3. Coinductive Predicates

## Example of Coinductive Definition

## Informal example 3 (the subll predicate) revisited

Given a set $A$, let LazyList $(A)$ be the set of "lazy lists" (finite or infinite lists) with elements in $A$ - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or [ $\left.a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing $a$ to $a s$.

We wish to define the sublist relation, subll, on lazy lists.
The relation subl on (finite) lists is defined inductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as } a s^{\prime}}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as } a s^{\prime}}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

The inductive interpretation means: smallest relation closed under the rules (Nil), (ConsR) and (Cons).

## Informal example 3 (the subll predicate) revisited

Given a set $A$, let LazyList $(A)$ be the set of "lazy lists" (finite or infinite lists) with elements in $A$ - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right.$ ] or $\left[a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing $a$ to $a s$.

We wish to define the sublist relation, subll, on lazy lists.
The relation subl on (finite) lists is defined inductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as } a s^{\prime}}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as } a s^{\prime}}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

The inductive interpretation means: smallest relation closed under the rules (Nil), (ConsR) and (Cons). We've seen that this does not work for lazy lists: No infinite list would be a sublist of any list.

## Informal example 3 (the subll predicate) revisited

Given a set $A$, let LazyList $(A)$ be the set of "lazy lists" (finite or infinite lists) with elements in $A$ - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or [ $\left.a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing $a$ to $a s$.

We wish to define the sublist relation, subll, on lazy lists.
The relation subl on (finite) lists is defined inductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as } a s^{\prime}}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as } a s^{\prime}}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

The inductive interpretation means: smallest relation closed under the rules (Nil), (ConsR) and (Cons). We've seen that this does not work for lazy lists: No infinite list would be a sublist of any list.

Should we rather go for the greatest relation closed under these rules?

## Informal example 3 (the subll predicate) revisited

Given a set $A$, let LazyList $(A)$ be the set of "lazy lists" (finite or infinite lists) with elements in $A$ - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or [ $\left.a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing $a$ to $a s$.

We wish to define the sublist relation, subll, on lazy lists.
The relation subl on (finite) lists is defined inductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as } a s^{\prime}}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as } a s^{\prime}}{\text { subl }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

The inductive interpretation means: smallest relation closed under the rules (Nil), (ConsR) and (Cons). We've seen that this does not work for lazy lists: No infinite list would be a sublist of any list.

Should we rather go for the greatest relation closed under these rules? No! This would give us the total relation $\lambda a s, a s^{\prime}$. T.

## Informal example 3 (the subll predicate) revisited

Given a set $A$, let LazyList $(A)$ be the set of "lazy lists" (finite or infinite lists) with elements in $A$ - they have the form $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ or [ $\left.a_{1}, a_{2}, \ldots\right]$. We write $a \#$ as for the lazy list obtained by consing $a$ to $a s$.

We wish to define the sublist relation, subll, on lazy lists.
The relation subl on (finite) lists is defined inductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subl }[] \text { as }} \text { (Nil) } \frac{\text { subl as } a s^{\prime}}{\text { subl as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subl as as' }}{\text { subl }(\text { a\#as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

The inductive interpretation means: smallest relation closed under the rules (Nil), (ConsR) and (Cons). We've seen that this does not work for lazy lists: No infinite list would be a sublist of any list.

Should we rather go for the greatest relation closed under these rules? No! This would give us the total relation $\lambda a s, a s^{\prime}$. T. Let's take it easy, starting with selecting the properties that we want...

## Desired properties for the predicate subll

Say $A=\mathbb{N}$.
For finite lists, subll should behave just like subl, e.g.,

- subll $[1,3,4][1,2,3,4]$
- subll $[1,2][1,2,3,4]$
- $\operatorname{subll}[1,3][1,2,3,4]$

Also, e.g.,

- subll zeros zeros, in fact subll as as for any as
- subll $[0,2,4,6, \ldots][0,1,2,3, \ldots]$


## Desired properties for the predicate subll

Say $A=\mathbb{N}$.
For finite lists, subll should behave just like subl, e.g.,

- subll $[1,3,4][1,2,3,4]$
- $\operatorname{subll}[1,2][1,2,3,4]$
- $\operatorname{subll}[1,3][1,2,3,4]$

Also, e.g.,

- subll zeros zeros, in fact subll as as for any as
- subll $[0,2,4,6, \ldots][0,1,2,3, \ldots]$
subll as as ${ }^{\prime}$ should hold if and only if:
assuming $a s^{\prime}$ has the form $\left[a_{i}^{\prime}\right]_{i<l e n g t h ~ a s ~}$ ( with length $a s^{\prime} \in \mathbb{N} \cup\{\infty\}$ ) there exists $\left[j_{p}\right]_{p<\text { length as }}$ such that $\forall p . p+1<$ length as $\longrightarrow j_{p}<j_{p+1}$ and as $=\left[a_{j_{p}}^{\prime}\right]_{p<\text { length as }}$.


## Desired properties for the predicate subll

$$
\begin{aligned}
& \frac{\text { subll [] as }}{\text { suil })} \quad \frac{\text { subll as } a s^{\prime}}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
& \frac{\text { subll as as }}{\text { subll }(\text { a\# as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{aligned}
$$

## Desired properties for the predicate subll

$$
\begin{aligned}
& \frac{\cdot}{\text { subll [] as }}(\mathrm{Nil}) \quad \frac{\text { subll as } a s^{\prime}}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
& \frac{\text { subll as as' }}{\text { subll }(\text { a\#as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{aligned}
$$

## Desired properties for the predicate subll


subll bs bs ${ }^{\prime} \quad \forall a s . b s=[] \wedge b s^{\prime}=a s \longrightarrow P$
$\forall a s, a s^{\prime}, a . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge$ subll as as ${ }^{\prime} \longrightarrow P$
$\forall a s, a s^{\prime}, a . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge$ subll as as ${ }^{\prime} \longrightarrow P$

## Desired properties for the predicate subll

$$
\begin{aligned}
& \frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \quad \frac{\text { subll as as' }}{\text { subll as }\left(\text { a\#as }{ }^{\prime}\right)} \text { (ConsR) } \\
& \frac{\text { subll as as }}{\text { subll (a\# as) (a\#as') }} \text { (Cons) }
\end{aligned}
$$

subll bs bs ${ }^{\prime} \quad \forall a s . b s=[] \wedge b s^{\prime}=$ as $\longrightarrow P$
$\forall a s, a s^{\prime}, a . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge$ subll as $a s^{\prime} \longrightarrow P$
$\forall a s, a s^{\prime}, a . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge$ subll as $a s^{\prime} \longrightarrow P$

## Desired properties for the predicate subll

$$
\begin{aligned}
& \frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \quad \frac{\text { subll as } a s^{\prime}}{\text { subll as }(\text { a\#as })} \text { (ConsR) } \\
& \frac{\text { subll as as }}{\text { subll (a\# as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{aligned}
$$

subll bs bs ${ }^{\prime} \quad \forall a s . b s=[] \wedge b s^{\prime}=$ as $\longrightarrow P$
$\forall a s, a s^{\prime}, a . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge$ subll as as ${ }^{\prime} \longrightarrow P$
$\forall a s, a s^{\prime}, a . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge$ subll as $a s^{\prime} \longrightarrow P$

$$
\begin{equation*}
P \tag{Cases}
\end{equation*}
$$

or, equivalently...
subll bs bs' $\longrightarrow \exists a s . b s=[] \wedge b s^{\prime}=a s$

$$
\begin{aligned}
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime} \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime}
\end{aligned}
$$

## Desired properties for the predicate subll

$$
\begin{aligned}
& \frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \quad \frac{\text { subll as } a s^{\prime}}{\text { subll as }(\text { a\#as })} \text { (ConsR) } \\
& \frac{\text { subll as as }}{\text { subll (a\# as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{aligned}
$$

subll bs bs ${ }^{\prime} \quad \forall a s . b s=[] \wedge b s^{\prime}=$ as $\longrightarrow P$
$\forall a s, a s^{\prime}, a . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge$ subll as $a s^{\prime} \longrightarrow P$
$\forall a s, a s^{\prime}, a . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge$ subll as $a s^{\prime} \longrightarrow P$

$$
P
$$

or, equivalently...
subll bs bs ${ }^{\prime} \longrightarrow \exists a s . b s=[] \wedge b s^{\prime}=a s$

$$
\begin{aligned}
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime} \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime}
\end{aligned}
$$

## Desired properties for the predicate subll

How about induction?

$$
\begin{aligned}
& \text { subll bs bs }{ }^{\prime} \quad \forall a s . P[] \text { as } \\
& \forall a s, a s^{\prime}, \text { a. subll as as }{ }^{\prime} \wedge P \text { as as } s^{\prime} \longrightarrow P \text { as }\left(a \# a s^{\prime}\right) \\
& \frac{\forall a s, a s^{\prime}, \text { a. subll as } a s^{\prime} \wedge P \text { as } a s^{\prime} \longrightarrow P(a \# a s)\left(a \# a s^{\prime}\right)}{P b s b s^{\prime}} \text { (Induct) }
\end{aligned}
$$

## Desired properties for the predicate subll

How about induction?


It would allow us to prove, e.g., subll as as implies as is finite.

## Desired properties for the predicate subll

How about induction?

$$
\begin{aligned}
& \text { subll bs bs' } \quad \forall a s . P[] \text { as } \\
& \forall a s, a s^{\prime} \text {, a. subll as as }{ }^{\prime} \wedge P \text { as as' } \longrightarrow P \text { as }\left(a \# a s^{\prime}\right) \\
& \frac{\forall a s, a s^{\prime}, \text { a. subll as } a s^{\prime} \wedge P \text { as } a s^{\prime} \longrightarrow P(a \# a s)\left(a \# a s^{\prime}\right)}{P b s b s^{\prime}} \text { (Induct) }
\end{aligned}
$$

It would allow us to prove, e.g., subll as as implies as is finite.
This would imply, e.g.,

- $\neg$ subll zeros zeros
- $\neg \operatorname{subll}[0,2,4,6, \ldots][0,1,2,3, \ldots]$


## Desired properties for the predicate subll

How about induction?

$$
\begin{aligned}
& \begin{array}{c}
\text { subll bs } b s^{\prime} \\
\forall a s . P[] \text { as } \\
\forall a s, a s^{\prime}, \text { a. subll as as } s^{\prime} \wedge P \text { as as } \longrightarrow P \text { as }\left(a \# a s^{\prime}\right) \\
\forall a s, a s^{\prime}, a . \text { subll as as } \wedge P \text { as as } \longrightarrow P(a \# a s)\left(a \# a s^{\prime}\right) \\
P b s b s^{\prime}
\end{array} \text { (Induct) } \quad \times
\end{aligned}
$$

It would allow us to prove, e.g., subll as as implies as is finite.
This would imply, e.g.,

- $\neg$ subll zeros zeros
- $\neg \operatorname{subll}[0,2,4,6, \ldots][0,1,2,3, \ldots]$


## Desired properties for the predicate subll

$$
\begin{gathered}
\frac{\cdot}{\text { subll [] as }} \text { (Nil) } \frac{\text { subll as as }{ }^{\prime}}{\text { subll as }\left(a \# a s^{\prime}\right)}(\text { ConsR }) \\
\frac{\text { subll as } a s^{\prime}}{\text { subll }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) } \\
\text { subll bs bs }{ }^{\prime} \longrightarrow \exists a s . b s=[] \wedge b s^{\prime}=a s \\
\vee \\
\exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as as } s^{\prime} \\
\vee \\
\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as as } s^{\prime}
\end{gathered}
$$

## Desired properties for the predicate subll

$$
\begin{aligned}
& \frac{\cdot}{\text { subll [] as }} \text { (Nil) } \quad \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
& \frac{\text { subll as as' }}{\operatorname{subll}(a \# \text { as })\left(a \# a s^{\prime}\right)} \text { (Cons) } \\
& \text { subll bs } b s^{\prime} \longrightarrow \exists a s . b s=[] \wedge b s^{\prime}=a s \\
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime} \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as as }{ }^{\prime}
\end{aligned}
$$

How can we prove subll $[0,2,4,6, \ldots][0,1,2,3,4,5, \ldots]$ ?

## Desired properties for the predicate subll

$$
\begin{array}{ll}
\frac{\cdot}{\text { subll }[] \text { as }}(\mathrm{Nil}) & \frac{\text { subll as as }}{}{ }^{\prime} \\
\frac{\text { subll as }\left(a \# a s^{\prime}\right)}{\text { subll as } a s^{\prime}} \text { (ConsR) } \\
\text { subll }(\text { a\# as })\left(a \# a s^{\prime}\right) & \text { (Cons) }
\end{array}
$$

$$
\text { subll bs bs }{ }^{\prime} \longrightarrow \exists a s . b s=[] \wedge b s^{\prime}=a s
$$

$$
\begin{aligned}
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime} \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\vdots}{\frac{\text { subll }[4,6, \ldots][4,5, \ldots]}{\text { subll }[4,6, \ldots][3,4,5, \ldots]}} \text { (Cons) } \\
\frac{\text { subll }[2,4,6, \ldots][2,3,4,5, \ldots]}{\frac{\text { subll }[2,4,6, \ldots][1,2,3,4,5, \ldots]}{\text { subll }[0,2,4,6, \ldots][0,1,2,3,4,5, \ldots]}} \text { (Cons) } \\
\text { (ConsR) }
\end{gathered}
$$

## Desired properties for the predicate subll

$$
\begin{array}{ll}
\frac{\cdot}{\text { subll }[] \text { as }}(\mathrm{Nil}) & \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subll as as }{ }^{\prime}}{\text { subll }(a \# \text { as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{array}
$$

subll bs bs ${ }^{\prime} \longrightarrow \exists a s . b s=[] \wedge b s^{\prime}=a s$

$$
\begin{aligned}
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime} \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as as }
\end{aligned}
$$

$$
\begin{gathered}
\frac{\vdots}{\frac{\text { subll }[4,6, \ldots][4,5, \ldots]}{\text { subll }[4,6, \ldots][3,4,5, \ldots]}} \text { (Cons) } \\
\frac{\text { subll }[2,4,6, \ldots][2,3,4,5, \ldots]}{\frac{\text { subll }[2,4,6, \ldots][1,2,3,4,5, \ldots]}{\text { subll }[0,2,4,6, \ldots][0,1,2,3,4,5, \ldots]}} \text { (Cons) } \\
\text { (ConsR) }
\end{gathered}
$$

So accepting infinite proofs with our introduction rules would solve our problem...

## Desired properties for the predicate subll

$$
\begin{array}{ll}
\frac{\cdot}{\text { subll }[] \text { as }}(\mathrm{Nil}) & \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subll as } a s^{\prime}}{\text { subll }(a \# \text { as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{array}
$$

$$
\text { subll bs bs }{ }^{\prime} \longrightarrow \exists a s . b s=[] \wedge b s^{\prime}=a s
$$

$$
\begin{aligned}
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as as } \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\vdots}{\frac{\text { subll }[4,6, \ldots][4,5, \ldots]}{\text { subll }[4,6, \ldots][3,4,5, \ldots]}} \text { (Cons) } \\
\frac{\text { subll }[2,4,6, \ldots][2,3,4,5, \ldots]}{\frac{\text { subll }[2,4,6, \ldots][1,2,3,4,5, \ldots]}{\text { subll }[0,2,4,6, \ldots][0,1,2,3,4,5, \ldots]}} \text { (Cons) } \\
\text { (ConsR) }
\end{gathered}
$$

So accepting infinite proofs with our introduction rules would solve our problem... But how about something finitely expressible - a blueprint for an infinite proof?

## Desired properties for the predicate subll

$$
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \quad \frac{\text { subll as } a s^{\prime}}{\text { subll as }(\text { a\#as' })} \text { (ConsR) }
$$

$\frac{\text { subll as as' }}{\text { subll }(a \# \text { as })\left(a \# a s^{\prime}\right)}$ (Cons)
subll bs bs ${ }^{\prime} \longrightarrow \exists a s . b s=[] \wedge b s^{\prime}=a s$

$$
\begin{aligned}
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as as } \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\vdots}{\frac{\text { subll }[4,6, \ldots][4,5, \ldots]}{\text { subll }[4,6, \ldots][3,4,5, \ldots]}} \text { (Cons) } \\
\frac{\text { subll }[2,4,6, \ldots][2,3,4,5, \ldots]}{\frac{\text { subll }[2,4,6, \ldots][1,2,3,4,5, \ldots]}{\text { subll }[0,2,4,6, \ldots][0,1,2,3,4,5, \ldots]}} \text { (Cons) } \\
\text { (ConsR) }
\end{gathered}
$$

So accepting infinite proofs with our introduction rules would solve our problem... But how about something finitely expressible - a blueprint for an infinite proof? $P b s b s^{\prime}=\exists k \in \mathbb{N} . b s=[2 k, 2 k+2,2 k+4 \ldots] \wedge b s^{\prime}=[2 k, 2 k+1,2 k+2, \ldots] \vee$

$$
b s=[2 k+2,2 k+4 \ldots] \wedge b s^{\prime}=[2 k+1,2 k+2, \ldots]
$$

## Desired properties for the predicate subll

$$
\begin{aligned}
& \frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as } a s^{\prime}}{\text { subll as }(\text { a\#as' })} \text { (ConsR) } \\
& \frac{\text { subll as as }{ }^{\prime}}{\text { subll }(\text { a\# as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{aligned}
$$

subll bs bs' $\longrightarrow \exists a s . b s=[] \wedge b s^{\prime}=a s$

$$
\begin{aligned}
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime} \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\vdots}{\frac{\text { subll }[4,6, \ldots][4,5, \ldots]}{\text { subll }[4,6, \ldots][3,4,5, \ldots]}} \text { (Cons) } \\
\frac{\text { subll }[2,4,6, \ldots][2,3,4,5, \ldots]}{\frac{\text { subll }[2,4,6, \ldots][1,2,3,4,5, \ldots]}{\text { subll }[0,2,4,6, \ldots][0,1,2,3,4,5, \ldots]}} \text { (Cons) } \\
\text { (ConsR) }
\end{gathered}
$$

So accepting infinite proofs with our introduction rules would solve our problem... But how about something finitely expressible - a blueprint for an infinite proof? $P b s b s^{\prime}=\exists k \in \mathbb{N} . b s=[2 k, 2 k+2,2 k+4 \ldots] \wedge b s^{\prime}=[2 k, 2 k+1,2 k+2, \ldots] \vee$

$$
b s=[2 k+2,2 k+4 \ldots] \wedge b s^{\prime}=[2 k+1,2 k+2, \ldots]
$$

## Desired properties for the predicate subll

$$
\begin{align*}
& \frac{\cdot}{\text { subll [] as }} \text { (Nil) } \quad \frac{\text { subll as as }{ }^{\prime}}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
& \frac{\text { subll as } a s^{\prime}}{\operatorname{subll}(a \# a s)\left(a \# a s^{\prime}\right)}  \tag{Cons}\\
& P b s b s^{\prime} \longrightarrow \exists a s . b s=[] \wedge b s^{\prime}=a s \\
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime} \\
& \checkmark \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}
\end{align*}
$$

$$
\begin{gathered}
\frac{\vdots}{\frac{\text { subll }[4,6, \ldots][4,5, \ldots]}{\text { subll }[4,6, \ldots][3,4,5, \ldots]}} \text { (Cons) } \\
\frac{\text { subll }[2,4,6, \ldots][2,3,4,5, \ldots]}{\frac{\text { subll }[2,4,6, \ldots][1,2,3,4,5, \ldots]}{\text { subll }[0,2,4,6, \ldots][0,1,2,3,4,5, \ldots]}} \text { (Cons) } \\
\text { (ConsR) }
\end{gathered}
$$

So accepting infinite proofs with our introduction rules would solve our problem... But how about something finitely expressible - a blueprint for an infinite proof? $P b s b s^{\prime}=\exists k \in \mathbb{N} . b s=[2 k, 2 k+2,2 k+4 \ldots] \wedge b s^{\prime}=[2 k, 2 k+1,2 k+2, \ldots] \vee$

$$
b s=[2 k+2,2 k+4 \ldots] \wedge b s^{\prime}=[2 k+1,2 k+2, \ldots]
$$

## Desired properties for the predicate subll

This leads to the coinduction rule for subll:

$$
\begin{aligned}
& P c s c s^{\prime} \\
& \forall b s, b s^{\prime} . P \text { bs } b s^{\prime} \longrightarrow \quad \begin{array}{l}
\left(\exists a s . b s=[] \wedge b s^{\prime}=a s\right) \vee \\
\left(\exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P a s a s^{\prime}\right) \vee \\
\left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P a s a s^{\prime}\right)
\end{array}
\end{aligned}
$$

## Desired properties for the predicate subll

This leads to the coinduction rule for subll:

$$
\begin{array}{ll}
P c s c s^{\prime} \\
\forall b s, b s^{\prime} . P \text { bs } b s^{\prime} \longrightarrow \begin{array}{l}
\left(\exists a s . b s=\left[\wedge \wedge s^{\prime}=a s\right) \vee\right. \\
\left(\exists a, a, a s^{\prime}, b s=a \wedge \wedge b s s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right) \vee \\
\left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right)
\end{array}
\end{array}
$$

(Coinduct)
subll cs cs'

Terminology: consistent with some rules $=$ "closed backwards" under these rules

## Desired properties for the predicate subll

This leads to the coinduction rule for subll:

$$
\begin{array}{ll}
P c s c s^{\prime} \\
\forall b s, b s^{\prime} . P \text { bs } b s^{\prime} \longrightarrow \begin{array}{l}
\left(\exists a s . b s=\left[\wedge \wedge b s^{\prime}=a s\right) \vee\right. \\
\left(\exists a, a, a s^{\prime}, b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right) \vee \\
\left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right)
\end{array}
\end{array}
$$

(Coinduct)
subll cs cs'

Terminology: consistent with some rules = "closed backwards" under these rules

Coinduction says: If a relation $P$ is consistent with the introduction rules (Nil), (ConsR) and (Cons), then P cs cs' implies subll cs cs' (for every $\left.c s, c s^{\prime}\right)$, i.e., $P \leq$ subll.

## Desired properties for the predicate subll

This leads to the coinduction rule for subll:

```
Pcs cs'
```

```
    \(\left(\exists a s . b s=[] \wedge b s^{\prime}=a s\right) \vee\)
\(\forall b s, b s^{\prime} . P b s b s^{\prime} \longrightarrow \quad\left(\exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P a s a s^{\prime}\right) \vee\)
    \(\left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P\right.\) as \(\left.a s^{\prime}\right)\)
```

(Coinduct)
subll cs cs'

Terminology: consistent with some rules $=$ "closed backwards" under these rules

Coinduction says: If a relation $P$ is consistent with the introduction rules (Nil), (ConsR) and (Cons), then Pcs cs' implies subll cs cs' (for every $\left.c s, c s^{\prime}\right)$, i.e., $P \leq$ subll.
In other words, subll is the greatest (largest) relation that is consistent with the introduction rules.

## Desired properties for the predicate subll

This leads to the coinduction rule for subll:

$$
\begin{aligned}
& \text { Pcs cs }{ }^{\prime} \\
& \left(\exists a s . b s=[] \wedge b s^{\prime}=a s\right) \vee \\
& \forall b s, b s^{\prime} . P b s b s^{\prime} \longrightarrow \quad\left(\exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P a s a s^{\prime}\right) \vee \\
& \left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P a s a s^{\prime}\right)
\end{aligned}
$$

(Coinduct)
subll cs cs ${ }^{\prime}$

## Desired properties for the predicate subll

This leads to the coinduction rule for subll:
Pcs cs'
$\begin{aligned} & \forall b s, b s^{\prime} . P \text { bs } b s^{\prime} \longrightarrow\left(\exists a s . b s=[] \wedge b s^{\prime}=a s\right) \vee \\ &\left(\exists a s, a, a s^{\prime}, b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right) \vee \\ &\left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right)\end{aligned}$
(Coinduct)
subll cs cs ${ }^{\prime}$
Remember the operator $F$ on relations extracted from the intro rules:

$$
F P=\lambda b s, b s^{\prime} \cdot \begin{aligned}
& \left(\exists a s . b s=[] \wedge b s^{\prime}=a s\right) \vee \\
& \left(\exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right) \vee \\
& \\
& \left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right)
\end{aligned}
$$

## Desired properties for the predicate subll

This leads to the coinduction rule for subll:

$$
\begin{aligned}
& P c s c s^{\prime} \\
& \forall b s, b s^{\prime} . P b s b s^{\prime} \longrightarrow F P b s b s^{\prime}
\end{aligned}
$$

> subll cs cs'

Remember the operator $F$ on relations extracted from the intro rules:

$$
F P=\lambda b s, b s^{\prime} \cdot \begin{aligned}
& \left(\exists a s . b s=[] \wedge b s^{\prime}=a s\right) \vee \\
& \left(\exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right) \vee \\
& \\
& \left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P a s a s^{\prime}\right)
\end{aligned}
$$

## Desired properties for the predicate subll

This leads to the coinduction rule for subll:

$$
\begin{aligned}
& P c s c s^{\prime} \\
& \forall b s, b s^{\prime} . P b s b s^{\prime} \longrightarrow F P b s b s^{\prime}
\end{aligned}
$$

> subll cs cs'

Remember the operator $F$ on relations extracted from the intro rules:

$$
F P=\lambda b s, b s^{\prime} \cdot \begin{aligned}
& \left(\exists a s . b s=[] \wedge b s^{\prime}=a s\right) \vee \\
& \left(\exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right) \vee \\
& \\
& \left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right)
\end{aligned}
$$

Alternative formulation of the rule:

$$
\frac{P \leq F P}{P \leq \operatorname{subll}}(\text { Coinduct })
$$

## Desired properties for the predicate subll

This leads to the coinduction rule for subll:

$$
\begin{aligned}
& P c s c s^{\prime} \\
& \forall b s, b s^{\prime} . P b s b s^{\prime} \longrightarrow F P b s b s^{\prime}
\end{aligned}
$$

> subll cs cs'

Remember the operator $F$ on relations extracted from the intro rules:

$$
F P=\lambda b s, b s^{\prime} \cdot \begin{aligned}
& \left(\exists a s . b s=[] \wedge b s^{\prime}=a s\right) \vee \\
& \left(\exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right) \vee \\
& \\
& \left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P a s a s^{\prime}\right)
\end{aligned}
$$

Alternative formulation of the rule:

$$
\frac{P \leq F P}{P \leq \operatorname{subll}}(\text { Coinduct })
$$

And since also subll $\leq F$ subll, we have that subll is the largest post-fixpoint of $F$

## Desired properties for the predicate subll

This leads to the coinduction rule for subll:

$$
\begin{aligned}
& P c s c s^{\prime} \\
& \forall b s, b s^{\prime} . P b s b s^{\prime} \longrightarrow F P b s b s^{\prime}
\end{aligned}
$$

> subll cs cs'

Remember the operator $F$ on relations extracted from the intro rules:

$$
F P=\lambda b s, b s^{\prime} \cdot \begin{aligned}
& \left(\exists a s . b s=[] \wedge b s^{\prime}=a s\right) \vee \\
& \left(\exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P \text { as } a s^{\prime}\right) \vee \\
& \\
& \left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P a s a s^{\prime}\right)
\end{aligned}
$$

Alternative formulation of the rule:

$$
\frac{P \leq F P}{P \leq \operatorname{subll}}(\text { Coinduct })
$$

And since also subll $\leq F$ subll, we have that subll is the largest post-fixpoint of $F$ - Knaster-Tarski again!

## Recipe for making sense of coinductive specifications

The relation subll : LazyList $(A) \rightarrow \operatorname{LazyList}(A) \rightarrow$ Bool specified coinductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }(\text { a\#as })} \text { (ConsR) } \\
\frac{\text { subll as as }}{\text { subll }(\text { a\#as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

## Recipe for making sense of coinductive specifications

The relation subll : LazyList $(A) \rightarrow \operatorname{LazyList}(A) \rightarrow$ Bool specified coinductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }(\text { a\#as })} \text { (ConsR) } \\
\frac{\text { subll as as }}{\text { subll }(\text { a\#as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

"Coinductively" means: greatest relation consistent with the given rules.

## Recipe for making sense of coinductive specifications

The relation subll : LazyList $(A) \rightarrow \operatorname{LazyList}(A) \rightarrow$ Bool specified coinductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }(\text { a\#as })} \text { (ConsR) } \\
\frac{\text { subll as as }}{\text { subll }(\text { a\# as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

"Coinductively" means: greatest relation consistent with the given rules. More precisely: We define subll $=\mathrm{J}_{F}$, where $F:(\operatorname{LazyList}(A) \rightarrow$ $\operatorname{LazyList}(A) \rightarrow$ Bool $) \rightarrow(\operatorname{LazyList}(A) \rightarrow \operatorname{LazyList}(A) \rightarrow$ Bool $)$ is defined as follows, for all $R: \operatorname{Lazy} \operatorname{List}(A) \rightarrow \operatorname{Lazy} \operatorname{List}(A) \rightarrow$ Bool:

## Recipe for making sense of coinductive specifications

The relation subll : $\operatorname{LazyList}(A) \rightarrow \operatorname{LazyList}(A) \rightarrow$ Bool specified coinductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }(\text { a\#as })} \text { (ConsR) } \\
\frac{\text { subll as as }}{\text { subll }(\text { a\# as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

"Coinductively" means: greatest relation consistent with the given rules. More precisely: We define subll $=\mathrm{J}_{F}$, where $F:(\operatorname{LazyList}(A) \rightarrow$ $\operatorname{LazyList}(A) \rightarrow$ Bool $) \rightarrow(\operatorname{LazyList}(A) \rightarrow \operatorname{LazyList}(A) \rightarrow$ Bool $)$ is defined as follows, for all $R: \operatorname{Lazy} \operatorname{List}(A) \rightarrow \operatorname{Lazy} \operatorname{List}(A) \rightarrow$ Bool:
$F R=\lambda b s, b s^{\prime} . \exists a s . b s=[] \wedge b s^{\prime}=a s$

$$
\begin{aligned}
& \vee \\
& \exists a s, a, a s^{\prime} \cdot b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge R \text { as } a s^{\prime} \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge R \text { as } a s^{\prime}
\end{aligned}
$$

## Recipe for making sense of coinductive specifications

The relation subll : $\operatorname{LazyList}(A) \rightarrow \operatorname{LazyList}(A) \rightarrow$ Bool specified coinductively by the rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }(\text { a\#as })} \text { (ConsR) } \\
\frac{\text { subll as as }}{\text { subll }(\text { a\# as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

"Coinductively" means: greatest relation consistent with the given rules. More precisely: We define subll $=\mathrm{J}_{F}$, where $F:(\operatorname{LazyList}(A) \rightarrow$ $\operatorname{LazyList}(A) \rightarrow$ Bool $) \rightarrow(\operatorname{LazyList}(A) \rightarrow \operatorname{LazyList}(A) \rightarrow$ Bool $)$ is defined as follows, for all $R: \operatorname{Lazy} \operatorname{List}(A) \rightarrow \operatorname{Lazy} \operatorname{List}(A) \rightarrow$ Bool:
$F R=\lambda b s, b s^{\prime} . \exists a s . b s=[] \wedge b s^{\prime}=a s$

$$
\begin{aligned}
& \vee \\
& \exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge R \text { as } a s^{\prime} \\
& \vee \\
& \exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge R \text { as } a s^{\prime}
\end{aligned}
$$

$$
F \text { is monotonic, so } \mathrm{J}_{F} \text { exists by Knaster-Tarski. }
$$

## Recipe for making sense of coinductive specifications

| Thanks to | $\ldots$ we obtain |
| :--- | :--- |
| subll being a pre-fixpoint of $F$ | the introduction rules (Nil), (ConsR), (Cons) |
| subll being a post-fixpoint of $F$ | the case distinction rule (Cases) |
| subll being $\geq$ all post-fixpoints of $F$ | the coinduction rule (Coinduct) |

## Recipe for making sense of coinductive specifications

| Thanks to | $\ldots$ we obtain |
| :--- | :--- |
| subll being a pre-fixpoint of $F$ | the introduction rules (Nil), (ConsR), (Cons) |
| subll being a post-fixpoint of $F$ | the case distinction rule (Cases) |
| subll being $\geq$ all post-fixpoints of $F$ | the coinduction rule (Coinduct) |

$$
\begin{gathered}
\frac{\cdot}{\text { subll [] as }}(\mathrm{Nil}) \quad \frac{\text { subll as } a s^{\prime}}{\text { subll as }\left(a \# a s^{\prime}\right)}(\text { ConsR }) \\
\frac{\text { subll as } a s^{\prime}}{\text { subll }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

## Recipe for making sense of coinductive specifications

| Thanks to | ... we obtain |
| :--- | :--- |
| subll being a pre-fixpoint of $F$ | the introduction rules (Nil), (ConsR), (Cons) |
| subll being a post-fixpoint of $F$ | the case distinction rule (Cases) |
| subll being $\geq$ all post-fixpoints of $F$ | the coinduction rule (Coinduct) |

$$
\begin{aligned}
& \frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as } a s^{\prime}}{\text { subll as }(\text { a\# as' })} \text { (ConsR) } \\
& \frac{\text { subll as as }{ }^{\prime}}{\text { subll (a\#as) (a\#as') }} \text { (Cons) } \\
& \text { subll bs bs }{ }^{\prime} \quad \forall \text { as. } b s=[] \wedge b s^{\prime}=a s \longrightarrow P \\
& \forall a s, a s^{\prime}, a . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as } a s^{\prime} \longrightarrow P \\
& \forall a s, a s^{\prime}, a . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge \text { subll as as } s^{\prime} \longrightarrow P
\end{aligned}
$$

## Recipe for making sense of coinductive specifications

| Thanks to | $\ldots$ we obtain |
| :--- | :--- |
| subll being a pre-fixpoint of $F$ | the introduction rules (Nil), (ConsR), (Cons) |
| subll being a post-fixpoint of $F$ | the case distinction rule (Cases) |
| subll being $\geq$ all post-fixpoints of $F$ | the coinduction rule (Coinduct) |

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subll as as' }}{\text { subll }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

$$
\left.\begin{array}{ll}
P c s c s^{\prime} \\
\forall b s, b s^{\prime} . P b s b s^{\prime} \longrightarrow & \left(\exists a s . b s=[] \wedge b s^{\prime}=a s\right) \vee \\
\left(\exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P a s a s^{\prime}\right) \vee \\
\left(\exists a, a s, a s^{\prime} . b s=a \# a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P a s a s^{\prime}\right)
\end{array}\right)
$$

## Recipe for making sense of coinductive specifications

| Thanks to | $\ldots$ we obtain |
| :--- | :--- |
| subll being a pre-fixpoint of $F$ | the introduction rules (Nil), (ConsR), (Cons) |
| subll being a post-fixpoint of $F$ | the case distinction rule (Cases) |
| subll being $\geq$ all post-fixpoints of $F$ | the coinduction rule (Coinduct) |

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subll as as' }}{\text { subll }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

```
Pcscs'
    (\existsas.bs=[]^bs'=as)\vee
\forallbs,b\mp@subsup{s}{}{\prime}.Pbsb\mp@subsup{s}{}{\prime}\longrightarrow(\existsas,a,a\mp@subsup{s}{}{\prime}.bs=as\wedgeb\mp@subsup{s}{}{\prime}=a#a\mp@subsup{s}{}{\prime}\wedge(subll as as'
    (\existsa,as,a\mp@subsup{s}{}{\prime}.bs=a#as\wedgeb\mp@subsup{s}{}{\prime}=a#a\mp@subsup{s}{}{\prime}\wedge(subll as a\mp@subsup{s}{}{\prime}\veeP as a\mp@subsup{s}{}{\prime}))
    subll cs cs'
```

subll is also the greatest (post-)fixpoint of
$G=\lambda P . F($ subll $\vee P)=\lambda P . F\left(\lambda a s, a s^{\prime}\right.$. subll as as ${ }^{\prime} \vee P$ as as $)$.

## Coinductive definitions are subtle!

subll : LazyList $(A) \rightarrow \operatorname{LazyList}(A) \rightarrow$ Bool defined coinductively by the following rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subll [] as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subll as as }{ }^{\prime}}{\text { subll }(\text { a\#as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

Is this really the correct sublist relation on lazy lists?

## Coinductive definitions are subtle!

subll : LazyList $(A) \rightarrow \operatorname{LazyList}(A) \rightarrow$ Bool defined coinductively by the following rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subll [] as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subll as as' }}{\text { subll }(\text { a\# as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

Is this really the correct sublist relation on lazy lists? Infinite proof of the fact that $[0,0, \ldots]$ is a sublist of $[1,1, \ldots]$ :

$$
\frac{\vdots}{\frac{\text { subll }[0,0, \ldots][1,1, \ldots]}{\text { subll }[0,0, \ldots][1,1 \ldots]}}(\text { ConsR) }
$$

## Coinductive definitions are subtle!

subll : LazyList $(A) \rightarrow \operatorname{LazyList}(A) \rightarrow$ Bool defined coinductively by the following rules:

$$
\begin{gathered}
\frac{\cdot}{\text { subll [] as }}(\mathrm{Nil}) \quad \frac{\text { subll as } a s^{\prime}}{\text { subll as }\left(a \# a s^{\prime}\right)}(\text { ConsR }) \\
\frac{\text { subll as } a s^{\prime}}{\text { subll }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

Is this really the correct sublist relation on lazy lists? Infinite proof of the fact that $[0,0, \ldots]$ is a sublist of $[1,1, \ldots]$ :

$$
\frac{\vdots}{\frac{\operatorname{subll}[0,0, \ldots][1,1, \ldots]}{\operatorname{subll}[0,0, \ldots][1,1 \ldots]}}(\text { ConsR })
$$

Proof by coinduction: Take $P b s b s^{\prime}$ be $b s=[0,0, \ldots] \wedge b s^{\prime}=[1,1, \ldots]$.
Then $P$ is consistent with the rules, because $P$ bs bs ${ }^{\prime}$ implies $\exists a s, a, a s^{\prime} . b s=a s \wedge b s^{\prime}=a \# a s^{\prime} \wedge P$ as $a s^{\prime}:$ just take $a s=[0,0, \ldots]$, $a=1$ and $a s^{\prime}=[1,1, \ldots]$.
Therefore $P \leq$ subll, i.e., subll $[0,0, \ldots][1,1, \ldots]$ holds.

Incorrect coinductive definition of "sublist" for lazy lists:

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subll as as }}{\text { subll }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

Exercise: What relation does this really define?

Incorrect coinductive definition of "sublist" for lazy lists:

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subll as as }}{\text { subll }(a \# a s)\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

Exercise: What relation does this really define?

Incorrect coinductive definition of "sublist" for lazy lists:

$$
\begin{gathered}
\frac{\cdot}{\text { subll }[] \text { as }} \text { (Nil) } \frac{\text { subll as as' }}{\text { subll as }\left(a \# a s^{\prime}\right)} \text { (ConsR) } \\
\frac{\text { subll as as }}{\text { subll }(\text { a\#as })\left(a \# a s^{\prime}\right)} \text { (Cons) }
\end{gathered}
$$

Exercise: What relation does this really define?

One way to correct it (where _@_: $\operatorname{List}(A) \rightarrow \operatorname{Lazy} \operatorname{List}(A) \rightarrow \operatorname{Lazy} \operatorname{List}(A)$ denotes the appending of a list to a lazy lazy-list):

$$
\frac{\cdot}{\text { subll }[] \text { as }}(\text { Nil }) \quad \frac{\text { subll as as }{ }^{\prime}}{\text { subll }(a \# a s)\left(b s @\left(a \# a s^{\prime}\right)\right)} \text { (ConsAppend) }
$$

## Induction versus Coinduction

The semantic foundations for induction and coinduction are perfectly dual - via Knaster-Tarski:

- induction: smallest/least pre-fixpoint
- coinduction: largest/greatest post-fipoint

But they have quite different intuitions:

- induction - whatever can be proved using a finite number of rule applications
- coinduction - whatever can be proved using an infinite number of rule applications


## Induction versus Coinduction

The semantic foundations for induction and coinduction are perfectly dual - via Knaster-Tarski:

- induction: smallest/least pre-fixpoint
- coinduction: largest/greatest post-fipoint

But they have quite different intuitions:

- induction - whatever can be proved using a finite number of rule applications
- coinduction - whatever can be proved using an infinite number of rule applications
"Smallest versus largest" is mathematically elegant, but the "finite versus infinite proofs" is what gives us guidance when defining or proving things.


## Induction versus Coinduction

The semantic foundations for induction and coinduction are perfectly dual - via Knaster-Tarski:

- induction: smallest/least pre-fixpoint
- coinduction: largest/greatest post-fipoint

But they have quite different intuitions:

- induction - whatever can be proved using a finite number of rule applications
- coinduction - whatever can be proved using an infinite number of rule applications
"Smallest versus largest" is mathematically elegant, but the "finite versus infinite proofs" is what gives us guidance when defining or proving things.

Can we make this intuition precise?

## Rule-based definitions

Fix a set $A$. A rule over $A$ is a pair $r=(H, a), H \subseteq A$ is a finite set and $a \in A$.

## Rule-based definitions

Fix a set $A$. A rule over $A$ is a pair $r=(H, a), H \subseteq A$ is a finite set and $a \in A$. If $H$ has the form $\left\{a_{1}, \ldots, a_{n}\right\}$, we can write the rule $r$ as

$$
\frac{a_{1} \ldots a_{n}}{a}
$$

## Rule-based definitions

Fix a set $A$. A rule over $A$ is a pair $r=(H, a), H \subseteq A$ is a finite set and $a \in A$. If $H$ has the form $\left\{a_{1}, \ldots, a_{n}\right\}$, we can write the rule $r$ as

$$
\frac{a_{1} \ldots a_{n}}{a}
$$

If $H=\varnothing$, the rule $r$ is called an axiom and can be written as follows:

## Rule-based definitions

Fix a set $A$. A rule over $A$ is a pair $r=(H, a), H \subseteq A$ is a finite set and $a \in A$. If $H$ has the form $\left\{a_{1}, \ldots, a_{n}\right\}$, we can write the rule $r$ as

$$
\frac{a_{1} \ldots a_{n}}{a}
$$

If $H=\varnothing$, the rule $r$ is called an axiom and can be written as follows:

$$
\bar{a}
$$

We fix $\mathcal{R}$, a set of rules over $A$.
We define/specify $\mathrm{I}_{\mathcal{R}}$ inductively by the rules in $\mathcal{R}$, namely:

$$
\left.\frac{(H, a) \in \mathcal{R} \quad}{} \quad \forall b \in H . \mathrm{I}_{\mathcal{R}} b\right)
$$

We define/specify $J_{\mathcal{R}}$ coinductively by the same rules, namely:

$$
\begin{array}{ll}
(H, a) \in \mathcal{R} \quad & \forall b \in H . \mathrm{J}_{\mathcal{R}} b \\
\mathrm{~J}_{\mathcal{R}} a
\end{array}
$$

## Rule-based definitions

According to our semantic recipe, the above mean:
We define $F:(A \rightarrow$ Bool $) \rightarrow(A \rightarrow$ Bool $)$, the operator associated to $\mathcal{R}$, by applying the rules to its input predicate (like we did before in our examples):

$$
F P=\lambda a . \exists H .(H, a) \in \mathcal{R} \wedge(\forall a \in H . P a)
$$

$F$ is monotonic, so $\mathrm{I}_{F}$ and $\mathrm{J}_{F}$ exist by Knaster-Tarski.
We define

- $\mathrm{I}_{\mathcal{R}}=\mathrm{I}_{F}$
- $\mathrm{J}_{\mathcal{R}}=\mathrm{J}_{F}$


## Rule-based definitions

An $\mathcal{R}$-proof tree $\pi$ is a (possibly infinite) tree whose nodes are labeled with elements of $A$ and such that successor nodes correspond to rules; more precisely, if a node $N$ is labeled with $a$ and its successor nodes $N_{1}, \ldots, N_{k}$ are labelled with $a_{1}, \ldots, a_{k}$, then $\left(\left\{a_{1} \ldots a_{k}\right\}, a\right) \in \mathcal{R}$.

## Rule-based definitions

An $\mathcal{R}$-proof tree $\pi$ is a (possibly infinite) tree whose nodes are labeled with elements of $A$ and such that successor nodes correspond to rules; more precisely, if a node $N$ is labeled with $a$ and its successor nodes $N_{1}, \ldots, N_{k}$ are labelled with $a_{1}, \ldots, a_{k}$, then $\left(\left\{a_{1} \ldots a_{k}\right\}, a\right) \in \mathcal{R}$.

If $a$ labels the root of an $\mathcal{R}$-proof tree $\pi$, we say that $\pi$ proves $a$.

## Rule-based definitions

An $\mathcal{R}$-proof tree $\pi$ is a (possibly infinite) tree whose nodes are labeled with elements of $A$ and such that successor nodes correspond to rules; more precisely, if a node $N$ is labeled with $a$ and its successor nodes $N_{1}, \ldots, N_{k}$ are labelled with $a_{1}, \ldots, a_{k}$, then $\left(\left\{a_{1} \ldots a_{k}\right\}, a\right) \in \mathcal{R}$.

If $a$ labels the root of an $\mathcal{R}$-proof tree $\pi$, we say that $\pi$ proves $a$.
An $\mathcal{R}$-proof tree is said to be finite if its set of nodes is finite.

## Rule-based definitions

An $\mathcal{R}$-proof tree $\pi$ is a (possibly infinite) tree whose nodes are labeled with elements of $A$ and such that successor nodes correspond to rules; more precisely, if a node $N$ is labeled with $a$ and its successor nodes $N_{1}, \ldots, N_{k}$ are labelled with $a_{1}, \ldots, a_{k}$, then $\left(\left\{a_{1} \ldots a_{k}\right\}, a\right) \in \mathcal{R}$.

If $a$ labels the root of an $\mathcal{R}$-proof tree $\pi$, we say that $\underline{\pi}$ proves $a$.
An $\mathcal{R}$-proof tree is said to be finite if its set of nodes is finite.
Assuming $(\{c, b\}, a),(\{d, b\}, b),(\varnothing, c),(\varnothing, d),(\varnothing, b) \in \mathcal{R}$, here's an example of a finite $\mathcal{R}$-proof tree:


## Rule-based definitions

An $\mathcal{R}$-proof tree $\pi$ is a (possibly infinite) tree whose nodes are labeled with elements of $A$ and such that successor nodes correspond to rules; more precisely, if a node $N$ is labeled with $a$ and its successor nodes $N_{1}, \ldots, N_{k}$ are labelled with $a_{1}, \ldots, a_{k}$, then $\left(\left\{a_{1} \ldots a_{k}\right\}, a\right) \in \mathcal{R}$.

If $a$ labels the root of an $\mathcal{R}$-proof tree $\pi$, we say that $\pi$ proves $a$.
An $\mathcal{R}$-proof tree is said to be finite if its set of nodes is finite.
Assuming $(\{c, b\}, a),(\{d, b\}, b),(\varnothing, c),(\varnothing, d),(\varnothing, b) \in \mathcal{R}$, and here's an example of an infinite $\mathcal{R}$-proof tree:


## Characterization Theorem

## IMO, crucial for the understanding of coinduction

Theorem. For all $a \in A$ :
(1) $I_{\mathcal{R}} a$ holds iff there exists a finite $\mathcal{R}$-proof tree that proves $a$.
(2) $\mathrm{J}_{\mathcal{R}} a$ holds iff there exists a (possibly infinite) $\mathcal{R}$-proof tree that proves $a$.

Note: It's not really about finite versus infinite - that only happens "by coincidence", since we used finitely branching rule systems.

Remove the restriction that rules $(A, a)$ have the set of hypotheses $A$ finite.
Say a tree is well-founded if it has no infinite paths.
More General Version. For all $a \in A$ :
(1) $I_{\mathcal{R}} a$ holds iff there exists a well-founded $\mathcal{R}$-proof tree that proves $a$. (2) $\mathrm{J}_{\mathcal{R}} a$ holds iff there exists a (possibly non-well-founded) $\mathcal{R}$-proof tree that proves $a$.

## An (obviously incomplete $)_{\text {) }}$ ) list of good sources of learning about induction and coinduction

Jacobs and Rutten 1997. A tutorial on coalgebra and coinduction

Paulson 2000. A fixedpoint approach to (co)inductive and (co)datatype definitions

Pierce 2002. Types and Programming Languages (Section 21.1. Induction and Coinduction)

Bertot 2008. Colnduction in Coq
Blanchette, Popescu \& Traytel 2015. Witnessing (Co)datatypes
Kozen \& Silva 2017. Practical coinduction
Chlipala 2019. Certified Programming with Dependent Types (Chapter 5. Infinite data and proofs)

