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Abstract We present a case study in formally verified security for realistic systems: the
information flow security verification of the functional kernel of a web application, the
CoCon conference management system. CoCon’s kernel is implemented in the Isabelle the-
orem prover, where we specify and verify confidentiality properties, as well as complemen-
tary safety and accountability properties. The information flow expressiveness challenges
posed by this development have led to bounded-deducibility (BD) security, a novel security
model and verification method generally applicable to systems describable as input/output
automata.

1 Introduction

Information flow security is concerned with preventing or facilitating (un)desired flow of
information in computer systems, covering aspects such as confidentiality, integrity, and
availability of information. Dieter Gollmann wrote in 2005 [25]: “Currently, information
flow and noninterference models are areas of research rather than the bases of a practical
methodology for the design of secure systems.” The situation has undergone steady improve-
ments in the past thirteen years. A number of practical systems, some of which are surveyed
by Murray et al. [54], have been formally certified for information flow security—covering
hardware, operating systems, programming languages, web browsers and web applications.

This paper gives a detailed presentation of the verification work that went into one such
system. CoCon is a full-fledged conference management system, featuring multiple users
and conferences and offering much of the functionality of widely used systems such as
EasyChair [18] and HotCRP [19].
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Fig. 1: Confidentiality bug in HotCRP

Conference management systems are widely used in the scientific community. Easy-
Chair alone claims more than two million users. Moreover, the information flow in these sys-
tems possesses enough complexity so that errors can sneak inside implementations, some-
times with bitter–comical consequences. In 2012, Popescu, as well as the authors of 267
papers submitted to a major security conference, initially received an acceptance notifica-
tion, followed by a retraction [35]: “We are sorry to inform you that your paper was not
accepted for this year’s conference. We received 307 submissions and only accepted 40 of
them . . . We apologize for an earlier acceptance notification, due to a system error.”1

The above is an information integrity violation (a distorted decision was initially com-
municated to the authors) and could have been caused by a human error rather than a system
error—but there is the question whether the system should not prevent even such human
errors. The problem with a past version of HotCRP [19] shown in Fig. 1 is even more in-
teresting: it describes a genuine confidentiality violation, probably stemming from the logic
of the system, giving the authors capabilities to read confidential comments by the program
committee (PC).

Although our methods would equally apply to integrity violations, guarding against con-
fidentiality violations is the focus of this verification work. We verify properties such as the
following (where DIS addresses the problem in Fig. 1):

PAP1: A group of users learn nothing about a paper unless one of them becomes an author
of that paper or becomes a PC member at the paper’s conference and the conference has
reached the bidding phase

PAP2: A group of users learn nothing about a paper beyond the last submitted version unless
one of them becomes an author of that paper

REV: A group of users learn nothing about the content of a paper’s review beyond the last
submitted version before the discussion phase and the later versions unless one of them
is that review’s author

DIS: The authors learn nothing about the discussion of their paper

In general, we will be concerned with properties restricting the information flow from
the various sensitive documents maintained by the system (papers, reviews, comments, de-
cisions) towards the users of the system. The restrictions refer to certain conditions (e.g.,
authorship, PC membership) as well as to upper bounds (e.g., at most the last submitted
version) for information release.

Here is the structure of this paper. We start with a high-level presentation of the system
architecture and its verified and trusted components (Section 2), after which we delve into
the Isabelle [56, 57] specification of the system’s kernel as an executable input/output (I/O)
automaton (Section 3).

Then we move to describing the first main contribution of this paper: a novel secu-
rity model called bounded-deducibility (BD) security, born from confronting notions from

1 After reading the initial acceptance notification, Popescu went out to celebrate; it was only hours later
when he read the retraction.
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Fig. 2: System Architecture

the literature with the challenges posed by our system (Section 4). The result is a reusable
framework, applicable to any I/O automaton. Its main novelty is wide flexibility: it allows
the precise formulation of role-based and time-based declassification triggers and of declas-
sification upper bounds. The framework is instantiated to provide a comprehensive coverage
of CoCon’s confidentiality properties of interest, including the ones discussed in this intro-
duction. To address information flow security concerns more thoroughly, we discover the
need for a form of accountability properties (Section 4.6), which naturally complement BD
security by showing that the declassification triggers cannot be forged.

The second main contribution is a verification infrastructure for BD security, centered
around an unwinding proof technique (Section 5), which we have deployed for CoCon’s
confidentiality properties. In the process of verifying confidentiality, we need to prove as
lemmas several safety properties (system invariants). The formal Isabelle scripts, covering
both the abstract framework and the CoCon instances, are made available from this paper’s
website [34].

The current paper is an extended version of a conference paper presented at CAV 2014
[37]. In addition to the material in the conference paper, it includes:

– the detailed description of some of the verified confidentiality properties (in Section 4.4)
and of the unwinding relations used in their verification (in Section 5.3)

– a presentation of the accountability properties (as the newly added Section 4.6)
– the full definition of the abstract unwinding conditions (in Section 5.1) and their com-

positionality oriented theorems (in Section 5.2)
– an up-to-date discussion of related work (as the newly added Section 6)

2 Overall Architecture and Security Guarantees

The architecture of our system (Fig. 2) follows the paradigm of security by design:

– We formalize and verify the kernel of the system in the Isabelle proof assistant
– The formalization is automatically translated into a functional programming language
– The translated program is wrapped in a web application

Isabelle Specification We specify CoCon’s kernel as an I/O automaton (Mealy machine),
with the inputs called “actions.” We first define, using Isabelle’s records, the notions of state
(holding information about users, conferences, and papers) and user action (representing
user requests for manipulating documents and rights in the system: upload and download
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papers, edit reviews, assign reviewers, etc.). Then we define the step function that takes a
state and an action and returns a new state and an output.

Scala Functional Program The specification was designed to fall within the executable
fragment of Isabelle. This allows us to automatically synthesize, using Isabelle’s code gen-
erator [30], a program in the functional fragment of Scala [3], which is isomorphic to the
specification. The types of data used in the specification (numbers, strings, tuples, records)
are mapped to the corresponding Scala types. An exception is the Isabelle type of paper
contents, which is mapped to the Scala/JVM file type.

Web Application Finally, the Scala program is wrapped in a web application, offering a
menu-based user interface. Upon login, a user sees his conferences and his roles for each
of them; the menus offer role-sensitive choices, e.g., assign reviewers (for chairs) or upload
papers (for authors).

Verified and Trusted Components Our Isabelle verification targets information flow prop-
erties of CoCon’s kernel. These properties express that, for any possible trace of the system,
there is no way to infer from certain observations on that trace (e.g., actions performed by
designated users), certain values extracted from that trace (e.g., the paper uploads by other
users). In order for these guarantees to apply to the overall system (the entire web applica-
tion), there are a few components that we need to trust (or, in the future, verify).

First, we need to trust Isabelle’s code generator. Its general-purpose design is quite flex-
ible, supporting program and data refinement [30]. In the presence of these rich features, the
code generator is only known to preserve partial correctness, hence safety properties [29,30].
However, here we use the code generator in a very restrictive manner, to “refine” an already
deterministic specification which is an implementation in its own right—the code generator
simply translates it from the functional language of Isabelle to that of Scala. In addition,
all the used Isabelle functions are proved to terminate, and nontrivial data refinement is
disabled. These allow us to (informally) conclude that the synthesized implementation is
trace-isomorphic to the specification, hence the former leaks as little information as the
latter. (This meta-argument does not cover timing channels, but these seem to be of little
importance for leaking document content.)

Second, we need to trust that no further leakage occurs via the web application wrap-
per, which acts mostly as a stateless interface to the step function: upon a user request, it
invokes this step function (once or multiple times) with input from the user and then pro-
cesses and displays the output of the step function. This constitutes a fundamentally safe
interaction with the verified kernel. An exception to statelessness is the user identity man-
agement component, which performs the password hashing and stores session tokens as
an outside-of-kernel state. This trusted component is of course critical to the overall confi-
dentiality guarantees. The third-party libraries used by our web application also have to be
trusted not to be vulnerable to exploits.

Finally, our verification targets only the server side implementation logic—lower-level
attacks, as well as browser-level forging are out of its reach, but are orthogonal issues that
could in principle be mitigated separately.

3 System Specification

CoCon is inspired by EasyChair [18], a popular conference system created by Andrei Voronkov.
It hosts multiple users and conferences, allowing the creation of new users and confer-
ences at any time. It has a superuser, which we call voronkov as a tribute to EasyChair. The
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voronkov is the first user of the system, and his role is to approve new-conference requests.
A conference goes through several phases.

No-Phase Any user can apply for a new conference, with the effect of registering it in the
system as initially having “no phase.” After approval from the voronkov, the conference
moves to the setup phase, with the applicant becoming a conference chair.
Setup A conference chair can add new chairs and new regular PC members. From here on,
moving the conference to successor phases can be done by the chairs.

Submission Any user can list the conferences awaiting submissions (i.e., being in the sub-
mission phase). He can submit a paper, upload new versions, or indicate other users as
coauthors thereby granting them reading and editing rights.

Bidding Authors are no longer allowed to upload or register new papers, and PC members
are allowed to view the submitted papers. PC members can place bids, indicating for each
paper one of the following preferences: “want to review”, “would review”, “no preference”,
“would not review”, and “conflict”. If the preference is “conflict”, the PC member cannot
be assigned that paper, and will not see its discussion. “Conflict” is assigned automatically
to papers authored by a PC member.

Reviewing Chairs can assign papers to PC members for reviewing either manually or by
invoking an external program to establish fair assignment based on some parameters: prefer-
ences, number of papers per PC member, and number of reviewers per paper. The assigned
reviewers can edit their reviews.

Discussion All PC members having no conflict with a paper can see its reviews and can add
comments. The reviewers can still edit their reviews, but in a transparent manner—so that
the overwritten versions are still visible to the non-conflict PC members. Also, chairs can
edit the decision.

Notification The authors can read the reviews and the accept/reject decision, which no one
can edit any longer.

Closing The conference becomes inactive. All users can still read the documents previously
readable, but nothing is editable any longer.

3.1 State, Output, Actions, and Step Function

The state stores the lists of registered conference, user, and paper IDs and, for each ID,
actual conference, user, or paper information. For user IDs, the state also stores (hashed)
passwords. In the context of a conference, each user is assigned one or more of the roles
described by the following Isabelle datatype:

datatype Role = Chair | PC | Aut PaperID | Rev PaperID Nat

with the following meanings, assuming pid is a paper ID and n is a number:

Chair: The user is a chair of the conference
PC: The user is a member of the program committee
Aut pid: The user is an author of the paper with ID pid
Rev pid n: The user is the nth reviewer of the paper with ID pid

In a state, each paper ID is assigned a paper having title, abstract, content, and, in
due time, a list of reviews, a discussion text, and a decision. We keep different versions
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of the decision and of each review, as they may transparently change during the discus-
sion phase. This means that a decision is a list of strings representing its different versions,
Dec = List (String). Similarly, a review is a list of review contents representing its differ-
ent versions, Review = List (Review_Content), where Review_Content consists of triples
(expertise, text, score).

In addition, the state stores: for each conference, the list of (IDs of) papers submit-
ted to that conference, the list of news updated by the chairs, and the current phase; for
each user and paper, the preferences resulted from biddings; for each user and conference,
a list of roles. We will mainly manipulate the roles through discriminators. For example,
isPC s cid uid returns True just in case in state s the user uid is a PC member for conference
cid. Here is the formal structure of the state:

record State =
confIDs : List (ConfID) conf : ConfID→ Conf

userIDs : List (UserID) pass : UserID→ Pass

user : UserID→ User roles : ConfID→ UserID→ List (Role)
paperIDs : ConfID→ List (PaperID) paper : PaperID→ Paper

pref : UserID→ PaperID→ Pref voronkov : UserID

news : ConfID→ List (String) phase : ConfID→ Phase

The initial state of the system, istate∈ State, is the one with a single user, the voronkov,
and no conferences.

istate =
confIDs = [] conf = (λ cid. emptyConf)
userIDs = [“voronkov”] pass = (λ uid. emptyPass)
user = (λ uid. emptyUser) roles = (λ cid uid. [])
paperIDs = (λ cid. []) paper = (λ pid. emptyPaper)
pref = (λ uid pid. NoPref) voronkov = “voronkov”
news = (λ cid. []) phase = (λ cid. noPh)

Actions are parameterized by user IDs and passwords. There are 45 actions forming five
categories: creation, update, undestructive update (u-update), reading and listing.

The creation actions register new objects (users, conferences, chairs, PC members, pa-
pers, authors), assign reviewers (by registering new review objects), and declare conflicts.
For example, cPaper cid uid pw pid title abs is an action by user uid with password pw
attempting to register to conference cid a new paper pid with indicated title and abstract.
Moreover, cAuthor cid uid pw pid uid′ expresses an attempt of user uid with password pw
to create a new (co)author for the paper pid in the context of the conference cid—namely,
to set the user uid′ as this new author.

The update actions modify the various documents of the system: user information and
password, paper content, reviewing preference, review content, etc. For example, uPaperC

cid uid pw pid pct is an attempt by user uid with password pw to upload a new version of
paper pid by modifying its content to pct.

The u-update actions are similar, but also record the history of a document’s versions.
For example, if a reviewer decides to change his review during the discussion phase, then the
previous version is still stored in the system and visible to the other PC members (although
never to the authors). Other documents subject to u-updates are the news, the discussion,
and the accept-reject decision.

The reading actions access the content of the system’s documents: papers, reviews,
comments, decisions, news. The listing actions produce lists of IDs satisfying various
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filters—e.g., all conferences awaiting paper submissions, all PC members of a conference,
all the papers submitted by a given user, etc.

The different categories of actions are wrapped in a single datatype through specific
constructors:

datatype Act = Cact cAct | Uact uAct | UUact uuAct | Ract rAct | Lact lAct

Note that the first three categories of actions are aimed at modifying the state, and the
last two are aimed at observing the state through outputs. However, the modification actions
also produce a simple output, since they may succeed or fail. Moreover, the observation
actions can also be seen as changing the state to itself. Therefore we can assume that both
types produce a pair consisting of a new state and an output.

Outputs include some generic output types, like outOK for a successful update action
and outErr for a failed action. Moreover, outputs for various datatypes are defined, e.g., for
Booleans, lists of strings, lists of pairs of strings, etc. Similarly to the case of actions, all
these types of outputs are wrapped together in a single type Out.

Finally, we define the step function step : State→ Act→ Out× State that operates
by determining the type of the action and dispatching specialized handler functions. We
illustrate the definition of step by zooming into one of its subcases:

step s a ≡
case a of Cact ca ⇒ case ca of

cAuthor cid uid pw pid uid′ ⇒
if e_createAuthor s cid uid pw pid uid′

then (outOK, createAuthor s cid uid pw pid uid′)
else (outErr, s)

| cConf cid uid pw name abs ⇒ . . .
. . .

| Uact ua ⇒ . . .
| UUact uua ⇒ . . .
| Ract ra ⇒ . . .
| Lact la ⇒ . . .

Above, we only showed one subcase of the creation-action case in full. The semantics of
each type of action (e.g., cAuthor, which is itself a subtype of creation actions) has an associ-
ated test for enabledness (here, e_createAuthor) and an effect function (here, createAuthor).

The enabledness test checks if it is allowed to perform the requested action: if the IDs
of the involved users and conferences exist (expressed by a generic predicate IDsOK), if the
password matches the acting user’s ID, if the conference phase is appropriate, if the acting
user holds the appropriate role, etc.:

e_createAuthor s cid uid pw pid uid′ ≡
IDsOK s [cid] [uid, uid′][pid] ∧ pass s uid = pw ∧
phase s cid = Submission ∧ isAut s uid pid ∧ uid 6= uid′

The effect is only applied if the action is enabled; otherwise an error output is issued. In
this example, the effect is to add an author uid′ to the existing paper pid, as well as a conflict
in the system database between the author and the paper:

createAuthor scid uid pw pid uid′ ≡
let rls = roles s cid uid′ in
s (roles := fun_upd2 (roles s) cid uid′ (insert (Aut pid) rls),

pref := fun_upd2(pref s) uid′ pid Conflict)
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To the outside world, i.e., to the web application wrapper, our specification only exports
the initial state istate : State→ bool and the step function step : State→Act→Out×State,
i.e., it exports an I/O automaton.

4 Security Model

In what follows, we first analyze the literature for possible inspiration concerning a suitable
security model for our system. Then we introduce our own notion, which is an extension of
Sutherland’s nondeducibility [66] that factors in declassification triggers and bounds.

4.1 A Look at the Relevant Literature

There is a vast amount of literature on information flow security models, with many variants
of formalisms and verification techniques. An important distinction is between models that
completely forbid information flow (between designated sources and sinks) and models that
only restrict the flow, allowing some declassification, i.e., controlled information release.
Historically, the former were introduced first, and the latter were subsequently introduced
as generalizations.

Absence of Information Flow The information flow security literature starts in the late
1970s and early 1980s [14, 23, 59], motivated by the desire to express the absence of in-
formation leaks of systems more abstractly and more precisely than by means of access
control [7, 40].

Applied to our case of interest, the debate concerning information flow control versus
access control can be summarized as follows: Wouldn’t properties such as “only users with
a certain role can access a certain data” suffice, where the data is identified as a particular
state component, such as a stored document? In other words, isn’t the simpler access data a
good substitute for learn information? More than twenty years ago, the security community
has decisively established that the answer is “no”—McLean [49] gives a good early sum-
mary of the debate and its conclusion, which was reinforced by the subsequent abundant
literature (including the one cited below). Indeed, while access control properties are par-
tially reassuring, no collection of such properties can offer the level of assurance achieved
by factoring in genuine information flow in the statements.

For example, proving that an author learns nothing about his reviews before the noti-
fication phase represents much more than proving that an author cannot access his reviews
before the notification phase. Unlike the latter, the former is a global property of the system
that excludes in one swoop a whole variety of potential leaks. Here is one leaking scenario:
The PC members are shown all the papers, but the scores of the papers with which they
have conflict are omitted; moreover, the PC members clearly have conflict with their own
(authored) papers. But what if the current average score of the papers’ reviews is used to
determine the order in which the papers are listed? Then a PC member may learn the current
average score for their authored paper with high accuracy—without accessing the review
documents. An ad hoc access control property can be designed to cope with this particu-
lar scenario, but there is an endless supply of such scenarios, which an information flow
property would exclude without having to consider explicitly.

Influential early contributions to information flow security were Goguen and Meseguer’s
notion of noninterference [23] and its associated proof by unwinding [24]. Unwinding is es-
sentially a form of simulation that allows one to construct incrementally, from a perturbed
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trace of the system, an alternative “corrected” trace that “closes the leak.” Many other no-
tions were introduced subsequently, either in specialized programming-language-based [63]
or process-algebra-based [21, 62] settings or in purely semantic, event-system-based set-
tings [47, 48, 58, 66]. (Here we are mostly interested in the last category.) These notions
are aimed at extending noninterference to nondeterministic systems, closing Trojan-horse
channels, or achieving compositionality. The unwinding technique has been generalized for
some of these variants—McLean [49] and Mantel [45] give overviews.

Even ignoring our aimed declassification aspect, most of these notions do not adequately
model our properties of interest exemplified in the introduction. One problem is that they
are not flexible enough w.r.t. the observations. They state nondetectability of the presence
or absence of certain events anywhere in a system trace. By contrast, we are interested
in a very controlled positioning of such undetectable events: in the property PAP2 from
the introduction, the unauthorized user should not learn of preliminary (non-final) uploads
of a paper. Moreover, we are not interested in whole events, but rather in certain relevant
values extracted from the events: e.g., the content of the paper, and not the ID of one of the
particular authors who uploads it.

A fortunate exception to the above flexibility problems is Sutherland’s early notion of
nondeducibility [66]. One considers a set of worlds World and two functions F : World→ J
and H : World→ K. For example, the worlds could be the valid traces of the system, F could
select the actions of certain users (potential attackers), and H could select the actions of other
users (intended as being secret). Nondeducibility of H from F says that the following holds
for all w ∈World: for all k in the image of H, there exists w1 ∈World such that F w1 = F w
and H w1 = k. Intuitively, from what the attacker (modeled as F) knows about the actual
world w, the secret actions (the value of H) could be anything (in the image of H)—hence
cannot be “deduced.” The generality of this framework allows one to fine-tune both the
location of the relevant events in the trace and their values of interest. But generality is no
free lunch: it is no longer clear how to provide an unwinding-like incremental proof method.

Halpern and O’Neill [31] recast nondeducibility as a property called secrecy mainte-
nance, in a multi-agent framework of “runs-and-systems” [60] based on epistemic logic.
Their formulation enables general-purpose epistemic logic primitives for deducing absence
of leaks, but no unwinding or any other inductive reasoning technique.

Restriction of Information Flow A large body of work on declassification was pursued in
a language-based setting. Sabelfeld and Sands [64] give an overview of the state of the art up
to 2009. Although they target language-based declassification, they identify some generic
dimensions of declassification that apply to our case:

– What information is released? Here, document content, e.g., of papers, reviews, etc.
– Where in the system is information released? In our case, the relevant “where” is a “from

where” (referring to the source, not to the exit point): from selected places in the system
trace, e.g., the last submitted version before the deadline.

– When can information be released? After a certain trigger occurs, e.g., authorship.
– Who releases the information? The users who are entitled, e.g., the authors of a docu-

ment.

Sabelfeld and Sands consider another interesting instance of the “where” dimension, namely
intransitive noninterference [44, 61]. This is an extension of noninterference that allows
downgrading of information, say, from High to Low, via a controlled Declassifier level. It
could be possible to encode aspects of our properties of interest as intransitive noninterfer-
ence, e.g., we could encode the act of a user becoming an author as a declassifying action
for the target paper. However, such an encoding would be rather technical and somewhat
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artificial for our system; additionally, it is not clear how to factor in our aforementioned
specific “where” dimension.

The “when” aspect of declassification has been included as first-class citizen in cus-
tomized temporal logics [13, 17], which can express aspects of our desired properties, e.g.,
“unless/until he becomes an author,” but do not have the flexibility to capture some of the
fine-grained aspects, such as the “beyond” component of PAP2 and REV.

4.2 Bounded-Deducibility Security

We introduce a novel notion of information flow security that:

– retains the precision and versatility of nondeducibility
– factors in declassification as required by our motivating examples
– is amenable to a general unwinding technique

We shall formulate security in general, not only for our concrete system from Sec-
tion 3.1, but for any I/O automaton indicated by the following data, which will be considered
fixed throughout this subsection: the sets of states, State, actions, Act, and outputs, Out, an
initial state istate ∈ State, and a step function step : State→ Act→ Out×State.

We let Trans, the set of transitions, be State×Act×Out×State. Thus, a transition trn
is a tuple, written (s, a, o, s′); s indicates the source, a the action, o the output, and s′ the
target. trn is called valid if it is induced by the step function, namely step s a = (o, s′).

A trace tr ∈ Trace is any list of transitions: Trace = List (Trans). For any s ∈ State, the
set of valid traces starting in s, Valids⊆Trace, consists of the traces of the form [(s1, a1, o1, s2),
(s2, a2, o2, s3), . . . , (sn−1, an−1, on, sn)] for some n, where s1 = s and each transition (si, ai, oi,
si) is valid. We will be interested in the valid traces starting in the initial state istate—we
simply call these valid traces and write Valid for Validistate.

Besides the I/O automaton, we assume that we are given the following data:

– a value domain Val, together with a value filter ϕ : Trans→ Bool and a value producer
f : Trans→ Val

– an observation domain Obs, together with an observation filter γ : Trans→ Bool and an
observation producer g : Trans→ Obs

We define the value function V : Trace→ List (Val) componentwise, filtering out values
not satisfying ϕ and applying f :

V []≡ [] V([trn] · tr)≡ if ϕ trn then ( f trn) · (V tr) else V tr

We also define the observation function O : Trace→ List (Obs) just like V, but using γ
as a filter and g as a producer.

We think of the above as an instantiation of the abstract framework for nondeducibility
recalled in Section 4.1, where World = Valid, F = O, and H = V. Thus, nondeducibility
states that the observer O may learn nothing about V. Here we are concerned with a more
fine-grained analysis, asking ourselves what may the observer O learn about V.

Using the idea underlying nondeducibility, we can answer this question precisely: Given
a trace tr ∈ Valid, the observer sees O tr and therefore can infer that V tr belongs to the set
of all values V tr1 for some tr1 ∈ Valid such that O tr1 = O tr. In other words, he can infer
that the value is in the set V (O−1(O tr) ∩ Valid), and nothing beyond this. We call this set
the declassification associated to tr, written Dectr.

We want to establish, under certain conditions, upper bounds for declassification, or, in
terms of set-theoretic inclusion, lower bounds for Dectr. To this end, we further fix:
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– a relation B : List (Val)→ List (Val)→ Bool, which we call declassification bound
– a predicate T : Trans→ Bool, which we call declassification trigger

The system is called bounded-deducibility-secure (BD-secure) if for all tr ∈ Valid such
that never T tr, it holds that {vl1 | B (V tr) vl1} ⊆ Dectr (where “never T tr” means “T holds
for no transition in tr”). Informally, BD security expresses the following:

If the trigger T never holds (i.e., unless T eventually holds, i.e., until T holds),
then the observer O can learn nothing about the values V beyond B

We can think of B positively, as an upper bound for declassification, or negatively, as a
lower bound for uncertainty. On the other hand, T is a trigger removing the bound B—as
soon as T becomes true, the containment of declassification is no longer guaranteed. In the
extreme case of B being everywhere true and T everywhere false, we have no declassifica-
tion, i.e., total uncertainty—in other words, standard nondeducibility.

Expanding some of the above definitions, we can alternatively express BD security as
the following being true for all tr ∈ Valid and vl, vl1 ∈ List (Val):

never T tr ∧ V tr = vl ∧ B vl vl1 → (∃tr1 ∈ Valid. O tr1 = O tr ∧ V tr1 = vl1) (∗)

4.3 Discussion

BD security is a natural extension of nondeducibility. If one considers the latter as reason-
ably expressing the absence of information leak, then one is likely to accept the former as a
reasonable means to indicate bounds on the leak. Unlike previous notions in the literature,
BD security allows to express the bounds as precisely as desired.

As an extension of nondeducibility, BD security is subject to the same criticism. The
problem with nondeducibility [47, 49, 62] is that in some cases it is too weak, since it takes
as plausible each possible explanation for an observation: if the observation sequence is
ol, then any trace tr such that O tr = vl is plausible. But what if the low-level observers
can synchronize their actions and observations with the actions of other entities, such as
a high-level user or a Trojan horse acting on his behalf, or even a third-party entity that
is neither high nor low? Even without synchronization, the low-level observers may learn,
from outside the system, of certain behavior patterns of the high-level users. Then the set of
plausible explanations can be reduced, leading to information leak.

In our case, the low-level observers are a group of users assumed to never acquire a
certain status (e.g., authorship of a paper). The other users of the system are either “high-
level” (e.g., the authors of the paper) or “third-party” (e.g., the non-author users not in the
group of observers). Concerning the high-level users, it does not make sense to assume that
they would cooperate to leak information through the system, since they certainly have better
means to do that outside the system, e.g., via email. Users also do not have to trust external
software, since everything is filtered through the system kernel—e.g., a chair can run an
external linear-programming tool for assigning reviewers, but each assignment is still done
through the verified step function. As for the possible third-party cooperation towards leaks
of information, this is bypassed by our consideration of arbitrary groups of observers: in the
worst case, all the unauthorized users can be placed in this group. However, the possibility
to learn and exploit behavior patterns from outside the system is not explicitly addressed by
BD security—it would be best dealt with by a probabilistic analysis.
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4.4 Instantiation to Our Running Examples

Recall that BD security involves the following parameters:

– an I/O automaton (State, Act, Out, istate, step)
– infrastructures for values (Val, ϕ, f ) and observations (Obs, γ, g)
– a declassification specification: trigger T and bound B

In particular, this applies to our conference system automaton. As we are about to show, BD
security captures our examples by suitably instantiating the observation and declassification
parameters.
Common Observation Infrastructure For all our examples, we consider the same ob-
servation infrastructure. We fix UIDs, the set of IDs of the observing users. We let Obs =
Act×Out. We take γ to hold for a transition iff its acting user is in UIDs, and g to return its
action and output:

γ (s, a, o, s′) ≡ userOf a ∈ UIDs

g (s, a, o, s′) ≡ (a, o)

O tr thus purges tr keeping only actions performed (or merely attempted) by users in UIDs.
The value infrastructure depends on the considered type of document.

Value Infrastructure for PAP1 and PAP2 We fix PID, the ID of the paper of interest. We
let Val = List (Paper_Content). We take ϕ to hold iff the transition is a successful upload
of paper PID’s content, and f to return the uploaded content. V tr thus returns the list of all
uploaded paper contents for PID:

ϕ (s, a, o, s′) ≡ o = outOK ∧ (∃ cid uid pw pct. a = Uact (uPaperC cid uid pw PID pct))
f (s, a, o, s′) ≡ pct

Above, the value pct from the righthand side of the definition of f (s, a, o, s′) is the one
uniquely determined by the condition defining ϕ (s, a, o, s′). (When ϕ (s, a, o, s′) does not
hold, the result returned by f (s, a, o, s′) is irrelevant.)

The declassification triggers and bounds are specific to each example.
Declassification Trigger and Bound for PAP1 We define T(s, a, o, s′) as “in state s′, the
paper PID is registered at some conference cid and some user in UIDs is an author of PID or
a PC member of cid and the conference has reached the bidding phase,” formally:

∃uid ∈ UIDs. ∃ cid. PID ∈ paperIDs s′ cid ∧
(isAut s′ uid PID ∨ isPC s′ uid cid ∧ phase s′ cid ≥ Bidding)

Intuitively, the intent with PAP1 is that, provided T never holds, users in UIDs learn
nothing about the various consecutive versions of PID. But is it true that they can learn
absolutely nothing? There is the possibility that a user could infer that no version was sub-
mitted: Say the paper’s conference has not yet reached the submission phase; then the trace
of paper uploads must be empty. But indeed, nothing beyond this quite harmless information
should leak: any nonempty value sequence vl might as well have been any other (possibly
empty) sequence vl1. Hence we define B vl vl1 as vl 6= []. It is interesting to notice here that,
while a user could determine emptiness, this is not true for nonemptiness. This shows that
declassification bounds can be naturally asymmetric.
Declassification Trigger and Bound for PAP2 The trigger only involves authorship, ignor-
ing PC membership at the paper’s conference—we take T(s, a, o, s′) to be

∃uid ∈ UIDs. ∃ cid. PID ∈ paperIDs s′ cid ∧ isAut s′ uid PID
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In the case of PAP2, we have a genuine example of nontrivial declassification bound:
since a PC member can learn the paper’s content but only as its last submitted version, we
take B vl vl1 to be

vl 6= [] ∧ vl1 6= [] ∧ last vl = last vl1

where the function last returns the last element of a list.
Instantiation for REV To uniquely identify a review, we fix not only a paper ID PID, but
also a number N—with the understanding that the pair (PID, N) denotes the Nth review
of the paper PID. The value infrastructure refers not only to the review’s content but also
to the conference phase: Val = List (Phase×Review_Content). The functions ϕ and f are
defined similarly to those for PAP1 and PAP2, mutatis mutandis. Thus, ϕ checks whether the
transition is a successful update or u-update2 of the given review, namely (PID, N), and f
returns a pair consisting of the conference’s current phase and the updated review’s content;
hence V returns a list of such pairs.

ϕ (s, a, o, s′) ≡ o = outOK ∧
(∃ cid uid pw rct. a = Uact (uReview cid uid pw PID N rct) ∨

a = UUact (uuReview cid uid pw PID N rct))
f (s, a, o, s′) ≡ (phase s cid, rct)

The trigger T is similar to that of PAP2 but refers to authorship of the paper’s Nth review
rather than paper authorship:

T (s, a, o, s′) ≡ ∃uid ∈ UIDs. ∃ cid. PID ∈ paperIDs s′ cid ∧ isRevNth s′ uid PID N

One may wonder why do we keep the conference phase as part of the value infrastructure
for REV, in other words, why do we have f return the conference phase in addition to
the review content. The answer is that we need this information in order to formulate an
appropriate bound B, which is able to distinguish between updates occurring before the
discussion phase and those occurring starting from the discussion phase—because these
updates have different confidentiality statuses. It is a priori knowledge (i.e., knowledge that
can be attained solely by studying the system’s specification) that review updates can only
occur during the review and discussion phases, in this order—i.e., that any produced value
list vl has the form ul ·wl such that the pairs in ul have Reviewing as first component and the
pairs in wl have Discussion as first component. Moreover, any PC member having no conflict
with PID can additionally learn last ul (the last submitted version before discussion), and wl
(the versions updated during discussion); but (unless/until T holds) nothing beyond these.
So we take B vl vl1 to state that vl decomposes as ul ·wl as indicated above, vl1 decomposes
similarly as ul1 ·wl, and last ul = last ul1.
Instantiation for DIS The property DIS needs rephrasing in order to be captured as BD
security. It can be decomposed into:

DIS1: An author always has conflict with his papers
DIS2: A group of users learn nothing3 about a paper’s discussion unless one of them be-

comes a PC member at the paper’s conference having no conflict with the paper

2 Unlike papers, reviews can also be updated undestructively, i.e., with the previous version remaining
available —namely, in the discussion phase.

3 More precisely, almost nothing, i.e., nothing beyond the absence of any edit.
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Source Declassification Trigger Declassification Bound
1 Paper Paper Authorship Last Uploaded Version
2 Paper Authorship or PC MembershipB Absence of Any Upload

3 Review Review Authorship
Last Edited Version
Before Discussion and
All the Later Versions

4
Review Authorship or
Non-Conflict PC MembershipD

Last Edited Version
Before Notification

5
Review Authorship or
Non-Conflict PC MembershipD or
Paper AuthorshipN

Absence of Any Edit

6 Discussion Non-Conflict PC Membership Absence of Any Edit
7 Decision Non-Conflict PC Membership Last Edited Version

8
Non-Conflict PC Membership or
PC MembershipN or Paper AuthorshipN

Absence of Any Edit

9 Reviewer
Assignment Non-Conflict PC MembershipR

Non-Conflict PC Membership
of Reviewers and No. of Reviews

10 Non-Conflict PC MembershipR or
Paper AuthorshipN

Non-Conflict PC Membership
of Reviewers

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review

Fig. 3: CoCon’s confidentiality properties

DIS1 is a safety property (holding for all reachable states of the system). DIS2 is an instance
of BD security defined as expected (in light of our previous analysis). In particular, the value
infrastructure focuses on the actions that (undestructively) update the discussion section with
comments.

ϕ (s, a, o, s′) ≡ o = outOK ∧ (∃ cid uid pw com. a = UUact (uuDis cid uid pw PID com))
f (s, a, o, s′) ≡ com

T (s, a, o, s′) ≡ ∃uid ∈ UIDs. ∃ cid. PID ∈ paperIDs s′ cid ∧
isPC s′ cid uid ∧ pref s′ uid PID 6= Conflict

B vl vl1 ≡ vl 6= []

4.5 More Instances

Fig. 3 shows, in informal notation, the entire array of confidentiality properties we have
formulated as BD security. The observation infrastructure is always the same, given by the
actions and outputs of a fixed group of observer users, as in Section 4.4.

There are several information sources, each yielding a different value infrastructure. In
rows 1–8, the sources are actual documents: paper content, review, discussion, decision. The
properties PAP1, PAP2, REV and DIS2 form the rows 2, 1, 3, and 6, respectively. In rows 9
and 10, the source is the data about the reviewers assigned to a paper.

The declassification triggers express paper or review authorship (being or becoming
an author of the indicated document) or PC membership at the paper’s conference. Some
triggers are also listed with “phase stamps” that strengthen the statements. For example,
“PC membershipB” should be read as “PC membership and paper’s conference phase being
at least bidding.”
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Some of the triggers require lack of conflict with the paper, which is often important for
the security statement to be sufficiently strong. This is the case of DIS2 (row 6), since without
the non-conflict assumption DIS2 and DIS1 would no longer imply the desired property DIS.
By contrast, lack of conflict cannot be added to PC membership in PAP1 (row 2), since such
a stronger version would not hold: even if a PC member decides to indicate conflict with a
paper, this happens after he had the opportunity to see the paper’s content.

Note that the listed properties capture exhaustively the information flow from the indi-
cated sources, in the sense that they identify all the relevant roles that can influence these
flows. This can be seen by traversing the rows for each source upwards—in the increas-
ing order of the bound’s permissiveness, which is also the decreasing order of the trigger’s
permissiveness—and recording the differences with respect to the triggers.

For example, for the review source, we have the following cases:

Row 5: If a user is not the review’s author, not a non-conflict PC member in the discussion
phase, and not the reviewed paper’s author in the notification phase, then he could learn
about the absence of any edit—but nothing more

Subtracting row 4 from row 5: In addition, the reviewed paper’s authors will learn in the no-
tification phase of the last edited version of the review before notification—but nothing
more

Subtracting row 3 from row 4: In addition, non-conflict PC members will learn in the
discussion phase of all the intermediate versions starting from the last one before the
discussion phase and all the later versions (produced during the discussion phase)—but
nothing more

The role that persists even in the least permissive trigger (in row 3) is that of the review’s
author, which obviously has no restriction.

As another example, consider the reviewer assignment source. We have the following
cases:

Row 10: If a user is not a non-conflict PC member in the reviewing phase and not the pa-
per’s author in the notification phase, then he will have access to the a priori knowledge
that reviewers are non-conflict PC members—but nothing more

Subtracting row 9 from row 10: In addition, the paper’s authors will learn in the notification
phase of the number of reviewers (of course, inferring it from the number of reviews they
receive as authors)—but nothing more

Here, the role that persists in the least permissive trigger (in row 9) is that of PC member in
the reviewing phase.

4.6 Accountability Properties

Our confidentiality properties show upper bounds on information release that are valid un-
less/until some trigger T occurs, e.g., chairness, PC membership, authorship, or the con-
ference reaching a given phase. While T is allowed to depend on all four components of a
transition (s, o, a, s′), our CoCon instances only depend on s′, employing predicates such as
isAut s′ uid PID and isPC s′ uid cid. Two questions arise.

First, why do we consider the target state s′ and not the source state s? This is because
our choice gives the more intuitive result: never T holding for a valid trace [(s1, a1, o1, s2),
(s2, a2, o2, s3), . . . , (sn−1, an−1, on, sn)] means that the corresponding state condition fails
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for s2, . . . , sn (importantly, also including the last state sn); and all our trigger conditions
fail trivially for the initial state s1 = istate, therefore not covering this state is not a problem.

Second, why do we formulate T as a state-based condition and not as an action-based
condition? For example, instead of asking that a user uid ∈ UIDs be an author in the transi-
tion’s target state (isAut s′ uid PID), why not ask that the action of such a user becoming an
author has occurred in the trace? A first answer to this is that the two choices are equivalent,
while state-based conditions are easier to formulate.

However, the state-based versus action-based question leads us to a more fundamental
concern about the security guarantees. We have proved that one does not acquire a certain
information unless one acquires a certain role. But how can we know that only “lawfully”
appointed users acquire that role? To fully answer this question, we track back, within valid
traces, all possible chains of events that could have led to certain roles and other information
flow enabling situations—leading to a form of accountability properties.

For instance, we prove that, if a user is currently a chair then he either must have been
the original chair (who registered the conference), or, inductively, must have been appointed
by another chair—and this of course in a well-founded fashion, in that the chain of chair
appointments can always be traced back to the original chair and the registration of the
conference.

Formally, we achieve this by introducing an alternative “is chair” predicate isChair′ :
Trace→ ConfID→ UserID→ Bool, which is defined inductively to account for the lawful
chair-appointment transitions on the trace:

Create Conference:
trn = (_, Cact (cConf cid uid _ _ _), outOK, _)

isChair′ (tr · [trn]) cid uid

Add Chair:
isChair′ tr cid uid′ trn = (_, (Cact (cChair cid uid′ _ uid)), outOK, _)

isChair′ (tr · [trn]) cid uid

Irrelevant Transition:
isChair′ tr cid uid

isChair′ (tr · [trn]) cid uid

The chair role accountability rests on the equivalence between the original (state-based)
predicate and this alternative trace-based predicate:

Prop 1 For all valid traces tr ending in state s, we have that

isChair s cid uid ←→ isChair′ tr cid uid

We formulate (and prove) such accountability properties for all the trigger components
used in our security properties:

1. If a user is an author of a paper then either he has registered the paper in the first place
or, inductively, has been appointed as coauthor by another author

2. If a user is a PC member then he either must have been the original chair or must have
been appointed by a chair

3. If a user is a paper’s reviewer, then he must have been appointed by a chair
4. If a user has conflict with a paper, than he is either an author of the paper or the conflict

has been declared by the user himself or by a paper’s author, in such a way that between
the moment when the conflict has been last declared and the current moment there is no
transition that successfully removes the conflict

5. If a conference is in a given phase different from “no phase,” then this has happened as
a consequence of either a conference approval action by the voronkov (if the phase is
Setup) or a phase change action by a chair (otherwise)
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As expected, some of the above accountability schemes rely on the others. For example,
the accountability scheme of the PC member role relies on that of the chair role, and that of
reviewer relies on those of chair and PC member.

In conclusion, the BD security instances for CoCon state that information disclosure
is bounded, provided certain triggers are not fired. To complement these, we formulate ac-
countability properties, stating that users cannot improperly fire the triggers.

5 Verification

To cope with general declassification bounds, BD security speaks about system traces in
conjunction with value sequences that must be produced by these traces. We extend the un-
winding proof technique to cope with this situation and employ the result to the verification
of our confidentiality properties.

5.1 Unwinding Proof Method

We see from Section 4.2’s definition (∗) that to prove BD security, one starts with a valid
tr (starting in s and having value sequence vl) and an “alternative” value sequence vl1 such
that B vl vl1, and one needs to produce an “alternative” valid trace tr1 starting in s whose
value sequence is vl1 and whose observation sequence is the same as that of tr.

Following the tradition of unwinding for noninterference [24, 61], we wish to construct
tr1 from tr incrementally: as tr grows, tr1 should grow nearly synchronously. If we adopted
the traditional setting, we would take an unwinding relation to be a relation θ : State→
State → Bool that connects the states reached by tr and tr1, satisfying some conditions
ensuring that for all possible moves of tr there is a suitable match by tr1—as in a two player
game where we have control over the tr1 moves and the adversary has control over the tr
moves. In order for tr1 to have the same observation sequence (produced by O) as tr, we
would need to require that the observable transitions of tr1 (i.e., those for which γ holds) are
perfectly synchronized with those of tr and produce the same observations.

So far, so good. However, when dealing with the value sequences (produced by V),
we face the following problem. In contrast to the traditional setting, we must consider an
additional parameter, namely the a priori given value sequence vl1 that needs to be produced
by tr1. In fact, it appears that one would need to maintain, besides an unwinding relation on
states θ : State→ State→ Bool, also an “evolving” generalization of the declassification
trigger B; but then θ and B would certainly need to be synchronized. We resolve this by
enlarging the domain of the unwindings to quaternary relations

∆ : State→ List (Val)→ State→ List (Val)→ Bool

that generalize both θ and B. Intuitively, ∆ s vl s1 vl1 keeps track of the current state of tr, the
remaining value sequence of tr, the current state of tr1, and the remaining value sequence of
tr1.

Let the predicate consume trn vl vl′ mean that the transition trn either produces a value
that is consumed from vl yielding vl′ or produces no value and vl = vl′. Formally:

if ϕ trn then (vl 6= [] ∧ f trn = head vl ∧ vl′ = tail vl) else (vl′ = vl)

In light of the above discussion, we are tempted to define an unwinding as a relation ∆ such
that ∆ s vl s1 vl1 implies either of the following conditions:
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– REACTION: For any valid transition (s, a, o, s′) and lists of values vl, vl′ such that
consume (s, a, o, s′) vl vl′ holds, either of the following holds:

– IGNORE: The transition yields no observation (¬ γ a o) and ∆ s′ vl′ s1 vl1 holds
– MATCH: There exist a valid transition (s1, a1, o1, s′1) and a list of values vl′1 such

that consume (s1, a1, o1, s′1) vl1 vl′1 and ∆ s′ vl′ s′1 vl′1 hold, and the transitions trn
and trn1 either are both unobservable or are both observable and yield the same
observation (i.e., γ trn holds iff γ trn1 holds and, in case these hold, g trn = g trn1)

– INDEPENDENT ACTION: There exist a valid transition (s1, a1, o1, s′1) that yields no ob-
servation (¬ γ a1 o1) and a list of values vl′1 such that consume (s1, a1, o1, s′1) vl1 vl′1 and
∆ s vl s′1 vl′1 hold

The intent is that BD security should hold if there exists an unwinding ∆ that “initially
includes” B. A trace tr1 could then be constructed incrementally from tr, vl and vl1, applying
REACTION or INDEPENDENT ACTION until the three lists become empty.

Progress However, such an argument faces difficulties. First, INDEPENDENT ACTION is not
guaranteed to decrease any of the three lists (tr, vl and vl1). To address this, we strengthen
INDEPENDENT ACTION by adding the requirement that ϕ (s1, a1, o1, s′1) holds—this en-
sures that vl1 decreases (i.e., vl′1 is strictly shorter then vl1). This way, we know that each
REACTION and INDEPENDENT ACTION decreases at least one list: the former tr and the
latter vl1; and since vl is empty whenever tr is, the progress problem seems resolved.

Yet, there is a second, more subtle difficulty: after tr has become empty, how can we
know that vl1 will start decreasing? With the restrictions so far, one may still choose REAC-
TION with parameters that leave vl1 unaffected. So we need to make sure that the following
implication holds: if tr = [] and vl1 6= [], then vl1 will be consumed. Since from inside the
unwinding relation we cannot (and do not want to!) see tr, but only vl, we weaken the
assumption of this implication to “if vl = [] and vl1 6= []”; moreover, we strengthen its con-
clusion to requiring that only the INDEPENDENT ACTION choice (guaranteed to shorten vl1)
be available. Equivalently, we condition the alternative choice of REACTION by the negation
of the above, namely vl 6= [] ∨ vl1 = [].

The above discussion shows that, unlike with traditional unwinding which is a purely
coinductive notion, in the style of (bi)simulation [65] (meaning we win if we manage to stay
in a certain game indefinitely), here we have a blend of coinduction and induction, the latter
requiring that we also make some form of progress in the game.

Exit Condition The third observation is not concerned with a difficulty, but with an opti-
mization. We note that BD security holds trivially if the original trace tr cannot saturate the
value list vl, i.e., if V tr 6= vl—this happens if and only if, at some point, an element v of vl
can no longer be saturated, i.e., for some decompositions tr = tr′ · tr′′ and vl = vl′ · [v] · vl′′

of tr and vl, it holds that V tr′ = vl′ and ∀trn ∈ tr′′. ϕ trn→ f trn 6= v. Can we detect such
a situation from within ∆? The answer is (an over-approximated) yes: after ∆ s vl s1 vl1
evolves by REACTION and INDEPENDENT ACTION to ∆ s′ ([v] · vl′′) s′1 vl′1 for some s′, s′1
and vl′1 (presumably consuming tr′ and saturating the vl′ prefix of vl), then one can safely
exit the game if one proves that no valid trace tr′′ starting from s′ can ever saturate v, in that
it satisfies ∀trn ∈ tr′′. ϕ trn→ f trn 6= v.

The final definition of BD unwinding is given below, where reach : State→ Bool is the
state reachability predicate and reach ¬ T : State→ Bool is its strengthening to reachability
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by transitions that do not satisfy T:
unwind ∆ ≡ ∀s vl s1 vl1. reach ¬ T s ∧ reach s1 ∧ ∆ s vl s1 vl1 →

((vl 6= [] ∨ vl1 = []) ∧ reaction ∆ s s vl s1 vl1) ∨
iaction ∆ s s vl s1 vl1 ∨
(vl 6= [] ∧ exit s (head vl))

The predicates reaction and iaction formalize REACTION and INDEPENDENT ACTION

(with its aforementioned strengthening), the former involving a disjunction of predicates
formalizing IGNORE and MATCH:

reaction ∆ s vl s1 vl1 ≡ ∀a o s′. let trn = (s, a, o, s′) in
trn ∈ Valid ∧ ¬ T trn ∧ consume trn vl vl′ →
match ∆ s s1 vl1 a o s′ vl′ ∨ ignore ∆ s s1 vl1 a o s′ vl′

where:
ignore ∆ s s1 vl1 a o s′vl′ ≡ ¬ γ (s, a, o, s′) ∧ ∆ s′ vl′ s1 vl1
match ∆ s s1 vl1 a o s′ vl′ ≡
∃a1 o1 s′1 vl′1. let trn = (s, a, o, s′) and trn1 = (s1, a1, o1, s′1) in
trn1 ∈ Valid ∧ consume trn1 vl1 vl′1 ∧ (γ trn ←→ γ trn1) ∧
(γ trn→ g trn = g trn1) ∧ ∆ s′ vl′ s′1 vl′1

iaction ∆ s vl s1 vl1 ≡
∃a1 o1 s′1 vl′1. let trn1 = (s1, a1, o1, s′1) in
trn1 ∈ Valid ∧ consume trn1 vl1 vl′1 ∧ ϕ trn1 ∧ ¬ γ trn1 ∧ ∆ s vl s′1 vl′1

The predicate exit is defined as

exit s v ≡ ∀ tr trn. tr · [trn] ∈ Valids ∧ ϕ trn→ f trn 6= v

It essentially expresses a safety property, and therefore can be verified in a trace-free
manner by exhibiting an invariant K : State→ Bool and proving that it holds for s. Intu-
itively, the potential invariant K ensures that the value v can never be produced.

Lemma 2 Assume that the following hold for all valid transitions trn = (s, a, o, s′) such
that K s holds:

– ϕ trn→ f trn 6= v
– K s′

Then ∀s. K s→ exit s v

We can prove that indeed any unwinding relation constructs an “alternative” trace tr1
from any trace tr starting in a ¬T-reachable state:

Lemma 3 unwind ∆ ∧ reach ¬ T s ∧ reach s1 ∧ ∆ s vl s1 vl1 ∧ tr ∈ Valids ∧ never T tr ∧
V tr = vl → (∃tr1. tr1 ∈ Valids1 ∧ O tr1 = O tr ∧ V tr1 = vl1)

Proof By induction on length tr+ length vl1, formalizing our previous analysis concerning
progress.

Theorem 4 (Unwinding Theorem) Assume that the following hold:

– ∀vl vl1. B vl vl1→ ∆ istate vl istate vl1
– unwind ∆

Then the system is BD-secure.

Proof From Lemma 3, taking s1 = s = istate.

According to the theorem, BD unwinding is a sound proof method for BD security: to
check BD security it suffices to define a relation ∆ and prove that it coincides with B on the
initial state and that it is a BD unwinding.
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5.2 Compositional Reasoning

To keep each reasoning step manageable, we replace the monolithic unwinding relation ∆
with a network of relations, such that any relation may unwind to any number of relations
in the network. To achieve this, we replace the single requirement unwind ∆ with a set of
requirements unwind_to ∆ ∆s with ∆s being a set of relations. The predicate unwind_to is de-
fined similarly to unwind, but employing disjunctions of the predicates in ∆s, written disj ∆s:

unwind_to ∆ ∆s ≡ ∀s vl s1 vl1. reach ¬ T s ∧ reach s1 ∧ ∆ s vl s1 vl1 →
((vl 6= [] ∨ vl1 = []) ∧ reaction (disj ∆s) s s vl s1 vl1) ∨
iaction (disj ∆s) s s vl s1 vl1 ∨
(vl 6= [] ∧ exit s (head vl))

This enables a form of sound compositional reasoning: if we verify a condition as above for
each component relation, we obtain an overall secure system.

Corollary 5 (Compositional Unwinding Theorem) Let ∆s be a set of relations. For each
∆∈ ∆s, let next∆ ⊆ ∆s be a (possibly empty) “continuation” of ∆, and let ∆init ∈ ∆s be a chosen
“initial” relation. Assume the following hold:

– ∀vl vl1. B vl vl1→ ∆init istate vl istate vl1
– ∀∆ ∈ ∆s. unwind_to ∆ next∆

Then the system is BD-secure.

Proof One can show that unwind (disj ∆s) holds and use the original unwinding theorem.

The network of components can in principle form any directed graph, the only require-
ment being that each node has an outgoing edge —Fig. 5 shows an example. However, the
unwinding proofs for our CoCon instances will essentially follow the temporal evolution
of the conference as witnessed by the phase change and other events. Hence the following
linear network will suffice (Fig. 6): each ∆i unwinds either to itself, or to ∆i+1 (if i 6= n),
or to an exit component ∆e that invariably chooses the “exit” unwinding condition. To cap-
ture this type of situation, we employ the predicate unwind_cont that restricts the unwinding
of ∆i to proper continuations (i.e., no exits) and the predicate unwind_exit that restricts the
unwinding of ∆e to exits (as depicted in Fig. 6):

unwind_cont ∆ ∆s ≡ ∀s vl s1 vl1. reach ¬ T s ∧ reach s1 ∧ ∆ s vl s1 vl1 →
((vl 6= [] ∨ vl1 = []) ∧ reaction (disj ∆s) s s vl s1 vl1) ∨
iaction (disj ∆s) s s vl s1 vl1

unwind_exit ∆ ≡ ∀s vl s1 vl1. reach ¬ T s ∧ reach s1 ∧ ∆ s vl s1 vl1 →
vl 6= [] ∧ exit s (head vl)

Corollary 6 (Sequential Unwinding Theorem) Consider the indexed set of relations
{∆1, . . . , ∆n} such that the following hold:

– ∀vl vl1. B vl vl1→ ∆1 istate vl istate vl1
– ∀i ∈ {1, . . . , n−1}. unwind_cont ∆i {∆i, ∆i+1, ∆e}
– unwind_cont ∆n {∆n, ∆e}
– unwind_exit ∆e

Then the system is BD-secure.
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Proof From the compositional unwinding theorem, given that unwind_cont and unwind_exit

are both subsumed by unwind_to.

We found the sequential unwinding theorem to represent a sweet spot between generality
and ease of instantiation for our concrete unwinding proofs, which we discuss next. In fact,
we even went a little further and partially instantiated this theorem with various fixed small
numbers of non-terminal relations, namely 3, 4 and 5.

5.3 Verification of Concrete Instances

We have employed the sequential unwinding theorem to verify all our CoCon instances of
BD security. To explain our unwinding proofs, it is helpful to resort again to the “alternative
trace” intuition of BD security: an unwinding proof essentially constructs an alternative
trace tr1 (which produces the value sequence vl1) from the original trace tr (which produces
the value sequence vl). The choice of the relations ∆i required by the sequential unwinding
theorem is guided by milestones in the journey of tr and tr1: changing a conference’s phase,
registering a paper, registering a relevant agent such as a chair, a PC member or a reviewer,
declaring or removing a conflict, etc. For example, here are the unwinding relations we used
in the proof of PAP2:

∆1 s vl s1 vl1 ¬ (∃cid. PID ∈ paperIDs s cid) ∧ s = s1 ∧ B vl vl1
∆2 s vl s1 vl1 (∃cid. PID ∈ paperIDs s cid ∧ phase s cid = Submission )∧ s =PID s1 ∧B vl vl1

∆3 s vl s1 vl1 (∃cid. PID ∈ paperIDs s cid)∧ s = s1 ∧ vl = vl1 = []

∆e s vl s1 vl1 (∃cid. PID ∈ paperIDs s cid ∧ phase s cid > Submission) ∧ vl 6= []

And here are the ones we used in the proof of REV:

∆1 s vl s1 vl1 (∀cid. PID ∈ paperIDs s cid→ phase s cid < Reviewing)∧ s = s1 ∧B vl vl1

∆2 s vl s1 vl1
(∃cid. PID ∈ paperIDs s cid ∧ phase s cid = Reviewing ∧

¬ (∃uid. isRevNth s uid PID N)) ∧
s = s1 ∧B vl vl1

∆3 s vl s1 vl1
(∃cid uid. PID ∈ paperIDs s cid∧phase s cid = Reviewing ∧ isRevNth s uid PID N ) ∧
s =PID,N s1 ∧B vl vl1

∆4 s vl s1 vl1
(∃cid uid. PID ∈ paperIDs s cid∧ phase s cid ≥ Reviewing ∧ isRevNth s uid PID N) ∧
s = s1 ∧ ( ∃wl. vl = vl1 =map (Pair Discussion) wl )

∆e s vl s1 vl1

vl 6= [] ∧
((∃cid. PID ∈ paperIDs s cid∧phase s cid > Reviewing∧¬ (∃uid. isRevNth s uid PID N))
∨
(∃cid. PID ∈ paperIDs s cid∧phase s cid > Reviewing ∧ fst (head vl) = Reviewing))
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Above, B vl vl1 denotes the respective declassification bounds for these instances, and the
changes from ∆i to ∆i+1 have been emphasized.

Each BD security instance has one or more critical phases, the only phases when the
value sequences vl and vl1 can be produced. For PAP2, value production means paper up-
loading, which is only possible in the submission phase—meaning that submission is the
single critical phase. For REV, value production means review update; there is an update
action available in the reviewing phase, and an u-update action available in the discussion
phase—so both these phases are critical. Until the critical phases, (the construction of) tr1
proceeds perfectly synchronously to tr, taking the same actions—consequently, the states s
and s1 stay equal in ∆1 for PAP2 and in ∆1 and ∆2 for REV.

In the critical phases, the traces tr and tr1 will partly diverge, due to the need of pro-
ducing possibly different (but B-related) value sequences. As a result, the equality between
s and s1 is replaced with the weaker relation of equality everywhere except on certain com-
ponents of the state. This is the case with the relation ∆2 for PAP2, where =PID denotes
equality everywhere except on the content of PID. Similarly, in ∆3 for REV, =PID,N denotes
equality everywhere except on the content of PID’s Nth review.

At the end of the critical phases, tr1 will usually need to resynchronize with tr and
hereafter proceed with identical actions. Consequently, s and s1 will become connected by
a stronger “equality everywhere except” relation or even plain equality again—which is the
case with ∆3 for PAP2 and with ∆4 for REV.

Besides the phase changes, other relevant events in the unwinding proofs of PAP2 and
REV are the registration of the considered paper or review. For PAP2, here is the informal
reading of ∆1–∆3 in light of such events:

∆1: The paper PID is not registered yet, so the two states s and s1 are equal
∆2: The paper is registered and the phase is Submission; now the two states can diverge on

the content of PID

∆3: The paper is registered, and both the original trace and the alternative trace have ex-
hausted their to-be-produced values

And here is the informal reading of the relations in the case of REV:

∆1: Either the paper PID is not registered yet or the phase is not yet Reviewing, so the two
states are equal

∆2: The paper is registered and the phase is Reviewing but the paper’s Nth review is not
registered yet, so the two states are still equal

∆3: Both the paper and its Nth review are registered and the phase is Reviewing; now the
two states can diverge on the content of the review

∆4: The phase is either Reviewing or higher (e.g., Discussion), both traces have exhausted
their Reviewing-tagged values, meaning that the remaining to-be-produced values must
be Discussion-tagged4 and are required to be equal; now the states must be equal too

The smooth transition between consecutive components ∆i and ∆i+1 that impose differ-
ent state equalities is ensured by a suitable INDEPENDENT-ACTION/REACTION strategy—
which does not show up in the relations themselves, but only in our proofs that the relations
constitute a linear network of unwindings. For PAP2, the crucial part in the proof is the strat-
egy for transitioning from ∆2 to ∆3, with emptying the value lists vl and vl1 at the same

4 Remember that, for REV, the values are pairs, each consisting of a review content tagged with a confer-
ence phase that witnesses when the content has been added.
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time: by INDEPENDENT ACTION, tr1 will produce all values in vl1 save for the last one,
which will be produced by REACTION in sync with tr when tr reaches the last value in vl;
this is possible since B guarantees last vl = last vl1. And REV has a similar strategy for the
crucial move from ∆3 to ∆4, this time with emptying not the entire value lists, but only their
Reviewing-tagged components.

The exit component ∆e collects unsound situations (s, vl) (that cannot be produced from
any system trace tr), in order to exclude them via Exit. For PAP2, such a situation is the
paper’s conference phase exceeding Submission while there are still values vl to be produced.
The transition from ∆2 to ∆e occurs if a “premature” change-phase action is taken (from
Submission to Bidding), while vl is still nonempty. For REV, ∆e witnesses two unsound
situations: when the phase exceeds Reviewing and either there is no Nth review or vl still
contains Reviewing-tagged values.

In summary, employing the sequential unwinding theorem in our unwinding proofs had
the benefit of allowing (and encouraging) a separation of concerns: the ∆i’s and the transi-
tions between them constitute the main sequential flow of the phase-directed proof, while
∆e collects all unsound situations, taking them out of our way.

About 20 safety properties are needed in the unwinding proofs, among which:

– A paper is never registered at two conferences
– An author always has conflict with his papers (DIS1)
– A paper always has at least one author
– A user never reviews a paper with which he has conflict
– A user never gets to write more than one review for a given paper

For example, the first property in the above list was needed in the proof of PAP2, to make
sure that no value can be produced (i.e., ϕ (head vl) does not hold) from within ∆1 or ∆2,
since no paper upload is possible without prior registration.

The verification took us three person months, which also counts the development of
reusable proof infrastructure and automation. Eventually, we could prove the auxiliary safety
properties quasi-automatically. By contrast, the unwinding proofs required interaction for
indicating the INDEPENDENT-ACTION/REACTION strategy.

6 More Related Work

In Section 4.1 we have mostly analyzed literature covering theoretical security models, as
a preparation for introducing our novel security model. In this section, we focus on related
work with respect to the verification aspect.

6.1 Information Flow Security for Conference Management Systems

Arapinis et al. [4] introduce ConfiChair, a conference management system that improves on
the state of the art by guaranteeing that the cloud, consisting of the system provider, cannot
learn the content of the papers and reviews and cannot link users with their written reviews.
This is achieved by a cryptographic protocol based on key translations and mixes. They en-
code the desired properties as strong secrecy (a property similar to Goguen-Meseguer nonin-
terference) and verify them using the ProVerif [9] tool specialized in security protocols. Our
work differs from theirs in three major aspects. First, they propose a cryptography-based
enhancement, while we focus on a traditional conference system. Second, they manage to
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encode and verify the desired properties automatically, while we use interactive theorem
proving. While their automatic verification is an impressive achievement, we cannot hope
for the same with our targeted properties which, while having a similar nature, are more nu-
anced and complex. For example, the properties PAP2 and REV, with such precise indication
of declassification bounds, go far beyond strong secrecy and require interactive verification.
Finally, we synthesize functional code isomorphic to the specification, whereas they provide
a separate implementation, not linked to the specification which abstracts away from many
functionality aspects.

Qapla [50] is a middleware tool for enforcing access control policies for database sys-
tems. It has been deployed for the HotCRP conference management system. An interesting
future work would be to use BD security to analyze the information flow content of the en-
forced policies. We expect that such an analysis would yield a certain overlap between the
CoCon properties we have verified and the HotCRP properties that can be inferred from the
Qapla policies.

6.2 Holistic Verification of Systems

Proof assistants are today’s choice for precise and holistic formal verification of hardware
and software systems. Already legendary verification works are the AMD microprocessor
floating-point operations [51], the CompCert C compiler [41] and the seL4 operating system
kernel [38]. More recent developments include a range of microprocessors [32], Java and
ML compilers [39, 43], and model checkers [20, 67].

Major holistic verification case studies in the area of information flow security are
less well represented, perhaps due to the more complex nature of the involved proper-
ties compared to traditional safety and liveness [46]. They include a hardware architec-
ture with information flow primitives [16] and a separation kernel [15], and noninterference
for seL4 [52, 53]. A substantial contribution to web client security is the Quark verified
browser [36]. Our own line of work is concerned with proof assistant verification of web-
based system confidentiality grounded in BD security: it started in 2014 with CoCon and
continued with the CoSMed social media platform [5] and its extension to a distributed
model, CoSMeDis [6].

Outside the realm of proof-assistant based work, Ironclad [33] provides end-to-end se-
curity guarantees down to the binary code level and across the network. The information
flow properties discussed in [33] focus on controlling where in the program information is
declassified, e.g., in trusted declassification functions. A verified Ironclad app is deployed
on a server, and a Trusted Platform Module certifies to remote users of the app that the code
running on the server indeed corresponds to the verified code.

6.3 Automatic Analysis of Information Flow

There are quite a few programming languages and tools aimed at supporting information
flow secure programming—such as Jif [1] and its distributed extension Fabric [42], LIO [22]
and its distribuetd extension Hails [22], Paragon [10], Spark [2], Jeeves [68] and Ur-Web
[11]—as well as information flow tracking tools for the client side of web applications [8,
12,27]. The properties specifiable in these tools are significantly weaker (and more tractable)
compared to those we considered in this paper.
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We believe the future of information flow security verification will see an increased
cooperation between fully automatic tools and proof assistants; the former being employed
for wide-covering lightweight properties and the latter being employed more sparingly, for
heavier properties of clearly isolated relatively small cores of systems. Compositionality
results for information flow security [6, 26, 28, 45, 55] will play a key role in achieving such
a cooperation on a well-understood semantic basis.
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