: Product GNBA – Correctness

Proof. We have the following chain of equivalent statements:

(M, s0)×Autψ accepts A0A1A2 . . .

iff

There exists in (M, s0)×Autψ an accepting run (s0,K0)(s1,K1)(s2,K2) . . . for

A0A1A2 . . .

iff (by the definition of accepting runs and of Q×, I× and →×)

There exist s0s1s2 . . . and K0K1K2 . . . such that: K0 ∈ I ,

for all i ≥ 0: Ai = L(si ), si → si+1 and Ki
Ai→ Ki+1

and for all G ∈ F×, we have (si ,Ki ) ∈ G for infinitely many i ≥ 0

iff (by the definition of F×)

There exist s0s1s2 . . . and K0K1K2 . . . such that: K0 ∈ I ,

for all i ≥ 0: Ai = L(si ), si → si+1 and Ki
Ai→ Ki+1

and for all F ∈ F , we have Ki ∈ F for infinitely many i ≥ 0

iff (by the definition of accepting runs, of paths and of “atom-set trace of”)

There exist π = s0s1s2 . . .∈ Pathss0 (M) and K0K1K2 . . . such that:

A0A1A2 . . . is the atom-set trace of π through L and

K0K1K2 . . . is an accepting run (in Autψ) for A0A1A2 . . .

44



Step 2: Product GNBA – Correctness

Proof. We have the following chain of equivalent statements:

(M, s0)×Autψ accepts A0A1A2 . . .

iff

There exists in (M, s0)×Autψ an accepting run (s0,K0)(s1,K1)(s2,K2) . . . for

A0A1A2 . . .

iff (by the definition of accepting runs and of Q×, I× and →×)

There exist s0s1s2 . . . and K0K1K2 . . . such that: K0 ∈ I ,

for all i ≥ 0: Ai = L(si ), si → si+1 and Ki
Ai→ Ki+1

and for all G ∈ F×, we have (si ,Ki ) ∈ G for infinitely many i ≥ 0

iff (by the definition of F×)

There exist s0s1s2 . . . and K0K1K2 . . . such that: K0 ∈ I ,

for all i ≥ 0: Ai = L(si ), si → si+1 and Ki
Ai→ Ki+1

and for all F ∈ F , we have Ki ∈ F for infinitely many i ≥ 0

iff (by the definition of accepting runs, of paths and of “atom-set trace of”)

There exist π = s0s1s2 . . .∈ Pathss0 (M) and K0K1K2 . . . such that:

A0A1A2 . . . is the atom-set trace of π through L and

K0K1K2 . . . is an accepting run (in Autψ) for A0A1A2 . . .

44



Step 2: Product GNBA – Correctness

Proof. We have the following chain of equivalent statements:

(M, s0)×Autψ accepts A0A1A2 . . .

iff

There exists in (M, s0)×Autψ an accepting run (s0,K0)(s1,K1)(s2,K2) . . . for

A0A1A2 . . .

iff (by the definition of accepting runs and of Q×, I× and →×)

There exist s0s1s2 . . . and K0K1K2 . . . such that: K0 ∈ I ,

for all i ≥ 0: Ai = L(si ), si → si+1 and Ki
Ai→ Ki+1

and for all G ∈ F×, we have (si ,Ki ) ∈ G for infinitely many i ≥ 0

iff (by the definition of F×)

There exist s0s1s2 . . . and K0K1K2 . . . such that: K0 ∈ I ,

for all i ≥ 0: Ai = L(si ), si → si+1 and Ki
Ai→ Ki+1

and for all F ∈ F , we have Ki ∈ F for infinitely many i ≥ 0

iff (by the definition of accepting runs, of paths and of “atom-set trace of”)

There exist π = s0s1s2 . . .∈ Pathss0 (M) and K0K1K2 . . . such that:

A0A1A2 . . . is the atom-set trace of π through L and

K0K1K2 . . . is an accepting run (in Autψ) for A0A1A2 . . .

44



Step 2: Product GNBA – Correctness
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Step 2: Product GNBA – Correctness

Context: M = (S ,→, L) is an LTS, s0 ∈ S , and Autψ = (Σ,Q, I ,→,F) is

the GNBA of an LTL formula ψ.

We have defined the product GNBA (M, s0)×Autψ = (Σ,Q×, I×,→×,F×).

Correctness Theorem for Step 2. Let A0A1A2 . . . be an infinite sequence of

atom sets. Then

(M, s0)×Autψ accepts A0A1A2 . . .

iff

there exists π ∈ Pathss0 (M) such that A0A1A2 . . . is the

atom-set trace of π through L and Autψ accepts A0A1A2 . . .

Corollary.
The language accepted by (M, s0)×Autψ is empty

iff

there exists no π ∈ Pathss0 (M) such that

the atom-set trace of π through L is accepted by Autψ.
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Overall Correctness Theorem

The product between an LTS with a state and the GNBA of the negation of a

formula encodes the satisfaction relation

in the following sense:

Overall Correctness Theorem. For any LTS M = (S ,→, L), state s0 ∈ S and

formula ϕ: M, s0 |= ϕ iff the language accepted by (M, s0)×Aut¬ϕ is empty.

Proof. We have the following chain of equivalent statements:

The language accepted by (M, s0)×Aut¬ϕ is empty

iff (by the corollary of the Correctness Theorem for Step 2)

There is no π ∈ Pathss0 (M) such that Aut¬ϕ accepts its atom-set trace through L

iff (by the Correctness Theorem for Step 1)

There is no π ∈ Pathss0 (M) such that π |=L ¬ϕ
iff (by logic)

For all π ∈ Pathss0 (M), we have π 6|=L ¬ϕ
iff (by the semantics of ¬)

For all π ∈ Pathss0 (M), we have π |=L ϕ

iff (by the definition of satisfaction by LTSs)

M, s0 |= ϕ.
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Step 3: Deciding Emptiness for GNBAs

It is easy to see that the definitions of:

• The GNBA Autψ (given any formula ψ) and

• The GNBA (M, s0)×Aut¬ϕ (LTS M, state s0 and formula ϕ)

are computable – you can write programs (in your favorite PL) that compute

them.

Hence, the Overall Correctness Theorem reduces the model checking problem

for LTL, namely determining whether M, s0 |= ϕ, to the problem of

determining whether the language accepted by the GNBA (M, s0)×Aut¬ϕ is

empty.

Our last piece in the puzzle:

Decidablity Theorem. Emptiness for GNBA is decidable, meaning: There is a

program that takes as input a GNBA Aut, always terminates, and returns

• ’Yes’, if Lang(Aut) = ∅
• ’No’, if Lang(Aut) 6= ∅
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Step 3: Deciding Emptiness for GNBAs

The Decidability Theorem will be proved with the help of a lemma.

For any GNBA Aut = (Σ,Q, I ,→,F), we define its graph

Gr(Aut) = (Q,→) to be the following directed graph:

• The nodes of Gr(Aut) are the states Q

• Given q1, q2 ∈ Q, there is an edge between q1 and q2, written q1 → q2,

iff there exists a transition q1
x→ q2 for some x ∈ Σ.
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Parenthesis: Some Graph Concepts Recalled

Let G = (Q,→) be a directed graph, with nodes Q and edges → ⊆ Q × Q.

A (finite) path is a finite sequence q1 . . . qn where qi → qi+1 for all

i ∈ {1, . . . , n − 1}. q′ is accessible from q if there is a path from q to q′.

A cycle is a path q1 . . . qn of length ≥ 2 that has the first and last nodes equal:

q1 = qn.

A lasso is a path ending in a cycle – i.e., a path of the form q0 . . . qmqm+1 . . . qm+n

where qm+1 . . . qm+n is a cycle.

A strongly connected component (SCC) is a set of nodes C ⊆ Q such that, between

any two elements of C , there exists a path consisting of elements of C only.

An SCC C is called maximal if there exists no other SCC C ′ such that C ⊂ C ′. It is

called non-trivial if there exists at least one edge between its nodes.

Example:

q0 q1 q2 q3

q1q1, q1q2q1 and q2q3q1q2 are cycles.

q0q1q1, q0q1q2q1 and q0q1q2q3q1q2 are lassos.

SCCs:

{q0} is maximal and trivial

{q1} and {q1, q2} are non-maximal and non-trivial

{q1, q2, q3} is maximal and non-trivial
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Step 3: Deciding Emptiness for GNBAs

An accepting lasso for Aut is a lasso in Gr(Aut) starting in an initial state of Aut

and containing states from all the accepting sets of Aut on its ending cycle.

I.e., it is a path in Gr(Aut) of the form q0 . . . qmqm+1 . . . qm+n where m ≥ 0, n > 0,

q0 ∈ I , qm+n = qm+1 and for all F ∈ F , there exists i ∈ {1, . . . , n} with qm+i ∈ F .

Example: Consider the GNFA Aut = (Σ,Q, I ,→,F) where Σ, Q, I and → are like

in the picture, and F = {{q0, q1}, {q0, q2}}.

q0 q1 q2 q3
x y

x

y

x

x

x

q0q1q2q1 is an accepting lasso because it starts in the initial state q0, and its cycle

q1q2q1 contains a state from each accepting set: q1 ∈ {q0, q1} and q2 ∈ {q0, q2}.

q0q1q2q3q1 is an accepting lasso because it starts in the initial state q0, and its cycle

q1q2q3q1 contains a state from each accepting set: q1 ∈ {q0, q1} and q2 ∈ {q0, q2}.

q0q1q3q1 is not an accepting lasso since its cycle q1q3q1 has no state from {q0, q2}.

Note: When discussing accepting lassos for Aut, labels on transitions do not matter.
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Step 3: Deciding Emptiness for GNBAs

Lemma. Let Aut = (Σ,Q, I ,→,F) be a GNBA. Then the following are equivalent:

(1) Lang(Aut) 6= ∅.

(2) There exists an accepting lasso for Aut.

(3) There exists a maximal non-trivial SCC C of Gr(Aut) such that:

- some state in C is accessible from some state in I ;

- C intersects every accepting set, i.e., C ∩ F 6= ∅ for all F ∈ F .

Proof idea. First we show “(1) iff (2)”.

For one direction, let q0 . . . qmqm+1 . . . qm+n be an accepting lasso for Aut.

By the definition of an accepting lasso and of Gr(Aut), we have a finite word

x0 . . . xmxm+1 . . . xm+n−1 such that qi
xi→ qi+1 for all i ∈ {0, . . . ,m + n − 1}.

Then q0 . . . qm(qm+1 . . . qm+n−1)∞ is an accepting run in Aut for the (infinite) word

x0 . . . xm(xm+1 . . . xm+n−1)∞.

So x0 . . . xm(xm+1 . . . xm+n−1)∞ ∈ Lang(Aut), hence Lang(Aut) 6= ∅, as desired.
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Proof idea. First we show “(1) iff (2)”.

For one direction, let q0 . . . qmqm+1 . . . qm+n be an accepting lasso for Aut.

By the definition of an accepting lasso and of Gr(Aut), we have a finite word

x0 . . . xmxm+1 . . . xm+n−1 such that qi
xi→ qi+1 for all i ∈ {0, . . . ,m + n − 1}.

Then q0 . . . qm(qm+1 . . . qm+n−1)∞ is an accepting run in Aut for the (infinite) word

x0 . . . xm(xm+1 . . . xm+n−1)∞.

So x0 . . . xm(xm+1 . . . xm+n−1)∞ ∈ Lang(Aut), hence Lang(Aut) 6= ∅, as desired.
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Proof idea. First we show “(1) iff (2)”.

For the opposite direction, let x0x1x2 . . . ∈ Lang(Aut), and let q0q1q2 . . . be an

accepting run for it.

Since Q is finite, there exists q ∈ Q that occurs in q0q1q2 . . . infinitely often, and let

i such that qi = q.

Since q0q1q2 . . . is accepting, there exists j > i such that qiqi+1 . . . qj contains states

from each accepting set, i.e., for all F ∈ F , there exists l ∈ {i , . . . , j} with ql ∈ F .

Let k > j be the index of the next occurrence of q in q0q1q2 . . . after index j . So we

have qi = qk = q.

Then q0 . . . qiqi+1 . . . qk is an accepting lasso for Aut, as desired.

53



Step 3: Deciding Emptiness for GNBAs

Lemma. Let Aut = (Σ,Q, I ,→,F) be a GNBA. Then the following are equivalent:

(1) Lang(Aut) 6= ∅.
(2) There exists an accepting lasso for Aut.

(3) There exists a maximal non-trivial SCC C of Gr(Aut) such that:

- some state in C is accessible from some state in I ;

- C intersects every accepting set, i.e., C ∩ F 6= ∅ for all F ∈ F .

Proof idea. First we show “(1) iff (2)”.

For the opposite direction, let x0x1x2 . . . ∈ Lang(Aut), and let q0q1q2 . . . be an

accepting run for it.

Since Q is finite, there exists q ∈ Q that occurs in q0q1q2 . . . infinitely often, and let

i such that qi = q.

Since q0q1q2 . . . is accepting, there exists j > i such that qiqi+1 . . . qj contains states

from each accepting set, i.e., for all F ∈ F , there exists l ∈ {i , . . . , j} with ql ∈ F .

Let k > j be the index of the next occurrence of q in q0q1q2 . . . after index j . So we

have qi = qk = q.

Then q0 . . . qiqi+1 . . . qk is an accepting lasso for Aut, as desired.

53



Step 3: Deciding Emptiness for GNBAs

Lemma. Let Aut = (Σ,Q, I ,→,F) be a GNBA. Then the following are equivalent:

(1) Lang(Aut) 6= ∅.
(2) There exists an accepting lasso for Aut.

(3) There exists a maximal non-trivial SCC C of Gr(Aut) such that:

- some state in C is accessible from some state in I ;

- C intersects every accepting set, i.e., C ∩ F 6= ∅ for all F ∈ F .

Proof idea. First we show “(1) iff (2)”.

For the opposite direction, let x0x1x2 . . . ∈ Lang(Aut), and let q0q1q2 . . . be an

accepting run for it.

Since Q is finite, there exists q ∈ Q that occurs in q0q1q2 . . . infinitely often, and let

i such that qi = q.

Since q0q1q2 . . . is accepting, there exists j > i such that qiqi+1 . . . qj contains states

from each accepting set, i.e., for all F ∈ F , there exists l ∈ {i , . . . , j} with ql ∈ F .

Let k > j be the index of the next occurrence of q in q0q1q2 . . . after index j . So we

have qi = qk = q.

Then q0 . . . qiqi+1 . . . qk is an accepting lasso for Aut, as desired.

53



Step 3: Deciding Emptiness for GNBAs

Lemma. Let Aut = (Σ,Q, I ,→,F) be a GNBA. Then the following are equivalent:

(1) Lang(Aut) 6= ∅.
(2) There exists an accepting lasso for Aut.

(3) There exists a maximal non-trivial SCC C of Gr(Aut) such that:

- some state in C is accessible from some state in I ;

- C intersects every accepting set, i.e., C ∩ F 6= ∅ for all F ∈ F .

Proof idea. First we show “(1) iff (2)”.

For the opposite direction, let x0x1x2 . . . ∈ Lang(Aut), and let q0q1q2 . . . be an

accepting run for it.

Since Q is finite, there exists q ∈ Q that occurs in q0q1q2 . . . infinitely often, and let

i such that qi = q.

Since q0q1q2 . . . is accepting, there exists j > i such that qiqi+1 . . . qj contains states

from each accepting set, i.e., for all F ∈ F , there exists l ∈ {i , . . . , j} with ql ∈ F .

Let k > j be the index of the next occurrence of q in q0q1q2 . . . after index j . So we

have qi = qk = q.

Then q0 . . . qiqi+1 . . . qk is an accepting lasso for Aut, as desired.

53



Step 3: Deciding Emptiness for GNBAs

Lemma. Let Aut = (Σ,Q, I ,→,F) be a GNBA. Then the following are equivalent:

(1) Lang(Aut) 6= ∅.
(2) There exists an accepting lasso for Aut.

(3) There exists a maximal non-trivial SCC C of Gr(Aut) such that:

- some state in C is accessible from some state in I ;

- C intersects every accepting set, i.e., C ∩ F 6= ∅ for all F ∈ F .

Proof idea. First we show “(1) iff (2)”.

For the opposite direction, let x0x1x2 . . . ∈ Lang(Aut), and let q0q1q2 . . . be an

accepting run for it.

Since Q is finite, there exists q ∈ Q that occurs in q0q1q2 . . . infinitely often, and let

i such that qi = q.

Since q0q1q2 . . . is accepting, there exists j > i such that qiqi+1 . . . qj contains states

from each accepting set, i.e., for all F ∈ F , there exists l ∈ {i , . . . , j} with ql ∈ F .

Let k > j be the index of the next occurrence of q in q0q1q2 . . . after index j . So we

have qi = qk = q.

Then q0 . . . qiqi+1 . . . qk is an accepting lasso for Aut, as desired. 53



Step 3: Deciding Emptiness for GNBAs

Lemma. Let Aut = (Σ,Q, I ,→,F) be a GNBA. Then the following are equivalent:

(1) Lang(Aut) 6= ∅.
(2) There exists an accepting lasso for Aut.

(3) There exists a maximal non-trivial SCC C of Gr(Aut) such that:

- some state in C is accessible from some state in I ;

- C intersects every accepting set, i.e., C ∩ F 6= ∅ for all F ∈ F .

Proof idea. Finally, we show “(2) iff (3)”.

For one direction, let q0 . . . qmqm+1 . . . qm+n be an accepting lasso for Aut.

Since qm+1, . . . , qm+n form a cycle, they are all part of a nontrivial SCC, hence of a

maximal nontrivial SCC C .

C contains states from each accepting set because {qm+1, . . . , qm+n} ⊆ C does.

Finally, q0 . . . qm+1 is a path from a state in I to a state in C .
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Lemma. Let Aut = (Σ,Q, I ,→,F) be a GNBA. Then the following are equivalent:

(1) Lang(Aut) 6= ∅.
(2) There exists an accepting lasso for Aut.

(3) There exists a maximal non-trivial SCC C of Gr(Aut) such that:

- some state in C is accessible from some state in I ;

- C intersects every accepting set, i.e., C ∩ F 6= ∅ for all F ∈ F .

Proof idea. Finally, we show “(2) iff (3)”.

For the other direction, let C be an SCC with the properties mentioned at (3).

Let q0 . . . q1 be a path from an initial state q0 ∈ I to some q1 ∈ C .

Let q1q2 . . . qn be a cycle that contains all elements of C (possibly repeated) – such

a cycle exists because C is an SCC.

Then q0 . . . q1q2 . . . qn is an accepting lasso for Aut.
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Lemma. Let Aut = (Σ,Q, I ,→,F) be a GNBA. Then the following are equivalent:

(1) Lang(Aut) 6= ∅.
(3) There exists a maximal non-trivial SCC C of Gr(Aut) such that:

- some state in C is accessible from some state in I ;

- C contains states from each accepting set, i.e., C ∩ F 6= ∅ for all F ∈ F .

Decidablity Theorem. Emptiness for GNBA is decidable.

Proof. By the above “(1) iff (3)” part of the lemma, the following algorithm decides

GNBA emptiness.

Input: A GNBA Aut = (Σ,Q, I ,→,F) where F = {F1, . . . ,Fn}.
Let G = Gr(Aut).

Compute G ’s maximal non-trivial SCCs {C1, . . . ,Cm} (Tarjan’s DFS algorithm)

For each i ∈ {1, . . . ,m}
If Ci is accessible from a state in I and

for each j ∈ {1, . . . , n}, Ci ∩ Fj 6= ∅
then output “No, the accepted language is not empty.”

Output “Yes, the accepted language is empty.”

56
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Summary of the LTL Model Checking Algorithm

Input: An LTS M = (S ,→, L), a state s0 ∈ S , and an LTL formula ϕ.

Step 1: Compute the GNBA Aut = Aut¬ϕ.

Step 2: Compute the GNBA Aut ′ = (M, s0)×Aut.

Step 3: Check whether Lang(Aut ′) = ∅.

• If True, then output “Yes, it is the case that M, s0 |= ϕ.”

• If False, then output “No, it is not the case that M, s0 |= ϕ.”

57



Running Example (Completed)

Let ϕ be ¬ ♦a.

Then ¬ ϕ = ♦ a = ♦ a. (Remember we identify ϕ with ϕ.)

M = (S ,→, L)

s0

∅

s1

{a}

PROBLEM INSTANCE: Does M, s0 |= ϕ?

STEP 1: Aut¬ϕ = (Σ,Q, I ,→,F)

{a,♦a}

q0

{a,♦a}

q1

{a,♦a}

q2

{a}

{a}

{a}
∅

∅

∅

I = { {a,♦a}, {a,♦a} }
F = { { {a,♦a}, {a,♦a} } }
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Running Example (Completed)

STEP 2: (M, s0)×Aut¬ϕ = (Σ,Q×, I×,→×,F×)

STEP 3: Gr((M, s0)×Aut¬ϕ)

(s1, {a,♦a})

q0

(s0, {a,♦a})

q1

(s0, {a,♦a})

q2

{a}

{a}
∅

∅

∅

(s1, {a,♦a})

q0

(s0, {a,♦a})

q1

(s0, {a,♦a})

q2

I× = { (s0, {a,♦a}) }

Two maximal non-trivial SCCs: {q1, q2} and {q3}.

F× = { { (s1, {a,♦a}), (s0, {a,♦a}) } }

{q1, q2} is accessible from q2 ∈ I×.

{q1, q2} intersects the only accepting set, {q1, q3}.
Hence Lang((M, s0)×Aut¬ϕ) 6= ∅.

We conclude: No, it is not the case that M, s0 |= ϕ.
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Running Example (Completed)
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{a}

PROBLEM INSTANCE: Does M, s0 |= ϕ?

We conclude: No, it is not the case that M, s0 |= ϕ.

For example, (s0s1)∞ |= ♦ a, hence (s0s1)∞ 6|=L ¬ ♦ a, i.e., (s0s1)∞ 6|=L ϕ.
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Running Example (Completed)
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Counterexample Path

(M, s0)×Aut¬ϕ = (Σ,Q×, I×,→×,F×) Gr((M, s0)×Aut¬ϕ)

q1

q0

q2

q1

q3

q2

I× = {q2} Found {q1, q2} maximal non-trivial SCC.

F× = { {q1, q3} } {q1, q2} is accessible from q2 ∈ I×.

{q1, q2} intersects the only accepting set, {q1, q3}.
Hence Lang((M, s0)×Aut¬ϕ) 6= ∅. We conclude: M, s0 6|= ϕ.

Build a lasso: Start with a path from an initial state to our SCC: here, just q2.

Continue with a cycle that covers the entire SCC: q2q1q2.

Take the LTS state component of the product states: s0s1s0.

This gives us a counterexample path: (s0s1)∞. Indeed, (s0s1)∞ 6|=L ϕ.
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Complexity



Complexity of the LTL Model Checking Algorithm

Input: An LTS M = (S ,→, L), a state s0 ∈ S , and an LTL formula ϕ.

Step 1: Compute the GNBA Aut = Aut¬ϕ.

Can be done in 2O(|ϕ|) time and space.

Step 2: Compute the GNBA Aut ′ = (M, s0)×Aut.

Can be done in O(|M| × |Aut|) time and space.

Step 3: Check whether Lang(Aut ′) = ∅.

• If True, then output “Yes, it is the case that M, s0 |= ϕ.”

• If False, then output “No, it is not the case that M, s0 |= ϕ.”

Can be done in O(|Aut ′|) time and space.

Overall complexity: O(|M| × 2O(|ϕ|)) time and space.
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Summary



Summary of the Discussed Concepts

The model checking problem for LTL

GNBA = Generalized Nondeterministic Büchi Automata

Language accepted by a GNBA

Translation of LTL formulas to GNBAs

Construction of product GNBAs

Deciding the emptiness for (the language accpted by) GNBAs

The three steps of the LTL model checking algorithm

Time and space complexity
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Possible Group Presentation Topic

In groups of three, implement the LTL model checking algorithm, where each

member of the group takes care of one of the three steps.

Some coordination is of course necessary, but the three steps can be coupled

quite loosely if you agree on their input and output formats.

Feel free to discuss on the COM4507/6507 forum your choice of programming

language, libraries, data structures, etc.

Note: This task would also be a good preparation for the exam!
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Further Reading

Section 5.2 of Baier & Katoen’s “Principles of Model Checking” (MIT

Press 2008)

Moshe Vardi. An automata-theoretic approach to linear temporal logic.

1996.

Moshe Vardi. Automata-Theoretic Model Checking Revisited. 2007.
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