
2. Inductive Predicates



Some Informal Examples

of Inductive Definitions



Informal example 1

: the even predicate

The predicate P on natural numbers is defined inductively by the
following rules:

● P 0 holds;

● if P n holds, then P (n + 2) holds.

What predicate is this?

But why does this capture the notion of even number?

For example, why does even 4 hold, but even 3 not?
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Informal example 2

: the subl relation

Given a set A, let List(A) be the set of lists [a1, . . . , an] with elements
in A. We write [] for the empty list and a#as for the list obtained by
consing a to as.

The binary relation R on List(A) is defined inductively by the rules:

● R [] as holds;

● if R as as ′ holds, then R as (a#as ′) holds;

● if R as as ′ holds, then R (a#as) (a#as ′) holds.

What relation is this?

subl as as ′ holds if and only if as is a sublist (subsequence) of as ′ in
that, if as ′ has the form [a′0, . . . , a′n−1], then there exist k ≥ 0 and
0 ≤ j0 < . . . < jk−1 ≤ n − 1 such that as = [a′j0 , . . . , a

′

jk−1
].

Can we prove, e.g., subl [a] [a, b], but ¬ subl [a, b] [a]?

Can we prove the equivalence with the above alternative description?
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Informal example 3

: the subll predicate

Given a set A, let LazyList(A) be the set of “lazy lists” (finite or infinite
lists) with elements in A – they have the form [a1, a2, . . . , an] or
[a1, a2, . . .]. We write a#as for the lazy list obtained by consing a to as.

The binary relation R on LazyList(A), is defined inductively by
the following rules:

⋅
R [] as

(Nil)
R as as ′

R as (a#as ′)
(ConsR)

R as as ′

R (a#as) (a#as ′)
(Cons)

What relation is this?
Is it the sub-lazylist relation, in that subll as as ′ holds iff as consists of
the elements located on some positions in as ′ (preserving the order)?
No! The inductive definition restricts as to be finite.

What we need here is a coinductive definition...

Next, we’ll make the notions of inductive and coinductive definition rigorous.
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Foundation of (Co)Induction



Partially ordered sets

(A, ≤) is said to be a partially ordered set when

● A is a set

● ≤ is a binary relation on A that is

reflexive: x ≤ x
transitive: x ≤ y and y ≤ z imply x ≤ z
anti-symmetric: x ≤ y and y ≤ x imply x = z

Let (A, ≤) be a partially ordered set, let X ⊆ A and a ∈ A. We say
that:

● a is the greatest element of X if a ∈X and ∀x ∈X. x ≤ a;

● a is the least element of X if a ∈X and ∀x ∈X. a ≤ x.



Complete lattices

Let (A, ≤) be a partially ordered set.

Given X ⊆ A, we define:

● Lower(X), the set of lower bounds of X, to be
{a ∈ A ∣ ∀x ∈X. a ≤ x}.

If it exists, the greatest element of Lower(X) is called the infimum
of X and is denoted by ⋀X.

● Upper(X), the set of upper bounds of X, to be
{a ∈ A ∣ ∀x ∈X. x ≤ a}.
If it exists, the least element of Upper(X) is called the supremum of
X and is denoted by ⋁X.

(A, ≤) is said to be a complete lattice if infima ⋀X and suprema ⋁X
exist for all X ⊆ A.

Exercise. 1. Prove that, if they exist, ⋁∅ and ⋀∅ are the least and
greatest elements of A.
2. Prove that, if ⋁X exists and is in X, then it is the greatest element
of X. Dually, if ⋀X exists and is in X, then it is the least element of X.
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Fixpoints, pre-fixpoints and post-fixpoints

Fix a partially ordered set (A, ≤) and a function F ∶ A→ A.

An element a ∈ A is called:

● a fixpoint (fixed point) of F if F a = a

● a pre-fixpoint of F if F a ≤ a
● a post-fixpoint of F if a ≤ F a

Note: fixpoint = pre-fixpoint + post-fixpoint

The function F is said to be monotonic if it preserves the order:
a ≤ b implies F a ≤ F b for all a, b ∈ A.
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The fixpoint theorem of Knaster and Tarski

Theorem (Knaster-Tarski, short version). Any monotonic function on
a complete lattice has a least and a greatest fixpoint.



The fixpoint theorem of Knaster and Tarski

Theorem (Knaster-Tarski, full version). Let (A, ≤) be a complete
lattice and F ∶ A→ A a monotonic function.

1. Let IF = ⋀{a ∣ F a ≤ a} (the infimum of the set of pre-fixpoints).
Then IF is the least fixpoint of F and the least pre-fixpoint of F .

2. Let JF = ⋁{a ∣ a ≤ F a} (the supremum of the set of post-fixpoints).
Then JF is the greatest fixpoint and the greatest post-fixpoint of F .

Proof. Let X = {a ∣ F a ≤ a}.
We have F IF ∈ Lower(X).

Indeed, given a ∈X:
– on the one hand, we have IF ≤ a, which implies F IF ≤ F a;
– on the other hand, we have F a ≤ a;
– the last two give us F IF ≤ a.

Hence F IF ≤ IF , which means IF ∈X.
Hence IF is the least pre-fixpoint of F .
But we also have F (F IF ) ≤ F IF , i.e., F IF ∈X, hence IF ≤ F IF .
Hence F IF = IF , making IF a fixpoint, and also the least fixpoint of F .
... and the fact about greatest (post-)fixpoints is dual.
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Example: The powerset complete lattice

(P(A), ≤)
● P(A) is the powerset (set of all sets) of a set A

● the order ≤ is inclusion, ⊆

Exercise. Show that this forms a complete lattice, where infima
are intersections and suprema are unions.
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Example: the complete lattices of predicates / relations

(A→ Bool, ≤) – the complete lattice of predicates on A.

● The order ≤ is defined by P ≤ Q iff ∀a ∈ A. P aÐ→ Q a

● Infima and suprema are given by ∀ and ∃.
Namely, for X ⊆ (A→ Bool): ⋀X = λa. ∀P ∈X. P a

⋁X = λa. ∃P ∈X. P a

● The least and greatest elements are λa. � and λa. ⊺
Exercise. Show that this is isomorphic to (P(A), ⊆).

And similarly for relations of any arity, for example:

(A→ B → Bool, ≤) – the complete lattice of relations between A and B.

● The order ≤ is defined by P ≤ Q iff ∀a ∈ A, b ∈ B. P a bÐ→ Q a b

● Infima and suprema are given by ∀ and ∃.
Namely, for X ⊆ (A→ B → Bool): ⋀X = λa, b. ∀P ∈X. P a b

⋁X = λa, b. ∃P ∈X. P a b

● The least and greatest elements are λa, b. � and λa, b. ⊺
Exercise. Show that this is isomorphic to (P(A ×B), ⊆).
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Back to Our Examples

of (Co)Inductive Definitions



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

F is monotonic, so IF exists by Knaster-Tarski.

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.

More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

F is monotonic, so IF exists by Knaster-Tarski.

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:

F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)
Thus, F P essentially applies the rules to P , i.e.,

F P holds for exactly those items m that are produced
by applying the rules to items for which P holds.

F is monotonic, so IF exists by Knaster-Tarski.

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

F is monotonic, so IF exists by Knaster-Tarski.

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

F is monotonic, so IF exists by Knaster-Tarski.

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

F is monotonic, so IF exists by Knaster-Tarski.

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is a pre-fixpoint of F ,
i.e., F even ≤ even

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is a pre-fixpoint of F ,
i.e., F even ≤ even

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m

i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is a pre-fixpoint of F ,
i.e., F even ≤ even

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)

which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is a pre-fixpoint of F ,
i.e., F even ≤ even

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is a pre-fixpoint of F ,
i.e., F even ≤ even

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is a fixpoint of F , in particular a post-fixpoint,
i.e., even ≤ F even.

This means ∀m. even mÐ→m = 0 ∨ (∃n. m = n + 2 ∧ even n)
i.e., whenever even m holds, it must have been
obtained by one of the rules (Zero) and (Suc)

... leading to the following case distinction (elimination) rule for even:

even m m = 0Ð→ P ∀n. m = n + 2 ∧ even nÐ→ P

P
(Cases)

even is a pre-fixpoint of F ,
i.e., F even ≤ even

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is a fixpoint of F , in particular a post-fixpoint,
i.e., even ≤ F even.

This means ∀m. even mÐ→m = 0 ∨ (∃n. m = n + 2 ∧ even n)

i.e., whenever even m holds, it must have been
obtained by one of the rules (Zero) and (Suc)

... leading to the following case distinction (elimination) rule for even:

even m m = 0Ð→ P ∀n. m = n + 2 ∧ even nÐ→ P

P
(Cases)

even is a pre-fixpoint of F ,
i.e., F even ≤ even

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is a fixpoint of F , in particular a post-fixpoint,
i.e., even ≤ F even.

This means ∀m. even mÐ→m = 0 ∨ (∃n. m = n + 2 ∧ even n)
i.e., whenever even m holds, it must have been
obtained by one of the rules (Zero) and (Suc)

... leading to the following case distinction (elimination) rule for even:

even m m = 0Ð→ P ∀n. m = n + 2 ∧ even nÐ→ P

P
(Cases)

even is a pre-fixpoint of F ,
i.e., F even ≤ even

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is a fixpoint of F , in particular a post-fixpoint,
i.e., even ≤ F even.

This means ∀m. even mÐ→m = 0 ∨ (∃n. m = n + 2 ∧ even n)
i.e., whenever even m holds, it must have been
obtained by one of the rules (Zero) and (Suc)

... leading to the following case distinction (elimination) rule for even:

even m m = 0Ð→ P ∀n. m = n + 2 ∧ even nÐ→ P

P
(Cases)

even is a pre-fixpoint of F ,
i.e., F even ≤ even

This means ∀m. m = 0 ∨ (∃n. m = n + 2 ∧ even n)Ð→ even m
i.e., even 0 and ∀n. even nÐ→ even (n + 2)
which simply means that the rules (Zero) and (Suc) are valid.

(Zero) and (Suc) are called introduction rules for even, because they
allow to prove that even holds (for certain items).



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is the least among the pre-fixpoints of F ,
i.e., for all P ∶ N→ Bool, F P ≤ P implies even ≤ P

This means that even ≤ P for all predicates P that are closed under the
rules (Zero), (Suc) (i.e., P 0 holds, and P n implies P (n + 2) for all n)
... leading to the following induction rule for even:

even m P 0 ∀n. P nÐ→ P (n + 2)
P m

(Induct)



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is the least among the pre-fixpoints of F ,
i.e., for all P ∶ N→ Bool, F P ≤ P implies even ≤ P

This means that even ≤ P for all predicates P that are closed under the
rules (Zero), (Suc) (i.e., P 0 holds, and P n implies P (n + 2) for all n)

... leading to the following induction rule for even:

even m P 0 ∀n. P nÐ→ P (n + 2)
P m

(Induct)



Making sense of the inductive specification of even

The predicate even ∶ N→ Bool specified inductively by the following rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

“Inductively” means: smallest predicate closed under the given rules.
More precisely: We define even = IF , where
F ∶ (N→ Bool)→ (N→ Bool) is defined as follows, for all P ∶ N→ Bool:
F P = λm. m = 0 ∨ (∃n. m = n + 2 ∧ P n)

Thus, F P essentially applies the rules to P , i.e.,
F P holds for exactly those items m that are produced

by applying the rules to items for which P holds.

even is the least among the pre-fixpoints of F ,
i.e., for all P ∶ N→ Bool, F P ≤ P implies even ≤ P

This means that even ≤ P for all predicates P that are closed under the
rules (Zero), (Suc) (i.e., P 0 holds, and P n implies P (n + 2) for all n)
... leading to the following induction rule for even:

even m P 0 ∀n. P nÐ→ P (n + 2)
P m

(Induct)



Recipe for making sense of inductive specifications

We make sense of an inductive specification of a predicate such as
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

... by defining even as the least (pre-)fixpoint IF of a monotonic operator
F on predicates, where F is defined from the rules (F P is the predicate
obtained from applying the rules to the items satisfying P )
... and inferring various rules from this definition:

Thanks to ... we obtain
even being a pre-fixpoint of F the introduction rules (Zero), (Suc)
even being a post-fixpoint of F the case distinction rule (Cases)
even being ≤ all pre-fixpoints of F the induction rule (Induct)

even m m = 0Ð→ P ∀n. m = n + 2 ∧ even nÐ→ P

P
(Cases)

even m P 0 ∀n. P nÐ→ P (n + 2)
P m

(Induct)

even is also the least (pre-)fixpoint of
G = λP. F (even ∧ P ) = λP. F (λn. even n ∧ P n)
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Applying the recipe to the inductive specification of subl

The relation subl ∶ List(A)→ List(A)→ Bool
specified inductively by the rules:

⋅
subl [] as

(Nil)
subl as as ′

subl as (a#as ′)
(ConsR)

subl as as ′

subl (a#as) (a#as ′)
(Cons)

“Inductively” means: smallest relation closed under the given rules.
More precisely: We define subl = IF , where
F ∶ (List(A)→ List(A)→ Bool)→ (List(A)→ List(A)→ Bool) is defined
as follows, for all R ∶ List(A)→ List(A)→ Bool:

F R = λbs, bs ′. ∃as. bs = [] ∧ bs ′ = as
∨
∃as, a, as ′. bs = as ∧ bs ′ = a#as ′ ∧R as as ′

∨
∃a, as, as ′. bs = a#as ∧ bs ′ = a#as ′ ∧R as as ′

Again, F is monotonic, so IF exists by Knaster-Tarski.
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Applying the recipe to the inductive specification of subl

Thanks to ... we obtain
subl being a pre-fixpoint of F the introduction rules (Nil), (ConsR), (Cons)
subl being a post-fixpoint of F the case distinction rule (Cases)
subl being ≤ all pre-fixpoints of F the induction rule (Induct)

⋅
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subl as (a#as ′)
(ConsR)

subl as as ′

subl (a#as) (a#as ′)
(Cons)

subl bs bs ′ ∀as. bs = [] ∧ bs ′ = as Ð→ P
∀as, as ′, a. bs = as ∧ bs ′ = a#as ′ ∧ subl as as ′ Ð→ P bs bs ′

∀as, as ′, a. bs = a#as ∧ bs ′ = a#as ′ ∧ subl as as ′ Ð→ P bs bs ′

P bs bs ′
(Cases)

subl is also the least (pre-)fixpoint of
G = λP. F (subl ∧ P ) = λP. F (λas, as ′. subl as as ′ ∧ P as as ′).
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Summary of the semantic approach to inductive definitions

We specify an inductive predicate/relation P by indicating
rules involving P

– this is not yet a definition!

We turn the specification into an actual (non-inductive!) definition by:

● extracting an operator F on predicates/relations from these rules

● showing that F is monotonic – which is trivial if the rules’ premises
have a “positive logic” format

; if F is not obviously monotonic and
Isabelle fails to prove this, users can help by providing “hints”

● defining P as IF , the least (pre-)fixpoint of F

Finally, from the definition of P as least (pre-)fixpoint, we infer:

● introduction rules – which coincide with the originally specified rules

● a case distinction rule

● an induction rule

Isabelle automates this approach.
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Exercises

1. For the predicate even:

(i) Infer the case distinction rule for the predicate from the introduction
rules and the induction rule.

(ii) Show that the introduction and induction rules determine the
predicate uniquely, i.e., there is only one predicate satisfying them.

2. Let (A, ≤) be a partially ordered set and F ∶ A→ A a monotonic
function. Show that, if it exists, then the least pre-fixpoint of F is also a
post-fixpoint of F .

3. What is the connection between points 1(i) and 2 above?

4. Show that the previously mentioned “optimization” of induction is
correct: If (A, ≤) is a complete lattice and F ∶ A→ A a monotonic
function, then IF (the smallest (pre-)fixpoint of F ) is also the smallest
pre-fixpoint of the operator G = λa. F (IF ∧ a).

5. Dualize points (2)-(4) above into statements about greatest
(post-)fixpoints.



Reasoning about inductive predicates

We’ll use the inductive predicate even ∶ N→ Bool as running
example, but the ideas apply generally.
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Proving that an inductive predicate holds

Introduction rules:
⋅

even 0
(Zero)

even n

even (n + 2)
(Suc)

Case distinction rule:

even m m = 0Ð→ P ∀n. m = n + 2 ∧ even nÐ→ P

P
(Cases)

Induction rule:

even m P 0 ∀n. even n ∧ P nÐ→ P (n + 2)
P m

(Induct)

Why does even 4 hold?

Reason “backwards” using the introduction rules:
- We must prove even 4.
- Applying rule (Suc), suffices to prove even 2.
- Applying again rule (Suc), suffices to prove even 0.
- And the last holds by rule (Zero).
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Why does ¬ even 3 hold?

Rephrase the statement as even 3Ð→ � and
again reason backwards.
- Apply the case rule for m = 3 and P = �, reducing our goal to:
— 3 = 0Ð→ �, which is trivially true;
— ∀n. 3 = n + 2 ∧ even nÐ→ �, which means even 1Ð→ �.
— Apply the case rule for m = 1 and P = �, reducing our goal to:
—– 1 = 0Ð→ �, which is trivially true;
—– ∀n. 1 = n + 2 ∧ even nÐ→ �, which is trivially true.
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A closer look at a case distinction step

even m m = 0Ð→ P ∀n. m = n + 2 ∧ even nÐ→ P

P
(Cases)

- What to prove even 3Ð→ �.
- Apply the case rule for m = 3 and P = �, reducing our goal to:
— 3 = 0Ð→ �
— ∀n. 3 = n + 2 ∧ even nÐ→ �

We match major premise and conclusion against what we need to prove
... which gives us the instantiation
... and we are left to prove the instances of the other premises

This is the elimination reasoning pattern.
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(Induct)

Why does even capture the notion of even number?

Let’s prove that even mÐ→ ∃k. m = 2 ∗ k, reasoning backwards.
- Apply the induction rule for P = λm. ∃k. m = 2∗k, reducing our goal to:
— ∃k. 0 = 2 ∗ k, which is true, taking k = 0;
— ∀n. even n ∧ (∃k. n = 2 ∗ k)Ð→ (∃k. n + 2 = 2 ∗ k),

which means ∀n, k. even n ∧ n = 2 ∗ k Ð→ (∃k′. n + 2 = 2 ∗ k′) ,
which is true, taking k′ = k + 1.

Again, the elimination reasoning pattern.
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- Apply the induction rule for P = λm. ∃k. m = 2∗k, reducing our goal to:
— ∃k. 0 = 2 ∗ k, which is true, taking k = 0;
— ∀n. even n ∧ (∃k. n = 2 ∗ k)Ð→ (∃k. n + 2 = 2 ∗ k)

,
which means ∀n, k. even n ∧ n = 2 ∗ k Ð→ (∃k′. n + 2 = 2 ∗ k′) ,
which is true, taking k′ = k + 1.

Again, the elimination reasoning pattern.
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Proving that an inductive predicate holds

Introduction rules:
⋅

even 0
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(Suc)

Why does even capture the notion of even number?

Let’s now prove the converse implication, (∃k. m = 2 ∗ k)Ð→ even m.
which means ∀k. m = 2 ∗ k Ð→ even m.

Let Q = λk. ∀m. m = 2 ∗ k Ð→ even m.
The proof of Q k is by structural induction on k ∈ N (unrelated to even)
— Q 0 means m = 2 ∗ 0Ð→ even m,

which means even 0, which is true by (Zero).
— Q k Ð→ Q (k + 1) means

(∀m. m = 2 ∗ k Ð→ even m)Ð→ (∀m. m = 2 ∗ (k + 1)Ð→ even m),
which means
∀m′. (∀m. m = 2 ∗ k Ð→ even m) ∧m′ = 2 ∗ (k + 1)Ð→ even m′.
Fixing m′, we have m′ = 2 ∗ k + 2.
Taking m = 2 ∗ k, we have even m.
Applying (Suc), we obtain even (m + 2), i.e., even m′.
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Summary on reasoning about inductive predicates

An inductive predicate has introduction rules, a case distinction
rule and an induction rule.

We use the introduction rules to prove that an inductive predicate
holds. Examples:

● even 4

● (∃k. m = 2 ∗ k)Ð→ even m

We use the case distinction rule and the induction rule following
the elimination reasoning pattern to prove something under the
assumption that an inductive predicate holds. Examples:

● ¬ even 3, i.e., even 3Ð→ �
● even mÐ→ (∃k. m = 2 ∗ k)



Exercises

1. Consider the inductive predicate subl we defined before. Show the
following:

● subl [a, c] [a, b, c]

● ¬ subl [a, b, c] [a, c]

● subl as as ′ Ð→ set as ⊆ set as ′, where the operator
set ∶ List(A)→ P(A) gives all the elements appearing in a list.

2. Assume that, in our informal example 3, we define
subll ∶ List(A)→ List(A)→ Bool inductively by the rules indicated there.
Show that subll as as ′ implies that as is a finite lazylist.
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