
3. Coinductive Predicates



Example of Coinductive Definition



Informal example 3 (the subll predicate) revisited

Given a set A, let LazyList(A) be the set of “lazy lists” (finite or infinite
lists) with elements in A – they have the form [a1, a2, . . . , an] or
[a1, a2, . . .]. We write a#as for the lazy list obtained by consing a to as.

We wish to define the sublist relation, subll , on lazy lists.

The relation subl on (finite) lists is defined inductively by the rules:

⋅
subl [] as

(Nil)
subl as as ′

subl as (a#as ′)
(ConsR)

subl as as ′

subl (a#as) (a#as ′)
(Cons)

The inductive interpretation means: smallest relation closed under the
rules (Nil), (ConsR) and (Cons).

We’ve seen that this does not work for
lazy lists: No infinite list would be a sublist of any list.

Should we rather go for the greatest relation closed under these rules?
No! This would give us the total relation λas, as ′. ⊺.
Let’s take it easy, starting with selecting the properties that we want...
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Desired properties for the predicate subll

Say A = N.

For finite lists, subll should behave just like subl , e.g.,

● subll [1, 3, 4] [1, 2, 3, 4]

● subll [1, 2] [1, 2, 3, 4]

● subll [1, 3] [1, 2, 3, 4]

Also, e.g.,

● subll zeros zeros, in fact subll as as for any as

● subll [0, 2, 4, 6, . . .] [0, 1, 2, 3, . . .]

subll as as ′ should hold if and only if:
assuming as ′ has the form [a′i]i<length as′ (with length as ′ ∈ N ∪ {∞})
there exists [jp]p<length as such that ∀p. p + 1 < length as Ð→ jp < jp+1
and as = [a′jp]p<length as .
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Desired properties for the predicate subll

⋅
subll [] as

(Nil)
subll as as ′

subll as (a#as ′)
(ConsR)

✓

subll as as ′

subll (a#as) (a#as ′)
(Cons)

subll bs bs ′ ∀as. bs = [] ∧ bs ′ = as Ð→ P
∀as, as ′, a. bs = as ∧ bs ′ = a#as ′ ∧ subll as as ′ Ð→ P

∀as, as ′, a. bs = a#as ∧ bs ′ = a#as ′ ∧ subll as as ′ Ð→ P

P
(Cases)

✓

or, equivalently...

subll bs bs ′ Ð→ ∃as. bs = [] ∧ bs ′ = as
∨
∃as, a, as ′. bs = as ∧ bs ′ = a#as ′ ∧ subll as as ′

∨
∃a, as, as ′. bs = a#as ∧ bs ′ = a#as ′ ∧ subll as as ′

✓
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Desired properties for the predicate subll

How about induction?

subll bs bs ′ ∀as. P [] as
∀as, as ′, a. subll as as ′ ∧ P as as ′ Ð→ P as (a#as ′)

∀as, as ′, a. subll as as ′ ∧ P as as ′ Ð→ P (a#as) (a#as ′)
P bs bs ′

(Induct)

X

It would allow us to prove, e.g., subll as as ′ implies as is finite.

This would imply, e.g.,

● ¬ subll zeros zeros

● ¬ subll [0, 2, 4, 6, . . .] [0, 1, 2, 3, . . .]
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Desired properties for the predicate subll
⋅

subll [] as
(Nil)

subll as as ′

subll as (a#as ′)
(ConsR)

subll as as ′

subll (a#as) (a#as ′)
(Cons)

subll bs bs ′ Ð→ ∃as. bs = [] ∧ bs′ = as
∨

∃as, a, as ′. bs = as ∧ bs ′ = a#as ′ ∧ subll as as ′

∨

∃a, as, as ′. bs = a#as ∧ bs ′ = a#as ′ ∧ subll as as ′

How can we prove subll [0, 2, 4, 6, . . .] [0, 1, 2, 3, 4, 5, . . .]?

So accepting infinite proofs with our introduction rules would solve our problem...
But how about something finitely expressible – a blueprint for an infinite proof?

P bs bs ′ = ∃k ∈ N. bs = [2k, 2k + 2, 2k + 4 . . .] ∧ bs ′ = [2k, 2k + 1, 2k + 2, . . .] ∨
bs = [2k + 2, 2k + 4 . . .] ∧ bs ′ = [2k + 1, 2k + 2, . . .]
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Desired properties for the predicate subll

This leads to the coinduction rule for subll :

P cs cs ′

∀bs, bs ′. P bs bs ′ Ð→
(∃as. bs = [] ∧ bs′ = as) ∨
(∃as, a, as ′. bs = as ∧ bs ′ = a#as ′ ∧ P as as ′) ∨
(∃a, as, as ′. bs = a#as ∧ bs ′ = a#as ′ ∧ P as as ′)

subll cs cs ′

(Coinduct)

Terminology: consistent with some rules = “closed backwards” under
these rules

Coinduction says: If a relation P is consistent with the introduction rules
(Nil), (ConsR) and (Cons), then P cs cs ′ implies subll cs cs ′ (for every
cs, cs ′), i.e., P ≤ subll .
In other words, subll is the greatest (largest) relation that is consistent
with the introduction rules.
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(Coinduct)

And since also subll ≤ F subll , we have that subll is the largest
post-fixpoint of F – Knaster-Tarski again!
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Recipe for making sense of coinductive specifications

The relation subll ∶ LazyList(A)→ LazyList(A)→ Bool
specified coinductively by the rules:

⋅
subll [] as

(Nil)
subll as as ′

subll as (a#as ′)
(ConsR)

subll as as ′

subll (a#as) (a#as ′)
(Cons)

“Coinductively” means: greatest relation consistent with the given rules.
More precisely: We define subll = JF , where F ∶ (LazyList(A)→
LazyList(A)→ Bool)→ (LazyList(A)→ LazyList(A)→ Bool) is defined
as follows, for all R ∶ LazyList(A)→ LazyList(A)→ Bool:

F R = λbs, bs ′. ∃as. bs = [] ∧ bs ′ = as
∨
∃as, a, as ′. bs = as ∧ bs ′ = a#as ′ ∧R as as ′

∨
∃a, as, as ′. bs = a#as ∧ bs ′ = a#as ′ ∧R as as ′

F is monotonic, so JF exists by Knaster-Tarski.
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Recipe for making sense of coinductive specifications

Thanks to ... we obtain
subll being a pre-fixpoint of F the introduction rules (Nil), (ConsR), (Cons)
subll being a post-fixpoint of F the case distinction rule (Cases)
subll being ≥ all post-fixpoints of F the coinduction rule (Coinduct)

⋅
subll [] as

(Nil)
subll as as ′

subll as (a#as ′)
(ConsR)

subll as as ′

subll (a#as) (a#as ′)
(Cons)

subll bs bs ′ ∀as. bs = [] ∧ bs ′ = as Ð→ P
∀as, as ′, a. bs = as ∧ bs ′ = a#as ′ ∧ subll as as ′ Ð→ P

∀as, as ′, a. bs = a#as ∧ bs ′ = a#as ′ ∧ subll as as ′ Ð→ P

P
(Cases)

subll is also the greatest (post-)fixpoint of
G = λP. F (subll ∨ P ) = λP. F (λas, as ′. subll as as ′ ∨ P as as ′).
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Coinductive definitions are subtle!

subll ∶ LazyList(A)→ LazyList(A)→ Bool defined coinductively by the
following rules:

⋅
subll [] as

(Nil)
subll as as ′

subll as (a#as ′)
(ConsR)

subll as as ′

subll (a#as) (a#as ′)
(Cons)

Is this really the correct sublist relation on lazy lists?

Infinite proof of the fact that [0, 0, . . .] is a sublist of [1, 1, . . .]:

⋮
(ConsR)

subll [0, 0, . . .] [1, 1, . . .]
(ConsR)

subll [0, 0, . . .] [1, 1 . . .]

Proof by coinduction: Take P bs bs ′ be bs = [0, 0, . . .] ∧ bs ′ = [1, 1, . . .].
Then P is consistent with the rules, because P bs bs ′ implies
∃as, a, as ′. bs = as ∧ bs ′ = a#as ′ ∧ P as as ′: just take as = [0, 0, . . .],
a = 1 and as ′ = [1, 1, . . .].
Therefore P ≤ subll , i.e., subll [0, 0, . . .] [1, 1, . . .] holds.
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Incorrect coinductive definition of “sublist” for lazy lists:

⋅
subll [] as

(Nil)
subll as as ′

subll as (a#as ′)
(ConsR)

subll as as ′

subll (a#as) (a#as ′)
(Cons)

Exercise: What relation does this really define?

One way to correct it (where @ ∶ List(A)→ LazyList(A)→ LazyList(A)
denotes the appending of a list to a lazy lazy-list):

⋅
subll [] as

(Nil)
subll as as ′

subll (a#as) (bs @ (a#as ′))
(ConsAppend)
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Induction versus Coinduction

The semantic foundations for induction and coinduction are perfectly
dual – via Knaster-Tarski:

● induction: smallest/least pre-fixpoint

● coinduction: largest/greatest post-fipoint

But they have quite different intuitions:

● induction – whatever can be proved using a finite number of rule
applications

● coinduction – whatever can be proved using an infinite number of
rule applications

“Smallest versus largest” is mathematically elegant, but the “finite versus
infinite proofs” is what gives us guidance when defining or proving things.

Can we make this intuition precise?
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Can we make this intuition precise?
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Rule-based definitions

Fix a set A. A rule over A is a pair r = (H, a), H ⊆ A is a finite set and
a ∈ A.

If H has the form {a1, . . . , an}, we can write the rule r as

a1 . . . an
a

If H = ∅, the rule r is called an axiom and can be written as follows:

⋅
a

We fix R, a set of rules over A.
We define/specify IR inductively by the rules in R, namely:

(H, a) ∈R ∀b ∈H. IR b

IR a

We define/specify JR coinductively by the same rules, namely:

(H, a) ∈R ∀b ∈H. JR b

JR a
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Rule-based definitions

According to our semantic recipe, the above mean:

We define F ∶ (A→ Bool)→ (A→ Bool), the operator associated to R,
by applying the rules to its input predicate (like we did before in our
examples):

F P = λa. ∃H. (H, a) ∈R ∧ (∀a ∈H. P a)

F is monotonic, so IF and JF exist by Knaster-Tarski.

We define

● IR = IF

● JR = JF



Rule-based definitions

An R-proof tree π is a (possibly infinite) tree whose nodes are labeled
with elements of A and such that successor nodes correspond to rules;
more precisely, if a node N is labeled with a and its successor nodes
N1, . . . , Nk are labelled with a1, . . . , ak, then ({a1 . . . ak}, a) ∈R.

If a labels the root of an R-proof tree π, we say that π proves a.

An R-proof tree is said to be finite if its set of nodes is finite.

Assuming ({c, b}, a), ({d, b}, b), (∅, c), (∅, d), (∅, b) ∈R,
here’s an example of a finite R-proof tree:

⋅
c

⋅
d

⋅
b

b
a
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Characterization Theorem

IMO, crucial for the understanding of coinduction

Theorem. For all a ∈ A:
(1) IR a holds iff there exists a finite R-proof tree that proves a.
(2) JR a holds iff there exists a (possibly infinite) R-proof tree that
proves a.

Note: It’s not really about finite versus infinite – that only happens “by
coincidence”, since we used finitely branching rule systems.

Remove the restriction that rules (A, a) have the set of hypotheses A
finite.
Say a tree is well-founded if it has no infinite paths.

More General Version. For all a ∈ A:
(1) IR a holds iff there exists a well-founded R-proof tree that proves a.
(2) JR a holds iff there exists a (possibly non-well-founded) R-proof tree
that proves a.



An (obviously incomplete ,) list of good sources of
learning about induction and coinduction

Jacobs and Rutten 1997. A tutorial on coalgebra and coinduction

Paulson 2000. A fixedpoint approach to (co)inductive and
(co)datatype definitions

Pierce 2002. Types and Programming Languages (Section 21.1.
Induction and Coinduction)

Bertot 2008. CoInduction in Coq

Blanchette, Popescu & Traytel 2015. Witnessing (Co)datatypes

Kozen & Silva 2017. Practical coinduction

Chlipala 2019. Certified Programming with Dependent Types
(Chapter 5. Infinite data and proofs)
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