2. Inductive Predicates

Some Informal Examples of Inductive Definitions

Informal example 1

The predicate P on natural numbers is defined inductively by the following rules:

- $P 0$ holds;
- if $P n$ holds, then $P(n+2)$ holds.

What predicate is this?

Informal example 1

The predicate P on natural numbers is defined inductively by the following rules:

- $P 0$ holds;
- if $P n$ holds, then $P(n+2)$ holds.

What predicate is this?

Informal example 1: the even predicate

The predicate even on natural numbers is defined inductively by the following rules:

- even 0 holds;
- if even n holds, then even $(n+2)$ holds.

What predicate is this?
But why does this capture the notion of even number?

Informal example 1: the even predicate

The predicate even on natural numbers is defined inductively by the following rules:

- even 0 holds;
- if even n holds, then even $(n+2)$ holds.

What predicate is this?
But why does this capture the notion of even number?

For example, why does even 4 hold, but even 3 not?

Informal example 2

Given a set A, let $\operatorname{List}(A)$ be the set of lists $\left[a_{1}, \ldots, a_{n}\right]$ with elements in A. We write [] for the empty list and $a \# a s$ for the list obtained by consing a to as.

The binary relation R on $\operatorname{List}(A)$ is defined inductively by the rules:

- R [] as holds;
- if R as as' holds, then R as ($a \# a s^{\prime}$) holds;
- if R as as ${ }^{\prime}$ holds, then $R(a \# a s)\left(a \# a s^{\prime}\right)$ holds.

What relation is this?

Informal example 2

Given a set A, let $\operatorname{List}(A)$ be the set of lists $\left[a_{1}, \ldots, a_{n}\right]$ with elements in A. We write [] for the empty list and $a \# a s$ for the list obtained by consing a to as.

The binary relation R on $\operatorname{List}(A)$ is defined inductively by the rules:

- R [] as holds;
- if R as as' holds, then R as ($a \# a s^{\prime}$) holds;
- if R as as s^{\prime} holds, then R (a\#as) ($a \# a s^{\prime}$) holds.

What relation is this?

subl as as holds if and only if $a s$ is a sublist (subsequence) of $a s^{\prime}$

Informal example 2

Given a set A, let $\operatorname{List}(A)$ be the set of lists $\left[a_{1}, \ldots, a_{n}\right]$ with elements in A. We write [] for the empty list and $a \# a s$ for the list obtained by consing a to as.

The binary relation R on $\operatorname{List}(A)$ is defined inductively by the rules:

- R [] as holds;
- if R as as' holds, then R as ($a \# a s^{\prime}$) holds;
- if R as as s^{\prime} holds, then R (a\#as) ($a \# a s^{\prime}$) holds.

What relation is this?

subl as as holds if and only if $a s$ is a sublist (subsequence) of $a s^{\prime}$ in that, if $a s^{\prime}$ has the form $\left[a_{0}^{\prime}, \ldots, a_{n-1}^{\prime}\right]$, then there exist $k \geq 0$ and $0 \leq j_{0}<\ldots<j_{k-1} \leq n-1$ such that as $=\left[a_{j_{0}}^{\prime}, \ldots, a_{j_{k-1}}^{\prime}\right]$.

Informal example 2: the subl relation

Given a set A, let $\operatorname{List}(A)$ be the set of lists $\left[a_{1}, \ldots, a_{n}\right]$ with elements in A. We write [] for the empty list and $a \# a s$ for the list obtained by consing a to as.

The binary relation subl on $\operatorname{List}(A)$ is defined inductively by the rules:

- subl [] as holds;
- if subl as as ${ }^{\prime}$ holds, then subl as ($a \# a s^{\prime}$) holds;
- if subl as as ${ }^{\prime}$ holds, then subl (a\#as) (a\#as') holds.

What relation is this?

subl as as ${ }^{\prime}$ holds if and only if as is a sublist (subsequence) of $a s^{\prime}$ in that, if $a s^{\prime}$ has the form $\left[a_{0}^{\prime}, \ldots, a_{n-1}^{\prime}\right]$, then there exist $k \geq 0$ and $0 \leq j_{0}<\ldots<j_{k-1} \leq n-1$ such that as $=\left[a_{j_{0}}^{\prime}, \ldots, a_{j_{k-1}}^{\prime}\right]$.

Can we prove, e.g., subl $[a][a, b]$, but $\neg \operatorname{subl}[a, b][a]$?

Informal example 2: the subl relation

Given a set A, let $\operatorname{List}(A)$ be the set of lists $\left[a_{1}, \ldots, a_{n}\right]$ with elements in A. We write [] for the empty list and $a \# a s$ for the list obtained by consing a to as.

The binary relation subl on $\operatorname{List}(A)$ is defined inductively by the rules:

- subl [] as holds;
- if subl as as ${ }^{\prime}$ holds, then subl as ($a \# a s^{\prime}$) holds;
- if subl as as ${ }^{\prime}$ holds, then subl (a\#as) (a\#as') holds.

What relation is this?

subl as as ${ }^{\prime}$ holds if and only if as is a sublist (subsequence) of $a s^{\prime}$ in that, if $a s^{\prime}$ has the form $\left[a_{0}^{\prime}, \ldots, a_{n-1}^{\prime}\right]$, then there exist $k \geq 0$ and $0 \leq j_{0}<\ldots<j_{k-1} \leq n-1$ such that as $=\left[a_{j_{0}}^{\prime}, \ldots, a_{j_{k-1}}^{\prime}\right]$.

Can we prove, e.g., subl $[a][a, b]$, but $\neg \operatorname{subl}[a, b][a]$?
Can we prove the equivalence with the above alternative description?

Informal example 2: the subl relation

Given a set A, let $\operatorname{List}(A)$ be the set of lists $\left[a_{1}, \ldots, a_{n}\right]$ with elements in A. We write [] for the empty list and $a \# a s$ for the list obtained by consing a to as.

The binary relation subl on $\operatorname{List}(A)$ is defined inductively by the rules:

- subl [] as holds;
- if subl as as holds, then subl as ($a \# a s^{\prime}$) holds;
- if subl as as' holds, then subl (a\#as) (a\#as') holds.

Another way to write this inductive definition (where the labels "Nil", "ConsR" and "Cons" are names we give to the rules for convenience):

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] a s}(\mathrm{Nil}) \quad \frac{\text { subl as as' }}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as } a s^{\prime}}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

Informal example 3

Given a set A, let LazyList (A) be the set of "lazy lists" (finite or infinite lists) with elements in A - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or [$\left.a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing a to $a s$.

Informal example 3

Given a set A, let LazyList (A) be the set of "lazy lists" (finite or infinite lists) with elements in A - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or [$\left.a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing a to $a s$.

The binary relation R on LazyList (A), is defined inductively by the following rules:

$$
\begin{gathered}
\frac{\cdot}{R[] \text { as }} \text { (Nil) } \frac{R a s a s^{\prime}}{R a s\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{R a s a s^{\prime}}{R(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

Informal example 3

Given a set A, let LazyList (A) be the set of "lazy lists" (finite or infinite lists) with elements in A - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or [$\left.a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing a to $a s$.

The binary relation R on LazyList (A), is defined inductively by the following rules:

$$
\begin{gathered}
\frac{\cdot}{R[] \text { as }} \text { (Nil) } \frac{R a s a s^{\prime}}{R a s\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{R a s a s^{\prime}}{R(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

What relation is this?

Informal example 3: the subll predicate

Given a set A, let LazyList (A) be the set of "lazy lists" (finite or infinite lists) with elements in A - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or [$\left.a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing a to $a s$.

The binary relation subll on LazyList (A), is defined inductively by the following rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subll as as' }}{\text { subll }(\text { a\#as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

What relation is this?

Is it the sub-lazylist relation, in that subll as as' holds iff as consists of the elements located on some positions in $a s^{\prime}$ (preserving the order)?

Informal example 3: the subll predicate

Given a set A, let LazyList (A) be the set of "lazy lists" (finite or infinite lists) with elements in A - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or [$\left.a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing a to $a s$.

The binary relation subll on LazyList (A), is defined inductively by the following rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subll as as' }}{\text { subll }(\text { a\# as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

What relation is this?

Is it the sub-lazylist relation, in that subll as as' holds iff as consists of the elements located on some positions in $a s^{\prime}$ (preserving the order)? No! The inductive definition restricts $a s$ to be finite.

Informal example 3: the subll predicate

Given a set A, let LazyList (A) be the set of "lazy lists" (finite or infinite lists) with elements in A - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or [$\left.a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing a to $a s$.

The binary relation subll on LazyList (A), is defined inductively by the following rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }(a \# \text { as })} \text { (ConsR) } \\
\frac{\text { subll as as' }}{\text { subll }(\text { a\# as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

What relation is this?

Is it the sub-lazylist relation, in that subll as as' holds iff as consists of the elements located on some positions in $a s^{\prime}$ (preserving the order)? No! The inductive definition restricts as to be finite.

What we need here is a coinductive definition...

Informal example 3: the subll predicate

Given a set A, let LazyList (A) be the set of "lazy lists" (finite or infinite lists) with elements in A - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or $\left[a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing a to $a s$.

The binary relation subll on LazyList (A), is defined coinductively by the following rules:

What relation is this?

Is it the sub-lazylist relation, in that subll as as' holds iff as consists of the elements located on some positions in $a s^{\prime}$ (preserving the order)? No! The inductive definition restricts as to be finite.

What we need here is a coinductive definition...

Informal example 3: the subll predicate

Given a set A, let LazyList (A) be the set of "lazy lists" (finite or infinite lists) with elements in A - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or $\left[a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing a to $a s$.

The binary relation subll on LazyList (A), is defined coinductively by the following rules:

What relation is this?

Is it the sub-lazylist relation, in that subll as as' holds iff as consists of the elements located on some positions in $a s^{\prime}$ (preserving the order)? No! The inductive definition restricts as to be finite.

What we need here is a coinductive definition...
Next, we'll make the notions of inductive and coinductive definition rigorous.

Foundation of (Co)Induction

Partially ordered sets

(A, \leq) is said to be a partially ordered set when

- A is a set
- \leq is a binary relation on A that is
reflexive: $x \leq x$
transitive: $x \leq y$ and $y \leq z$ imply $x \leq z$ anti-symmetric: $x \leq y$ and $y \leq x$ imply $x=z$

Let (A, \leq) be a partially ordered set, let $X \subseteq A$ and $a \in A$. We say that:

- a is the greatest element of X if $a \in X$ and $\forall x \in X . x \leq a$;
- a is the least element of X if $a \in X$ and $\forall x \in X . a \leq x$.

Complete lattices

Let (A, \leq) be a partially ordered set.
Given $X \subseteq A$, we define:

- Lower (X), the set of lower bounds of X, to be $\{a \in A \mid \forall x \in X . a \leq x\}$.

Complete lattices

Let (A, \leq) be a partially ordered set.
Given $X \subseteq A$, we define:

- Lower (X), the set of lower bounds of X, to be $\{a \in A \mid \forall x \in X . a \leq x\}$.
If it exists, the greatest element of $\operatorname{Lower}(X)$ is called the infimum of X and is denoted by $\wedge X$.

Complete lattices

Let (A, \leq) be a partially ordered set.
Given $X \subseteq A$, we define:

- Lower (X), the set of lower bounds of X, to be $\{a \in A \mid \forall x \in X . a \leq x\}$.
If it exists, the greatest element of $\operatorname{Lower}(X)$ is called the infimum of X and is denoted by $\wedge X$.
- $\operatorname{Upper}(X)$, the set of upper bounds of X, to be $\{a \in A \mid \forall x \in X . x \leq a\}$.

Complete lattices

Let (A, \leq) be a partially ordered set.

Given $X \subseteq A$, we define:

- Lower (X), the set of lower bounds of X, to be $\{a \in A \mid \forall x \in X . a \leq x\}$.
If it exists, the greatest element of $\operatorname{Lower}(X)$ is called the infimum of X and is denoted by $\wedge X$.
- Upper (X), the set of upper bounds of X, to be $\{a \in A \mid \forall x \in X . x \leq a\}$.
If it exists, the least element of $\operatorname{Upper}(X)$ is called the supremum of X and is denoted by $\vee X$.
(A, \leq) is said to be a complete lattice if infima $\wedge X$ and suprema $\vee X$ exist for all $X \subseteq A$.

Complete lattices

Let (A, \leq) be a partially ordered set.
Given $X \subseteq A$, we define:

- Lower (X), the set of lower bounds of X, to be $\{a \in A \mid \forall x \in X . a \leq x\}$.
If it exists, the greatest element of $\operatorname{Lower}(X)$ is called the infimum of X and is denoted by $\wedge X$.
- Upper (X), the set of upper bounds of X, to be $\{a \in A \mid \forall x \in X . x \leq a\}$.
If it exists, the least element of $\operatorname{Upper}(X)$ is called the supremum of X and is denoted by $\vee X$.
(A, \leq) is said to be a complete lattice if infima $\wedge X$ and suprema $\vee X$ exist for all $X \subseteq A$.

Exercise. 1. Prove that, if they exist, $\vee \varnothing$ and $\wedge \varnothing$ are the least and greatest elements of A.
2. Prove that, if $\bigvee X$ exists and is in X, then it is the greatest element of X. Dually, if $\wedge X$ exists and is in X, then it is the least element of X.

Fixpoints, pre-fixpoints and post-fixpoints

Fix a partially ordered set (A, \leq) and a function $F: A \rightarrow A$.
An element $a \in A$ is called:

- a fixpoint (fixed point) of F if $F a=a$

Fixpoints, pre-fixpoints and post-fixpoints

Fix a partially ordered set (A, \leq) and a function $F: A \rightarrow A$.
An element $a \in A$ is called:

- a fixpoint (fixed point) of F if $F a=a$
- a pre-fixpoint of F if $F a \leq a$

Fixpoints, pre-fixpoints and post-fixpoints

Fix a partially ordered set (A, \leq) and a function $F: A \rightarrow A$.
An element $a \in A$ is called:

- a fixpoint (fixed point) of F if $F a=a$
- a pre-fixpoint of F if $F a \leq a$
- a post-fixpoint of F if $a \leq F a$

Fixpoints, pre-fixpoints and post-fixpoints

Fix a partially ordered set (A, \leq) and a function $F: A \rightarrow A$.
An element $a \in A$ is called:

- a fixpoint (fixed point) of F if $F a=a$
- a pre-fixpoint of F if $F a \leq a$
- a post-fixpoint of F if $a \leq F a$

Note: fixpoint $=$ pre-fixpoint + post-fixpoint

Fixpoints, pre-fixpoints and post-fixpoints

Fix a partially ordered set (A, \leq) and a function $F: A \rightarrow A$.
An element $a \in A$ is called:

- a fixpoint (fixed point) of F if $F a=a$
- a pre-fixpoint of F if $F a \leq a$
- a post-fixpoint of F if $a \leq F a$

Note: fixpoint $=$ pre-fixpoint + post-fixpoint

The function F is said to be monotonic if it preserves the order: $a \leq b$ implies $F a \leq F b$ for all $a, b \in A$.

The fixpoint theorem of Knaster and Tarski

Theorem (Knaster-Tarski, short version). Any monotonic function on a complete lattice has a least and a greatest fixpoint.

The fixpoint theorem of Knaster and Tarski

Theorem (Knaster-Tarski, full version). Let (A, \leq) be a complete lattice and $F: A \rightarrow A$ a monotonic function.

1. Let $\mathrm{I}_{F}=\bigwedge\{a \mid F a \leq a\}$ (the infimum of the set of pre-fixpoints). Then I_{F} is the least fixpoint of F and the least pre-fixpoint of F.
2. Let $\mathrm{J}_{F}=\bigvee\{a \mid a \leq F a\}$ (the supremum of the set of post-fixpoints). Then J_{F} is the greatest fixpoint and the greatest post-fixpoint of F.

The fixpoint theorem of Knaster and Tarski

Theorem (Knaster-Tarski, full version). Let (A, \leq) be a complete lattice and $F: A \rightarrow A$ a monotonic function.

1. Let $\mathbf{I}_{F}=\bigwedge\{a \mid F a \leq a\}$ (the infimum of the set of pre-fixpoints). Then I_{F} is the least fixpoint of F and the least pre-fixpoint of F.
2. Let $\mathrm{J}_{F}=\bigvee\{a \mid a \leq F a\}$ (the supremum of the set of post-fixpoints). Then J_{F} is the greatest fixpoint and the greatest post-fixpoint of F.

Proof. Let $X=\{a \mid F a \leq a\}$.
We have $F \mathrm{t}_{F} \in \operatorname{Lower}(X)$.
Indeed, given $a \in X$:

- on the one hand, we have $\mathrm{I}_{F} \leq a$, which implies $F \mathrm{I}_{F} \leq F a$;
- on the other hand, we have $F a \leq a$;
- the last two give us $F \mathbf{I}_{F} \leq a$.

Hence $F \mathrm{I}_{F} \leq \mathrm{I}_{F}$, which means $\mathrm{I}_{F} \in X$.
Hence I_{F} is the least pre-fixpoint of F.
But we also have $F\left(F \mathbf{1}_{F}\right) \leq F \mathbf{1}_{F}$, i.e., $F \mathbf{1}_{F} \in X$, hence $\mathbf{I}_{F} \leq F \mathbf{1}_{F}$.
Hence $F \mathrm{I}_{F}=\mathrm{I}_{F}$, making I_{F} a fixpoint, and also the least fixpoint of F.
... and the fact about greatest (post-)fixpoints is dual.

Example: The powerset complete lattice

$(\mathcal{P}(A), \leq)$

- $\mathcal{P}(A)$ is the powerset (set of all sets) of a set A
- the order \leq is inclusion, \subseteq

Example: The powerset complete lattice

($\mathcal{P}(A), \leq)$

- $\mathcal{P}(A)$ is the powerset (set of all sets) of a set A
- the order \leq is inclusion, \subseteq

Exercise. Show that this forms a complete lattice, where infima are intersections and suprema are unions.

Example: the complete lattices of predicates / relations

($A \rightarrow \mathrm{Bool}, \leq$) - the complete lattice of predicates on A.

- The order \leq is defined by $P \leq Q$ iff $\forall a \in A . P a \longrightarrow Q a$
- Infima and suprema are given by \forall and \exists.

Namely, for $X \subseteq(A \rightarrow$ Bool $): \wedge X=\lambda a . \forall P \in X . P a$

$$
\bigvee X=\lambda a . \exists P \in X . P a
$$

- The least and greatest elements are λa. \perp and λa. T

Exercise. Show that this is isomorphic to $(\mathcal{P}(A), \subsetneq)$.

Example: the complete lattices of predicates / relations

($A \rightarrow \mathrm{Bool}, \leq$) - the complete lattice of predicates on A.

- The order \leq is defined by $P \leq Q$ iff $\forall a \in A . P a \longrightarrow Q a$
- Infima and suprema are given by \forall and \exists.

Namely, for $X \subseteq(A \rightarrow$ Bool $): \wedge X=\lambda a . \forall P \in X . P a$

$$
\bigvee X=\lambda a . \exists P \in X . P a
$$

- The least and greatest elements are λa. \perp and λa. T

Exercise. Show that this is isomorphic to ($\mathcal{P}(A), \subsetneq)$.
And similarly for relations of any arity

Example: the complete lattices of predicates / relations

$(A \rightarrow \mathrm{Bool}, \leq)$ - the complete lattice of predicates on A.

- The order \leq is defined by $P \leq Q$ iff $\forall a \in A . P a \longrightarrow Q a$
- Infima and suprema are given by \forall and \exists.

Namely, for $X \subseteq(A \rightarrow$ Bool $): \wedge X=\lambda a . \forall P \in X . P a$

$$
\bigvee X=\lambda a . \exists P \in X . P a
$$

- The least and greatest elements are $\lambda a . \perp$ and λa. \top

Exercise. Show that this is isomorphic to ($\mathcal{P}(A), \subsetneq)$.
And similarly for relations of any arity, for example:
$(A \rightarrow B \rightarrow \mathrm{Bool}, \leq)$ - the complete lattice of relations between A and B.

- The order \leq is defined by $P \leq Q$ iff $\forall a \in A, b \in B . P a b \longrightarrow Q a b$
- Infima and suprema are given by \forall and \exists.

Namely, for $X \subseteq(A \rightarrow B \rightarrow$ Bool $)$: $\wedge X=\lambda a, b . \forall P \in X . P a b$

$$
\bigvee X=\lambda a, b . \exists P \in X . P a b
$$

- The least and greatest elements are $\lambda a, b . \perp$ and $\lambda a, b$. T

Example: the complete lattices of predicates / relations

$(A \rightarrow$ Bool, \leq) - the complete lattice of predicates on A.

- The order \leq is defined by $P \leq Q$ iff $\forall a \in A . P a \longrightarrow Q a$
- Infima and suprema are given by \forall and \exists.

Namely, for $X \subseteq(A \rightarrow$ Bool $): \wedge X=\lambda a . \forall P \in X . P a$

$$
\bigvee X=\lambda a . \exists P \in X . P a
$$

- The least and greatest elements are λa. \perp and λa. \top

Exercise. Show that this is isomorphic to ($\mathcal{P}(A), \subsetneq)$.
And similarly for relations of any arity, for example:
$(A \rightarrow B \rightarrow \mathrm{Bool}, \leq)$ - the complete lattice of relations between A and B.

- The order \leq is defined by $P \leq Q$ iff $\forall a \in A, b \in B . P a b \longrightarrow Q a b$
- Infima and suprema are given by \forall and \exists.

Namely, for $X \subseteq(A \rightarrow B \rightarrow$ Bool $)$: $\wedge X=\lambda a, b . \forall P \in X . P a b$

$$
\vee X=\lambda a, b . \exists P \in X . P a b
$$

- The least and greatest elements are $\lambda a, b . \perp$ and $\lambda a, b$. T

Exercise. Show that this is isomorphic to $(\mathcal{P}(A \times B), \subseteq)$.

Back to Our Examples of (Co)Inductive Definitions

Making sense of the inductive specification of even
The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0}(\text { Zero }) \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules.

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules. More precisely: We define even $=I_{F}$, where $F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool:

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0}(\text { Zero }) \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules. More precisely: We define even $=I_{F}$, where $F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool: $F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0}(\text { Zero }) \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules. More precisely: We define even $=I_{F}$, where $F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool: $F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$

Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules. More precisely: We define even $=I_{F}$, where $F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool: $F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$

Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
F is monotonic, so \mathbf{I}_{F} exists by Knaster-Tarski.

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules. More precisely: We define even $=I_{F}$, where $F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool: $F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$

Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
even is a pre-fixpoint of F,

$$
\text { i.e., } F \text { even } \leq \text { even }
$$

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules.
More precisely: We define even $=I_{F}$, where $F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool:
$F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$
Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
even is a pre-fixpoint of F,

$$
\text { i.e., } F \text { even } \leq \text { even }
$$

This means $\forall m . m=0 \vee(\exists n . m=n+2 \wedge$ even $n) \longrightarrow$ even m

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules.
More precisely: We define even $=I_{F}$, where $F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool: $F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$

Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
even is a pre-fixpoint of F,

$$
\text { i.e., } F \text { even } \leq \text { even }
$$

This means $\forall m . m=0 \vee(\exists n . m=n+2 \wedge$ even $n) \longrightarrow$ even m i.e., even 0 and $\forall n$. even $n \longrightarrow$ even $(n+2)$

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules.
More precisely: We define even $=I_{F}$, where
$F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool:
$F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$
Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
even is a pre-fixpoint of F,

$$
\text { i.e., } F \text { even } \leq \text { even }
$$

This means $\forall m$. $m=0 \vee(\exists n . m=n+2 \wedge$ even $n) \longrightarrow$ even m
i.e., even 0 and $\forall n$. even $n \longrightarrow$ even $(n+2)$ which simply means that the rules (Zero) and (Suc) are valid.

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:
$\frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
"Inductively" means: smallest predicate closed under the given rules.
More precisely: We define even $=I_{F}$, where
$F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool:
$F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$
Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
even is a pre-fixpoint of F,

$$
\text { i.e., } F \text { even } \leq \text { even }
$$

This means $\forall m . m=0 \vee(\exists n . m=n+2 \wedge$ even $n) \longrightarrow$ even m
i.e., even 0 and $\forall n$. even $n \longrightarrow$ even $(n+2)$ which simply means that the rules (Zero) and (Suc) are valid.
(Zero) and (Suc) are called introduction rules for even, because they allow to prove that even holds (for certain items).

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules. More precisely: We define even $=I_{F}$, where $F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool: $F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$

Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
even is a fixpoint of F, in particular a post-fixpoint,

$$
\text { i.e., even } \leq F \text { even. }
$$

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules.
More precisely: We define even $=I_{F}$, where $F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool: $F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$

Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
even is a fixpoint of F, in particular a post-fixpoint,

$$
\text { i.e., even } \leq F \text { even. }
$$

This means $\forall m$. even $m \longrightarrow m=0 \vee(\exists n . m=n+2 \wedge$ even $n)$

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules.
More precisely: We define even $=I_{F}$, where
$F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool:
$F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$
Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
even is a fixpoint of F, in particular a post-fixpoint,

$$
\text { i.e., even } \leq F \text { even. }
$$

This means $\forall m$. even $m \longrightarrow m=0 \vee(\exists n . m=n+2 \wedge$ even $n)$
i.e., whenever even m holds, it must have been obtained by one of the rules (Zero) and (Suc)

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:
$\frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
"Inductively" means: smallest predicate closed under the given rules.
More precisely: We define even $=I_{F}$, where
$F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool:
$F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$
Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
even is a fixpoint of F, in particular a post-fixpoint,

$$
\text { i.e., even } \leq F \text { even. }
$$

This means $\forall m$. even $m \longrightarrow m=0 \vee(\exists n . m=n+2 \wedge$ even $n)$
i.e., whenever even m holds, it must have been obtained by one of the rules (Zero) and (Suc)
... leading to the following case distinction (elimination) rule for even:

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules.
More precisely: We define even $=I_{F}$, where $F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool: $F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$

Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
even is the least among the pre-fixpoints of F, i.e., for all $P: \mathbb{N} \rightarrow$ Bool, $F P \leq P$ implies even $\leq P$

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

"Inductively" means: smallest predicate closed under the given rules.
More precisely: We define even $=I_{F}$, where
$F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool:
$F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$
Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.
even is the least among the pre-fixpoints of F, i.e., for all $P: \mathbb{N} \rightarrow$ Bool, $F P \leq P$ implies even $\leq P$

This means that even $\leq P$ for all predicates P that are closed under the rules (Zero), (Suc) (i.e., $P 0$ holds, and $P n$ implies $P(n+2)$ for all n)

Making sense of the inductive specification of even

The predicate even : $\mathbb{N} \rightarrow$ Bool specified inductively by the following rules:
$\frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
"Inductively" means: smallest predicate closed under the given rules.
More precisely: We define even $=I_{F}$, where
$F:(\mathbb{N} \rightarrow$ Bool $) \rightarrow(\mathbb{N} \rightarrow$ Bool $)$ is defined as follows, for all $P: \mathbb{N} \rightarrow$ Bool:
$F P=\lambda m . m=0 \vee(\exists n . m=n+2 \wedge P n)$
Thus, $F P$ essentially applies the rules to P, i.e., $F P$ holds for exactly those items m that are produced by applying the rules to items for which P holds.

> even is the least among the pre-fixpoints of F, i.e., for all $P: \mathbb{N} \rightarrow$ Bool, $F P \leq P$ implies even $\leq P$

This means that even $\leq P$ for all predicates P that are closed under the rules (Zero), (Suc) (i.e., $P 0$ holds, and $P n$ implies $P(n+2)$ for all n)
... leading to the following induction rule for even:

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$
(Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$
(Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\stackrel{.}{\text { even } 0}$
(Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition:

Thanks to	... we obtain
even being a pre-fixpoint of F	the introduction rules (Zero), (Suc)

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\stackrel{.}{\text { even } 0}$
(Zero)

$$
\frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition:

Thanks to	... we obtain
even being a pre-fixpoint of F	the introduction rules (Zero), (Suc)
even being a post-fixpoint of F	the case distinction rule (Cases)

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P) ... and inferring various rules from this definition:

Thanks to	\ldots we obtain
even being a pre-fixpoint of F	the introduction rules (Zero), (Suc)
even being a post-fixpoint of F	the case distinction rule (Cases)
even being \leq all pre-fixpoints of F	the induction rule (Induct)

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P) ... and inferring various rules from this definition:

Thanks to	\ldots we obtain
even being a pre-fixpoint of F	the introduction rules (Zero), (Suc)
even being a post-fixpoint of F	the case distinction rule (Cases)
even being \leq all pre-fixpoints of F	the induction rule (Induct)

even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases)

$$
\begin{array}{ccc}
\text { even } m & P 0 \quad \forall n . P n \longrightarrow P(n+2) \\
P m & \text { (Induct) }
\end{array}
$$

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as

$$
\frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P) ... and inferring various rules from this definition:

Thanks to	... we obtain
even being a pre-fixpoint of F	the introduction rules (Zero), (Suc)
even being a post-fixpoint of F	the case distinction rule (Cases)
even being s all pre-fixpoints of F	the induction rule (Induct)

$$
\overline{P m}
$$

even is also the least (pre-)fixpoint of
$G=\lambda P . F($ even $\wedge P)=\lambda P . F(\lambda n$. even $n \wedge P n)$

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$ (Zero)

$$
\frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$ (Zero)

$$
\frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.
Remember the operator for even:

$$
F P=\lambda m \cdot m=0 \vee(\exists n \cdot m=n+2 \wedge P n)
$$

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$ (Zero)

$$
\frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.
Remember the operator for even:

$$
F P=\lambda m \cdot m=0 \vee(\exists n \cdot m=n+2 \wedge P n)
$$

It is trivially monotonic!

$$
\begin{gathered}
P \leq Q \\
\text { immediately implies } \\
\mathrm{F} P \leq F Q
\end{gathered}
$$

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$ (Zero)

$$
\frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.
Remember the operator for even:

$$
F P=\lambda m \cdot m=0 \vee(\exists n \cdot m=n+2 \wedge P n)
$$

It is trivially monotonic!

$$
\begin{aligned}
& \forall m . P m \longrightarrow Q m \\
& \text { immediately implies } \\
& \quad \mathrm{F} P \leq F Q
\end{aligned}
$$

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$ (Zero)

$$
\frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.
Remember the operator for even:

$$
F P=\lambda m \cdot m=0 \vee(\exists n \cdot m=n+2 \wedge P n)
$$

It is trivially monotonic!

$$
\begin{gathered}
\forall m . P m \longrightarrow Q m \\
\text { immediately implies } \\
\forall m . F P m \longrightarrow F Q m
\end{gathered}
$$

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as

$$
\frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.
Remember the operator for even:

$$
F P=\lambda m \cdot m=0 \vee(\exists n \cdot m=n+2 \wedge P n)
$$

It is trivially monotonic!

$$
\forall m . P m \longrightarrow Q m
$$

immediately implies
$\forall m . m=0 \vee(\exists n . m=n+2 \wedge P n) \longrightarrow m=0 \vee(\exists n . m=n+2 \wedge Q n)$

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\overline{\text { even } 0}$ (Zero)

$$
\frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.
Remember the operator for even:

$$
F P=\lambda m \cdot m=0 \vee(\exists n \cdot m=n+2 \wedge P n)
$$

It is trivially monotonic!

$$
\begin{gathered}
\forall m . P m \longrightarrow Q m \\
\text { immediately implies } \\
\forall m \cdot(\exists n \cdot m=n+2 \wedge P n) \longrightarrow(\exists n \cdot m=n+2 \wedge Q n)
\end{gathered}
$$

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$ (Zero) How about... $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as $\frac{\cdot}{\text { even } 0}$ (Zero) How about... $\frac{\text { even }(n+2)}{\text { even } n}$ (Suc)
... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as $\frac{\cdot}{\text { even } 0}$ (Zero) How about... $\frac{\text { even }(n+2)}{\text { even } n}$ (Suc)
... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$ (Zero) How about... $\quad \forall m<n-2$. even m (Suc)
... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$ (Zero) How about... $\frac{\forall m<n-2 \text {. even } m}{\text { even } n}$ (Suc)
... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$ (Zero) How about... $\quad \frac{\forall m<n-2 . \exists k \geq m \text {. even } k}{\text { even } n}$ (Suc)
... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
$\frac{\cdot}{\text { even } 0}$ (Zero) How about... $\frac{\forall m<n-2 . \exists k \geq m \text {. even } k}{\text { even } n}$ (Suc)
... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.

If the rule hypotheses follow a "positive logic" $(\exists, \forall, \wedge, \vee)$, then F is monotonic.

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
\qquad (Zero) How about...

... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.

Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as $\frac{\cdot}{\text { even } 0}$ (Zero) How about... $\frac{\text { even } n \longrightarrow \text { even }(n+1)}{\text { even }(n+2)}$ (Suc) \mathbf{x}
... by defining even as the least (pre-)fixpoint I_{F} of a monotonic operator F on predicates, where F is defined from the rules ($F P$ is the predicate obtained from applying the rules to the items satisfying P)
... and inferring various rules from this definition.

If the rule hypotheses follow a "positive logic" $(\exists, \forall, \wedge, \vee)$, then F is monotonic.

Applying the recipe to the inductive specification of subl
The relation subl: $\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow$ Bool specified inductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl } a s ~ a s^{\prime}}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as as } s^{\prime}}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

Applying the recipe to the inductive specification of subl

The relation subl: $\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow$ Bool specified inductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as as' }}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as as } s^{\prime}}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

"Inductively" means: smallest relation closed under the given rules.

Applying the recipe to the inductive specification of subl

The relation subl: $\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow$ Bool specified inductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as } a s^{\prime}}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as as }{ }^{\prime}}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

"Inductively" means: smallest relation closed under the given rules. More precisely: We define subl $=\mathrm{I}_{F}$, where $F:(\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow \operatorname{Bool}) \rightarrow(\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow \operatorname{Bool})$ is defined as follows, for all $R: \operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow \operatorname{Bool}:$

Applying the recipe to the inductive specification of subl

The relation subl: $\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow$ Bool specified inductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as } a s^{\prime}}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as as }}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

"Inductively" means: smallest relation closed under the given rules. More precisely: We define subl $=\mathrm{I}_{F}$, where $F:(\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow$ Bool $) \rightarrow(\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow$ Bool $)$ is defined as follows, for all $R: \operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow \operatorname{Bool}:$
$F R=\lambda b s, b s^{\prime} . \exists a s . b s=[] \wedge b s^{\prime}=a s$

$$
\begin{aligned}
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge R \text { as } a s^{\prime} \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge R \text { as } a s^{\prime}
\end{aligned}
$$

Applying the recipe to the inductive specification of subl

The relation subl: $\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow$ Bool specified inductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as as' }}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as as }}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

"Inductively" means: smallest relation closed under the given rules. More precisely: We define subl $=\mathrm{I}_{F}$, where $F:(\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow$ Bool $) \rightarrow(\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow$ Bool $)$ is defined as follows, for all $R: \operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow \operatorname{Bool}:$
$F R=\lambda b s, b s^{\prime} . \exists a s . b s=[] \wedge b s^{\prime}=a s$

$$
\begin{aligned}
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge R a s a s^{\prime} \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge R a s a s^{\prime}
\end{aligned}
$$

Again, F is monotonic, so I_{F} exists by Knaster-Tarski.

Applying the recipe to the inductive specification of subl

Thanks to	... we obtain
subl being a pre-fixpoint of F	the introduction rules (Nil), (ConsR), (Cons)
subl being a post-fixpoint of F	the case distinction rule (Cases)
subl being \leq all pre-fixpoints of F	the induction rule (Induct)

Applying the recipe to the inductive specification of subl

Thanks to	\ldots we obtain
subl being a pre-fixpoint of F	the introduction rules (Nil), (ConsR), (Cons)
subl being a post-fixpoint of F	the case distinction rule (Cases)
subl being \leq all pre-fixpoints of F	the induction rule (Induct)

$$
\begin{gathered}
\frac{\cdot}{s u b l[] a s}(\mathrm{Nil}) \frac{\text { subl as } a s^{\prime}}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as } a s^{\prime}}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

Applying the recipe to the inductive specification of subl

Thanks to	... we obtain
subl being a pre-fixpoint of F	the introduction rules (Nil), (ConsR), (Cons)
subl being a post-fixpoint of F	the case distinction rule (Cases)
subl being \leq all pre-fixpoints of F	the induction rule (Induct)

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as } a s^{\prime}}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as } a s^{\prime}}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

$$
\begin{align*}
& \text { subl bs bs }{ }^{\prime} \quad \forall a s . b s=[] \wedge b s^{\prime}=a s \longrightarrow P \\
& \forall a s, a s^{\prime}, a . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subl as as } s^{\prime} \longrightarrow P b s b s^{\prime} \\
& \forall a s, a s^{\prime}, a . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subl as as } \longrightarrow P \text { bs bs }{ }^{\prime} \\
& P \text { bs bs }{ }^{\prime} \tag{Cases}
\end{align*}
$$

Applying the recipe to the inductive specification of subl

Thanks to	... we obtain
subl being a pre-fixpoint of F	the introduction rules (Nil), (ConsR), (Cons)
subl being a post-fixpoint of F	the case distinction rule (Cases)
subl being \leq all pre-fixpoints of F	the induction rule (Induct)

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as } a s^{\prime}}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as } a s^{\prime}}{\text { subl }(\text { a\#as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

Applying the recipe to the inductive specification of subl

Thanks to	... we obtain
subl being a pre-fixpoint of F	the introduction rules (Nil), (ConsR), (Cons)
subl being a post-fixpoint of F	the case distinction rule (Cases)
subl being s all pre-fixpoints of F	the induction rule (Induct)

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as as } s^{\prime}}{\text { subl as }\left(\text { a\# as }{ }^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as as }}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

subl is also the least (pre-)fixpoint of
$G=\lambda P . F(s u b l \wedge P)=\lambda P . F\left(\lambda a s, a s^{\prime}\right.$. subl as as $s^{\prime} \wedge P$ as as $\left.s^{\prime}\right)$.

Summary of the semantic approach to inductive definitions

We specify an inductive predicate/relation P by indicating rules involving P

Summary of the semantic approach to inductive definitions

We specify an inductive predicate/relation P by indicating rules involving P - this is not yet a definition!

Summary of the semantic approach to inductive definitions

We specify an inductive predicate/relation P by indicating rules involving P - this is not yet a definition!

We turn the specification into an actual (non-inductive!) definition by:

- extracting an operator F on predicates/relations from these rules
- showing that F is monotonic - which is trivial if the rules' premises have a "positive logic" format
- defining P as \mathbf{I}_{F}, the least (pre-)fixpoint of F

Summary of the semantic approach to inductive definitions

We specify an inductive predicate/relation P by indicating rules involving P - this is not yet a definition!

We turn the specification into an actual (non-inductive!) definition by:

- extracting an operator F on predicates/relations from these rules
- showing that F is monotonic - which is trivial if the rules' premises have a "positive logic" format
- defining P as I_{F}, the least (pre-)fixpoint of F

Finally, from the definition of P as least (pre-)fixpoint, we infer:

- introduction rules - which coincide with the originally specified rules
- a case distinction rule
- an induction rule

The Isabelle/HOL implementation of the approach

We, the users, specify an inductive predicate/relation P by indicating rules involving P - this is not yet a definition!

She turns the specification into an actual (non-inductive!) definition by:

- extracting an operator F on predicates/relations from these rules
- showing that F is monotonic - which is trivial if the rules' premises have a "positive logic" format
- defining P as I_{F}, the least (pre-)fixpoint of F

Finally, from the definition of P as least (pre-)fixpoint, she infers:

- introduction rules - which coincide with the originally specified rules
- a case distinction rule
- an induction rule

> Isabelle automates this approach.

The Isabelle/HOL implementation of the approach

We, the users, specify an inductive predicate/relation P by indicating rules involving P - this is not yet a definition!

She turns the specification into an actual (non-inductive!) definition by:

- extracting an operator F on predicates/relations from these rules
- showing that F is monotonic - which is trivial if the rules' premises have a "positive logic" format; if F is not obviously monotonic and Isabelle fails to prove this, users can help by providing "hints"
- defining P as I_{F}, the least (pre-)fixpoint of F

Finally, from the definition of P as least (pre-)fixpoint, she infers:

- introduction rules - which coincide with the originally specified rules
- a case distinction rule
- an induction rule
Isabelle automates this approach.

Exercises

1. For the predicate even:
(i) Infer the case distinction rule for the predicate from the introduction rules and the induction rule.
(ii) Show that the introduction and induction rules determine the predicate uniquely, i.e., there is only one predicate satisfying them.
2. Let (A, \leq) be a partially ordered set and $F: A \rightarrow A$ a monotonic function. Show that, if it exists, then the least pre-fixpoint of F is also a post-fixpoint of F.
3. What is the connection between points 1 (i) and 2 above?
4. Show that the previously mentioned "optimization" of induction is correct: If (A, \leq) is a complete lattice and $F: A \rightarrow A$ a monotonic function, then I_{F} (the smallest (pre-)fixpoint of F) is also the smallest pre-fixpoint of the operator $G=\lambda a . F\left(I_{F} \wedge a\right)$.
5. Dualize points (2)-(4) above into statements about greatest (post-)fixpoints.

Reasoning about inductive predicates

Reasoning about inductive predicates

We'll use the inductive predicate even : $\mathbb{N} \rightarrow$ Bool as running example, but the ideas apply generally.

Proving that an inductive predicate holds

Introduction rules: $\frac{\cdot}{\text { even } 0}$ (Zero) $\quad \frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
Case distinction rule:
even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases)
Induction rule:

Why does even 4 hold?

Proving that an inductive predicate holds

Introduction rules: $\frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
Case distinction rule:
even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases)
Induction rule:

$$
\frac{\text { even } m \quad P 0 \quad \forall n . \text { even } n \wedge P n \longrightarrow P(n+2)}{P m} \text { (Induct) }
$$

Why does even 4 hold? Reason "backwards" using the introduction rules:

Proving that an inductive predicate holds

Introduction rules: $\frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
Case distinction rule:
even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases)
Induction rule:

Why does even 4 hold? Reason "backwards" using the introduction rules:

- We must prove even 4.

Proving that an inductive predicate holds

Introduction rules: $\frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
Case distinction rule:
even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases)
Induction rule:

Why does even 4 hold? Reason "backwards" using the introduction rules:

- We must prove even 4.
- Applying rule (Suc), suffices to prove even 2.

Proving that an inductive predicate holds

Introduction rules: $\frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
Case distinction rule:
even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases)
Induction rule:

Why does even 4 hold? Reason "backwards" using the introduction rules:

- We must prove even 4.
- Applying rule (Suc), suffices to prove even 2.
- Applying again rule (Suc), suffices to prove even 0.

Proving that an inductive predicate holds

Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\quad \frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
Case distinction rule:
even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases)
Induction rule:

Why does even 4 hold? Reason "backwards" using the introduction rules:

- We must prove even 4.
- Applying rule (Suc), suffices to prove even 2.
- Applying again rule (Suc), suffices to prove even 0 .
- And the last holds by rule (Zero).

Using the assumption that an inductive predicate holds

$$
\begin{aligned}
& \begin{array}{c}
\text { Introduction rules: }
\end{array} \begin{array}{c}
\frac{\cdot}{\text { even } 0} \text { (Zero) } \\
\text { Case distinction rule: }
\end{array} \begin{array}{c}
\frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) } \\
\begin{array}{c}
\text { even } m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge \text { even } n \longrightarrow P \\
\text { Induction rule: } \\
\text { even } m \quad P 0 \quad \forall n . \text { even } n \wedge P n \longrightarrow P(n+2) \\
P m
\end{array} \text { (Induct) }
\end{array}
\end{aligned}
$$

Why does \neg even 3 hold?

Using the assumption that an inductive predicate holds

$$
\begin{aligned}
& \text { Introduction rules: } \frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) } \\
& \text { Case distinction rule: } \\
& \begin{array}{c}
\text { even } m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge \text { even } n \longrightarrow P \\
P
\end{array} \text { (Cases) } \\
& \text { Induction rule: } \\
& \frac{\text { even } m \quad P 0 \quad \forall n \text {. even } n \wedge P n \longrightarrow P(n+2)}{P m} \text { (Induct) }
\end{aligned}
$$

Why does \neg even 3 hold? Rephrase the statement as even $3 \longrightarrow \perp$ and again reason backwards.

Using the assumption that an inductive predicate holds: case distinction

Why does \neg even 3 hold? Rephrase the statement as even $3 \longrightarrow \perp$ and again reason backwards.

- Apply the case rule for $m=3$ and $P=\perp$, reducing our goal to:

Using the assumption that an inductive predicate holds: case distinction

$$
\begin{aligned}
& \text { Introduction rules: } \frac{\cdot}{\text { even } 0} \text { (Zero) } \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) } \\
& \frac{\text { even } m \quad P 0 \quad \forall n \text {. even } n \wedge P n \longrightarrow P(n+2)}{P m} \text { (Induct) }
\end{aligned}
$$

Why does \neg even 3 hold? Rephrase the statement as even $3 \longrightarrow \perp$ and again reason backwards.

- Apply the case rule for $m=3$ and $P=\perp$, reducing our goal to:
$-3=0 \longrightarrow \perp$, which is trivially true;

Using the assumption that an inductive predicate holds: case distinction

$$
\begin{aligned}
& \text { Introduction rules: } \frac{\cdot}{\text { even } 0} \text { (Zero) } \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) } \\
& \text { Induction rule: } \\
& \begin{array}{cc}
\text { even } m \quad P 0 \quad \forall n . \text { even } n \wedge P n \longrightarrow P(n+2) \\
P m & \text { (Induct) }
\end{array}
\end{aligned}
$$

Why does \neg even 3 hold? Rephrase the statement as even $3 \longrightarrow \perp$ and again reason backwards.

- Apply the case rule for $m=3$ and $P=\perp$, reducing our goal to:
$-3=0 \longrightarrow \perp$, which is trivially true;
$-\forall n .3=n+2 \wedge$ even $n \longrightarrow \perp$, which means even $1 \longrightarrow \perp$.

Using the assumption that an inductive predicate holds: case distinction

Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\quad \frac{\text { even } n}{\text { even }(n+2)}$ (Suc)

Case distinction rule:

even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases) Induction rule:

$$
\frac{\text { even } m \quad P 0 \quad \forall n . \text { even } n \wedge P n \longrightarrow P(n+2)}{P m} \text { (Induct) }
$$

Why does \neg even 3 hold? Rephrase the statement as even $3 \longrightarrow \perp$ and again reason backwards.

- Apply the case rule for $m=3$ and $P=\perp$, reducing our goal to:
$-3=0 \longrightarrow \perp$, which is trivially true;
- $\forall n .3=n+2 \wedge$ even $n \longrightarrow \perp$, which means even $1 \longrightarrow \perp$.
- Apply the case rule for $m=1$ and $P=\perp$, reducing our goal to:

Using the assumption that an inductive predicate holds: case distinction

Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\quad \frac{\text { even } n}{\text { even }(n+2)}$ (Suc)

Case distinction rule:

even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases) Induction rule:

$$
\frac{\text { even } m \quad P 0 \quad \forall n . \text { even } n \wedge P n \longrightarrow P(n+2)}{P m} \text { (Induct) }
$$

Why does \neg even 3 hold? Rephrase the statement as even $3 \longrightarrow \perp$ and again reason backwards.

- Apply the case rule for $m=3$ and $P=\perp$, reducing our goal to:
$-3=0 \longrightarrow \perp$, which is trivially true;
- $\forall n .3=n+2 \wedge$ even $n \longrightarrow \perp$, which means even $1 \longrightarrow \perp$.
- Apply the case rule for $m=1$ and $P=\perp$, reducing our goal to:
- $1=0 \longrightarrow \perp$, which is trivially true;

Using the assumption that an inductive predicate holds: case distinction

Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)

Case distinction rule:

even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases)

Induction rule:

$$
\frac{\text { even } m \quad P 0 \quad \forall n . \text { even } n \wedge P n \longrightarrow P(n+2)}{P m} \text { (Induct) }
$$

Why does \neg even 3 hold? Rephrase the statement as even $3 \longrightarrow \perp$ and again reason backwards.

- Apply the case rule for $m=3$ and $P=\perp$, reducing our goal to:
- $3=0 \longrightarrow \perp$, which is trivially true;
- $\forall n .3=n+2 \wedge$ even $n \longrightarrow \perp$, which means even $1 \longrightarrow \perp$.
- Apply the case rule for $m=1$ and $P=\perp$, reducing our goal to:
- $1=0 \longrightarrow \perp$, which is trivially true;
$— \forall n .1=n+2 \wedge$ even $n \longrightarrow \perp$, which is trivially true.

A closer look at a case distinction step

- What to prove even $3 \longrightarrow 1$.
- Apply the case rule for $m=3$ and $P=\perp$, reducing our goal to:
$-3=0 \longrightarrow \perp$
$— \forall n .3=n+2 \wedge$ even $n \longrightarrow \perp$

A closer look at a case distinction step

even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases)

- What to prove even $3 \longrightarrow \perp$.
- Apply the case rule for $m=3$ and $P=\perp$, reducing our goal to:
$-3=0 \longrightarrow \perp$
$-\forall n .3=n+2 \wedge$ even $n \longrightarrow \perp$
We match major premise and conclusion against what we need to prove

A closer look at a case distinction step

even $m \quad m=0 \longrightarrow P \quad \forall n . m=n+2 \wedge$ even $n \longrightarrow P$
P (Cases)

- What to prove even $3 \longrightarrow \perp$.
- Apply the case rule for $m=3$ and $P=\perp$, reducing our goal to:
$-3=0 \longrightarrow \perp$
$-\forall n .3=n+2 \wedge$ even $n \longrightarrow \perp$
We match major premise and conclusion against what we need to prove
... which gives us the instantiation

A closer look at a case distinction step

- What to prove even $3 \longrightarrow \perp$.
- Apply the case rule for $m=3$ and $P=\perp$, reducing our goal to:
$-3=0 \longrightarrow \perp$
$— \forall n .3=n+2 \wedge$ even $n \longrightarrow \perp$
We match major premise and conclusion against what we need to prove
... which gives us the instantiation
... and we are left to prove the instances of the other premises

A closer look at a case distinction step

- What to prove even $3 \longrightarrow \perp$.
- Apply the case rule for $m=3$ and $P=\perp$, reducing our goal to:
- $3=0 \longrightarrow \perp$
- $\forall n .3=n+2 \wedge$ even $n \longrightarrow \perp$

We match major premise and conclusion against what we need to prove
... which gives us the instantiation
... and we are left to prove the instances of the other premises

This is the elimination reasoning pattern.

Using the assumption that an inductive predicate holds

Introduction rules: $\frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)

Case distinction rule:

$$
\begin{array}{ccc|}
\text { even } m \quad & P 0 \quad \text { even } n \wedge P n \longrightarrow P(n+2) \\
P m & \text { (Induct) }
\end{array}
$$

Why does even capture the notion of even number?

Using the assumption that an inductive predicate holds
Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)

Case distinction rule:

Why does even capture the notion of even number?
Let's prove that even $m \longrightarrow \exists k . m=2 * k$, reasoning backwards.

Using the assumption that an inductive predicate holds: induction
Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
Case distinction rule:

$$
\begin{array}{ccc}
\text { even } m & P 0 & \forall n . \text { even } n \wedge P n \longrightarrow P(n+2) \\
P m & \text { (Induct) }
\end{array}
$$

Why does even capture the notion of even number?
Let's prove that even $m \longrightarrow \exists k . m=2 * k$, reasoning backwards.

- Apply the induction rule for $P=\lambda m . \exists k . m=2 * k$, reducing our goal to:

Using the assumption that an inductive predicate holds: induction
Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
Case distinction rule:

Why does even capture the notion of even number?
Let's prove that even $m \longrightarrow \exists k . m=2 * k$, reasoning backwards.

- Apply the induction rule for $P=\lambda m . \exists k . m=2 * k$, reducing our goal to:
$-\exists k .0=2 * k$

Using the assumption that an inductive predicate holds: induction
Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
Case distinction rule:

$$
\begin{array}{ccc|}
\text { even } m & P 0 & \forall n . \text { even } n \wedge P n \longrightarrow P(n+2) \\
P m & \text { (Induct) }
\end{array}
$$

Why does even capture the notion of even number?
Let's prove that even $m \longrightarrow \exists k . m=2 * k$, reasoning backwards.

- Apply the induction rule for $P=\lambda m . \exists k . m=2 * k$, reducing our goal to:
- $\exists k .0=2 * k$, which is true, taking $k=0$;

Using the assumption that an inductive predicate holds: induction
Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)
Case distinction rule:

$$
\begin{array}{ccc}
\text { even } m & P 0 & \forall n . \text { even } n \wedge P n \longrightarrow P(n+2) \\
P m & \text { (Induct) }
\end{array}
$$

Why does even capture the notion of even number?
Let's prove that even $m \longrightarrow \exists k . m=2 * k$, reasoning backwards.

- Apply the induction rule for $P=\lambda m . \exists k . m=2 * k$, reducing our goal to:
- $\exists k .0=2 * k$, which is true, taking $k=0$;
— $\forall n$. even $n \wedge(\exists k . n=2 * k) \longrightarrow(\exists k . n+2=2 * k)$

Using the assumption that an inductive predicate holds: induction
Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)

Case distinction rule:

Induction rule:

Why does even capture the notion of even number?
Let's prove that even $m \longrightarrow \exists k . m=2 * k$, reasoning backwards.

- Apply the induction rule for $P=\lambda m . \exists k . m=2 * k$, reducing our goal to:
- $\exists k .0=2 * k$, which is true, taking $k=0$;
— $\forall n$. even $n \wedge(\exists k . n=2 * k) \longrightarrow(\exists k . n+2=2 * k)$, which means $\forall n$, k. even $n \wedge n=2 * k \longrightarrow\left(\exists k^{\prime} . n+2=2 * k^{\prime}\right)$

Using the assumption that an inductive predicate holds: induction
Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)

Case distinction rule:

Induction rule:

Why does even capture the notion of even number?
Let's prove that even $m \longrightarrow \exists k . m=2 * k$, reasoning backwards.

- Apply the induction rule for $P=\lambda m . \exists k . m=2 * k$, reducing our goal to:
- $\exists k .0=2 * k$, which is true, taking $k=0$;
— $\forall n$. even $n \wedge(\exists k . n=2 * k) \longrightarrow(\exists k . n+2=2 * k)$, which means $\forall n$, k. even $n \wedge n=2 * k \longrightarrow\left(\exists k^{\prime} . n+2=2 * k^{\prime}\right)$, which is true, taking $k^{\prime}=k+1$.

Using the assumption that an inductive predicate holds: induction
Introduction rules: $\frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)

Case distinction rule:

Induction rule:

even $m \quad P 0$	$\forall n$. even $n \wedge P n \longrightarrow P(n+2)$
$P m$	(Induct)

Why does even capture the notion of even number?
Let's prove that even $m \longrightarrow \exists k . m=2 * k$, reasoning backwards.

- Apply the induction rule for $P=\lambda m . \exists k . m=2 * k$, reducing our goal to:
$-\exists k .0=2 * k$, which is true, taking $k=0$;
— $\forall n$. even $n \wedge(\exists k . n=2 * k) \longrightarrow(\exists k . n+2=2 * k)$, which means $\forall n, k$. even $n \wedge n=2 * k \longrightarrow\left(\exists k^{\prime} . n+2=2 * k^{\prime}\right)$, which is true, taking $k^{\prime}=k+1$.

Again, the elimination reasoning pattern.

Proving that an inductive predicate holds

$$
\text { Introduction rules: } \left.\quad \frac{\cdot}{\text { even } 0} \text { (Zero }\right) \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Why does even capture the notion of even number?
Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.

Proving that an inductive predicate holds

$$
\text { Introduction rules: } \quad \frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Why does even capture the notion of even number?

Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.
Let $Q=\lambda k . \forall m . m=2 * k \longrightarrow$ even m.
The proof of $Q k$ is by structural induction on $k \in \mathbb{N}$ (unrelated to even)

- $Q 0$ means $m=2 * 0 \longrightarrow$ even m, which means even 0 , which is true by (Zero).
$-Q k \longrightarrow Q(k+1)$ means $(\forall m . m=2 * k \longrightarrow$ even $m) \longrightarrow(\forall m . m=2 *(k+1) \longrightarrow$ even $m)$, which means
$\forall m^{\prime} .(\forall m . m=2 * k \longrightarrow$ even $m) \wedge m^{\prime}=2 *(k+1) \longrightarrow$ even m^{\prime}.
Fixing m^{\prime}, we have $m^{\prime}=2 * k+2$.
Taking $m=2 * k$, we have even m.
Applying (Suc), we obtain even $(m+2)$, i.e., even m^{\prime}.

Proving that an inductive predicate holds

$$
\text { Introduction rules: } \quad \frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Why does even capture the notion of even number?

Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.
Let $Q=\lambda k . \forall m . m=2 * k \longrightarrow$ even m.
The proof of $Q k$ is by structural induction on $k \in \mathbb{N}$ (unrelated to even)

- $Q 0$ means $m=2 * 0 \longrightarrow$ even m, which means even 0 , which is true by (Zero).
$-Q k \longrightarrow Q(k+1)$ means $(\forall m . m=2 * k \longrightarrow$ even $m) \longrightarrow(\forall m . m=2 *(k+1) \longrightarrow$ even $m)$, which means
$\forall m^{\prime} .(\forall m . m=2 * k \longrightarrow$ even $m) \wedge m^{\prime}=2 *(k+1) \longrightarrow$ even m^{\prime}.
Fixing m^{\prime}, we have $m^{\prime}=2 * k+2$.
Taking $m=2 * k$, we have even m.
Applying (Suc), we obtain even $(m+2)$, i.e., even m^{\prime}.

Proving that an inductive predicate holds

$$
\text { Introduction rules: } \quad \frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Why does even capture the notion of even number?

Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.
Let $Q=\lambda k . \forall m . m=2 * k \longrightarrow$ even m.
The proof of $Q k$ is by structural induction on $k \in \mathbb{N}$ (unrelated to even)

- $Q 0$ means $m=2 * 0 \longrightarrow$ even m, which means even 0 , which is true by (Zero).
$-Q k \longrightarrow Q(k+1)$ means $(\forall m . m=2 * k \longrightarrow$ even $m) \longrightarrow(\forall m . m=2 *(k+1) \longrightarrow$ even $m)$, which means
$\forall m^{\prime} .(\forall m . m=2 * k \longrightarrow$ even $m) \wedge m^{\prime}=2 *(k+1) \longrightarrow$ even m^{\prime}.
Fixing m^{\prime}, we have $m^{\prime}=2 * k+2$.
Taking $m=2 * k$, we have even m.
Applying (Suc), we obtain even $(m+2)$, i.e., even m^{\prime}.

Proving that an inductive predicate holds

$$
\text { Introduction rules: } \quad \frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Why does even capture the notion of even number?

Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.
Let $Q=\lambda k . \forall m . m=2 * k \longrightarrow$ even m.
The proof of $Q k$ is by structural induction on $k \in \mathbb{N}$ (unrelated to even)

- $Q 0$ means $m=2 * 0 \longrightarrow$ even m, which means even 0 , which is true by (Zero).
$-Q k \longrightarrow Q(k+1)$ means $(\forall m . m=2 * k \longrightarrow$ even $m) \longrightarrow(\forall m . m=2 *(k+1) \longrightarrow$ even $m)$, which means
$\forall m^{\prime} .(\forall m . m=2 * k \longrightarrow$ even $m) \wedge m^{\prime}=2 *(k+1) \longrightarrow$ even m^{\prime}.
Fixing m^{\prime}, we have $m^{\prime}=2 * k+2$.
Taking $m=2 * k$, we have even m.
Applying (Suc), we obtain even $(m+2)$, i.e., even m^{\prime}.

Proving that an inductive predicate holds

$$
\text { Introduction rules: } \quad \frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Why does even capture the notion of even number?

Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.
Let $Q=\lambda k . \forall m . m=2 * k \longrightarrow$ even m.
The proof of $Q k$ is by structural induction on $k \in \mathbb{N}$ (unrelated to even)

- $Q 0$ means $m=2 * 0 \longrightarrow$ even m, which means even 0 , which is true by (Zero).
$-Q k \longrightarrow Q(k+1)$ means $(\forall m . m=2 * k \longrightarrow$ even $m) \longrightarrow(\forall m . m=2 *(k+1) \longrightarrow$ even $m)$, which means
$\forall m^{\prime} .(\forall m . m=2 * k \longrightarrow$ even $m) \wedge m^{\prime}=2 *(k+1) \longrightarrow$ even m^{\prime}.
Fixing m^{\prime}, we have $m^{\prime}=2 * k+2$.
Taking $m=2 * k$, we have even m.
Applying (Suc), we obtain even $(m+2)$, i.e., even m^{\prime}.

Proving that an inductive predicate holds

Introduction rules: $\frac{\cdot}{\text { even } 0}$ (Zero) $\frac{\text { even } n}{\text { even }(n+2)}$ (Suc)

Why does even capture the notion of even number?

Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.
Let $Q=\lambda k . \forall m . m=2 * k \longrightarrow$ even m.
The proof of $Q k$ is by structural induction on $k \in \mathbb{N}$ (unrelated to even)

- $Q 0$ means $m=2 * 0 \longrightarrow$ even m, which means even 0 , which is true by (Zero).
$-Q k \longrightarrow Q(k+1)$ means $(\forall m . m=2 * k \longrightarrow$ even $m) \longrightarrow(\forall m \cdot m=2 *(k+1) \longrightarrow$ even $m)$, which means
$\forall m^{\prime} .(\forall m . m=2 * k \longrightarrow$ even $m) \wedge m^{\prime}=2 *(k+1) \longrightarrow$ even m^{\prime}.
Fixing m^{\prime}, we have $m^{\prime}=2 * k+2$.
Taking $m=2 * k$, we have even m.
Applying (Suc), we obtain even $(m+2)$, i.e., even m^{\prime}.

Proving that an inductive predicate holds

$$
\text { Introduction rules: } \quad \frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Why does even capture the notion of even number?

Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.
Let $Q=\lambda k . \forall m . m=2 * k \longrightarrow$ even m.
The proof of $Q k$ is by structural induction on $k \in \mathbb{N}$ (unrelated to even)

- $Q 0$ means $m=2 * 0 \longrightarrow$ even m, which means even 0 , which is true by (Zero).
$-Q k \longrightarrow Q(k+1)$ means $(\forall m . m=2 * k \longrightarrow$ even $m) \longrightarrow(\forall m . m=2 *(k+1) \longrightarrow$ even $m)$, which means
$\forall m^{\prime} .(\forall m . m=2 * k \longrightarrow$ even $m) \wedge m^{\prime}=2 *(k+1) \longrightarrow$ even m^{\prime}.
Fixing m^{\prime}, we have $m^{\prime}=2 * k+2$.
Taking $m=2 * k$, we have even m.
Applying (Suc), we obtain even $(m+2)$, i.e., even m^{\prime}.

Proving that an inductive predicate holds

$$
\text { Introduction rules: } \quad \frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Why does even capture the notion of even number?

Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.
Let $Q=\lambda k . \forall m . m=2 * k \longrightarrow$ even m.
The proof of $Q k$ is by structural induction on $k \in \mathbb{N}$ (unrelated to even)

- $Q 0$ means $m=2 * 0 \longrightarrow$ even m, which means even 0 , which is true by (Zero).
$-Q k \longrightarrow Q(k+1)$ means $(\forall m . m=2 * k \longrightarrow$ even $m) \longrightarrow(\forall m . m=2 *(k+1) \longrightarrow$ even $m)$, which means
$\forall m^{\prime} .(\forall m . m=2 * k \longrightarrow$ even $m) \wedge m^{\prime}=2 *(k+1) \longrightarrow$ even m^{\prime}.
Fixing m^{\prime}, we have $m^{\prime}=2 * k+2$.
Taking $m=2 * k$, we have even m.
Applying (Suc), we obtain even $(m+2)$, i.e., even m^{\prime}.

Proving that an inductive predicate holds

$$
\text { Introduction rules: } \quad \frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Why does even capture the notion of even number?

Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.
Let $Q=\lambda k . \forall m . m=2 * k \longrightarrow$ even m.
The proof of $Q k$ is by structural induction on $k \in \mathbb{N}$ (unrelated to even)

- $Q 0$ means $m=2 * 0 \longrightarrow$ even m, which means even 0 , which is true by (Zero).
$-Q k \longrightarrow Q(k+1)$ means $(\forall m . m=2 * k \longrightarrow$ even $m) \longrightarrow(\forall m . m=2 *(k+1) \longrightarrow$ even $m)$, which means
$\forall m^{\prime} .(\forall m . m=2 * k \longrightarrow$ even $m) \wedge m^{\prime}=2 *(k+1) \longrightarrow$ even m^{\prime}.
Fixing m^{\prime}, we have $m^{\prime}=2 * k+2$.
Taking $m=2 * k$, we have even m.
Applying (Suc), we obtain even $(m+2)$, i.e., even m^{\prime}.

Proving that an inductive predicate holds

$$
\text { Introduction rules: } \quad \frac{\cdot}{\text { even } 0} \text { (Zero) } \quad \frac{\text { even } n}{\text { even }(n+2)} \text { (Suc) }
$$

Why does even capture the notion of even number?

Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.
Let $Q=\lambda k . \forall m . m=2 * k \longrightarrow$ even m.
The proof of $Q k$ is by structural induction on $k \in \mathbb{N}$ (unrelated to even)

- $Q 0$ means $m=2 * 0 \longrightarrow$ even m, which means even 0 , which is true by (Zero).
$-Q k \longrightarrow Q(k+1)$ means $(\forall m . m=2 * k \longrightarrow$ even $m) \longrightarrow(\forall m . m=2 *(k+1) \longrightarrow$ even $m)$, which means
$\forall m^{\prime} .(\forall m . m=2 * k \longrightarrow$ even $m) \wedge m^{\prime}=2 *(k+1) \longrightarrow$ even m^{\prime}.
Fixing m^{\prime}, we have $m^{\prime}=2 * k+2$.
Taking $m=2 * k$, we have even m.
Applying (Suc), we obtain even $(m+2)$, i.e., even m^{\prime}.

Proving that an inductive predicate holds

Introduction rules: $\quad \frac{\cdot}{\text { even } 0}$ (Zero) $\quad \frac{\text { even } n}{\text { even }(n+2)}$ (Suc)

Why does even capture the notion of even number?

Let's now prove the converse implication, $(\exists k . m=2 * k) \longrightarrow$ even m. which means $\forall k . m=2 * k \longrightarrow$ even m.
Let $Q=\lambda k . \forall m . m=2 * k \longrightarrow$ even m.
The proof of $Q k$ is by structural induction on $k \in \mathbb{N}$ (unrelated to even)

- $Q 0$ means $m=2 * 0 \longrightarrow$ even m, which means even 0 , which is true by (Zero).
$-Q k \longrightarrow Q(k+1)$ means $(\forall m . m=2 * k \longrightarrow$ even $m) \longrightarrow(\forall m \cdot m=2 *(k+1) \longrightarrow$ even $m)$, which means
$\forall m^{\prime} .(\forall m . m=2 * k \longrightarrow$ even $m) \wedge m^{\prime}=2 *(k+1) \longrightarrow$ even m^{\prime}.
Fixing m^{\prime}, we have $m^{\prime}=2 * k+2$.
Taking $m=2 * k$, we have even m.
Applying (Suc), we obtain even $(m+2)$, i.e., even m^{\prime}.

Summary on reasoning about inductive predicates

An inductive predicate has introduction rules, a case distinction rule and an induction rule.

We use the introduction rules to prove that an inductive predicate holds. Examples:

- even 4
- $(\exists k . m=2 * k) \longrightarrow$ even m

We use the case distinction rule and the induction rule following the elimination reasoning pattern to prove something under the assumption that an inductive predicate holds. Examples:

- \neg even 3 , i.e., even $3 \longrightarrow \perp$
- even $m \longrightarrow(\exists k . m=2 * k)$

Exercises

1. Consider the inductive predicate subl we defined before. Show the following:

- $\operatorname{subl}[a, c][a, b, c]$
- \neg subl $[a, b, c][a, c]$
- subl as as \longrightarrow set $a s \subseteq$ set $a s^{\prime}$, where the operator set : $\operatorname{List}(A) \rightarrow \mathcal{P}(A)$ gives all the elements appearing in a list.

2. Assume that, in our informal example 3, we define subll : $\operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow$ Bool inductively by the rules indicated there. Show that subll as as implies that as is a finite lazylist.
