
Bounded-Deducibility Security: Reasoning About
Information-Flow Security in a Fine-Grained Manner

Andrei Popescu

Department of Computer Science
University of Sheffield

ITP 2021

29 June, 2021



ITP & I



ITP & I



Isabelle & I

Isabelle view from Urbana, IL

Isabelle view from Munich



Isabelle & I

Isabelle view from Urbana, IL Isabelle view from Munich



In This Talk

Verification of information flow security of multi-user, web-based systems

Fine-grained coverage of the (dis)allowed flows

General framework for specifying and verifying such systems

Experience with deploying one such system “in the wild”



In This Talk

1 Introduction

2 Bounded-Deducibility (BD) Security

3 CoCon’s Verification

4 CoCon in the Wild

5 Other Applications and Developments of BD Security



Contributors to the Work Presented Here

Thomas
Bauereiss

Peter
Lammich

Sergey
Grebenshchikov

Ping
Hou

Sudeep
Kanav

Armando
Pesenti Gritti

Franco
Raimondi



Contributors to the Work Presented Here

Thomas
Bauereiss

Peter
Lammich

Sergey
Grebenshchikov

Ping
Hou

Sudeep
Kanav

Armando
Pesenti Gritti

Franco
Raimondi



Conference Management Systems Going Wrong

EasyChair, the most popular conference management system

It is our pleasure to inform you that your paper has been accepted to the IEEE
Symposium of Security and Privacy (Oakland) 2012. Out of 307 submitted papers, we
accepted 40 papers.
We are sorry to inform you that your paper was not accepted for this year’s conference.
We apologize for an earlier “acceptance” notification. It was due to a system error.

HotCRP, the second most popular one

How can they go wrong?

Confidentiality and integrity violations



Conference Management Systems Going Wrong

EasyChair, the most popular conference management system
It is our pleasure to inform you that your paper has been accepted to the IEEE
Symposium of Security and Privacy (Oakland) 2012. Out of 307 submitted papers, we
accepted 40 papers.

We are sorry to inform you that your paper was not accepted for this year’s conference.
We apologize for an earlier “acceptance” notification. It was due to a system error.

HotCRP, the second most popular one

How can they go wrong?

Confidentiality and integrity violations



Conference Management Systems Going Wrong

EasyChair, the most popular conference management system
It is our pleasure to inform you that your paper has been accepted to the IEEE
Symposium of Security and Privacy (Oakland) 2012. Out of 307 submitted papers, we
accepted 40 papers.
We are sorry to inform you that your paper was not accepted for this year’s conference.
We apologize for an earlier “acceptance” notification. It was due to a system error.

HotCRP, the second most popular one

How can they go wrong?

Confidentiality and integrity violations



Conference Management Systems Going Wrong

EasyChair, the most popular conference management system
It is our pleasure to inform you that your paper has been accepted to the IEEE
Symposium of Security and Privacy (Oakland) 2012. Out of 307 submitted papers, we
accepted 40 papers.
We are sorry to inform you that your paper was not accepted for this year’s conference.
We apologize for an earlier “acceptance” notification. It was due to a system error.

HotCRP, the second most popular one

How can they go wrong?

Confidentiality and integrity violations



Conference Management Systems Going Wrong

EasyChair, the most popular conference management system
It is our pleasure to inform you that your paper has been accepted to the IEEE
Symposium of Security and Privacy (Oakland) 2012. Out of 307 submitted papers, we
accepted 40 papers.
We are sorry to inform you that your paper was not accepted for this year’s conference.
We apologize for an earlier “acceptance” notification. It was due to a system error.

HotCRP, the second most popular one

How can they go wrong?

Confidentiality and integrity violations



Conference Management Systems Going Wrong

EasyChair, the most popular conference management system
It is our pleasure to inform you that your paper has been accepted to the IEEE
Symposium of Security and Privacy (Oakland) 2012. Out of 307 submitted papers, we
accepted 40 papers.
We are sorry to inform you that your paper was not accepted for this year’s conference.
We apologize for an earlier “acceptance” notification. It was due to a system error.

HotCRP, the second most popular one

How can they go wrong? Confidentiality and integrity violations



CoCon

CoCon = Feature-rich conference management system
(similar to EasyChair and HotCRP)



CoCon’s Architecture

Web Application

Scalatra API

Scala
Program

Isabelle
Specification

code generation



CoCon’s Verification

Information does not leak from CoCon’s kernel. λ
→

∀
=Is

ab
el
le

β

α

 

A user learns nothing about a paper’s content beyond the last
submitted version unless they become an author of the paper.

Source of Secrets Observations Bound Trigger

Bounded Deducibility (BD) Security

O can learn nothing about S beyond B unless T occurs.



CoCon’s Verification

Information does not leak from CoCon’s kernel. λ
→

∀
=Is

ab
el
le

β

α

 

A user learns nothing about a paper’s content beyond the last
submitted version unless they become an author of the paper.

Source of Secrets Observations Bound Trigger

Bounded Deducibility (BD) Security

O can learn nothing about S beyond B unless T occurs.



CoCon’s Verification

Information does not leak from CoCon’s kernel. λ
→

∀
=Is

ab
el
le

β

α

 

A user learns nothing about a paper’s content beyond the last
submitted version unless they become an author of the paper.

Source of Secrets Observations Bound Trigger

Bounded Deducibility (BD) Security

O can learn nothing about S beyond B unless T occurs.



CoCon’s Verification

Information does not leak from CoCon’s kernel. λ
→

∀
=Is

ab
el
le

β

α

 

A user learns nothing about a paper’s content beyond the last
submitted version unless they become an author of the paper.

Source of Secrets Observations Bound Trigger

Bounded Deducibility (BD) Security

O can learn nothing about S beyond B unless T occurs.



1 Introduction

2 Bounded-Deducibility (BD) Security

3 CoCon’s Verification

4 CoCon in the Wild

5 Other Applications and Developments of BD Security



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

isSec : Event → Bool getSec : Event → Sec
S = "filter with isSec, then map getSec"

SysTrace

¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

o o
o B o
o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

isSec : Event → Bool getSec : Event → Sec
S = "filter with isSec, then map getSec"

SysTrace

¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

o o
o B o
o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

isObs : Event → Bool getObs : Event → Obs
O = "filter with isObs, then map getObs"

SysTrace

¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

o o
o B o
o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

T : Event → Bool B : List(Sec) → List(Sec) → Bool
Unless T occurs, O can learn nothing about S beyond B

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

o o
o B o
o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

T : Event → Bool B : List(Sec) → List(Sec) → Bool
Unless T occurs, O can learn nothing about S beyond B

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

o o
o B o
o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

Bounded-Deducibility Security
Unless T occurs, O can learn nothing about S beyond B

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

o o
o B o
o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

Bounded-Deducibility Security
Unless T occurs, O can learn nothing about S beyond B

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

•

•

•

•

•

•

•

oo oo

o o
o B o
o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

Bounded-Deducibility Security
Unless T occurs, O can learn nothing about S beyond B

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

•

•

•

•

•

•

•

o

o

o

o

o o
o B o
o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

Bounded-Deducibility Security
Unless T occurs, O can learn nothing about S beyond B

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

•

•

•

•

•

•

•

o

o

o

o

o

o

o

B o

o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

Bounded-Deducibility Security
Unless T occurs, O can learn nothing about S beyond B

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

•

•

•

•

•

•

•

o

o

o

o

o o
o

B

o
o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

Bounded-Deducibility Security
Unless T occurs, O can learn nothing about S beyond B

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

•

•

•

•

•

•

•

o

o

o

o

o o
o B o
o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

Bounded-Deducibility Security
Unless T occurs, O can learn nothing about S beyond B

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

o

o

o

o

o o
o B o
o



Bounded-Deducibility (BD) Security

SysTrace ⊆ List(Event)

Bounded-Deducibility Security
Unless T occurs, O can learn nothing about S beyond B

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

o o
o B o
o



Formal Definition of BD Security

A system A is an input/output (I/O) automaton.
An event (or transition) is a quadruple state-input-output-newState.

A flow policy F for A consists of:
• an observation infrastructure (Obs, isObs, getObs)

• a secrecy infrastructure (Sec, isSec, getSec)

• a declassification bound B : List(Sec)→ List(Sec)→ Bool

• a declassification trigger T : Event→ Bool

Let O = mapfilter getObs isObs and S = mapfilter getSec isSec

A being BD secure w.r.t. F , written A |= F , means:
For all tr1 ∈ SysTrace and sl1, sl2 ∈ List(Sec),

if never T tr1, S tr1 = sl1 and B sl1 sl2,
then there exists tr2 ∈ SysTrace with O tr2 = O tr1 and S tr1 = sl1.

(where never T tr1 means “T holds for no event in tr1”)



Formal Definition of BD Security

A system A is an input/output (I/O) automaton.
An event (or transition) is a quadruple state-input-output-newState.

A flow policy F for A consists of:
• an observation infrastructure (Obs, isObs, getObs)

• a secrecy infrastructure (Sec, isSec, getSec)

• a declassification bound B : List(Sec)→ List(Sec)→ Bool

• a declassification trigger T : Event→ Bool

Let O = mapfilter getObs isObs and S = mapfilter getSec isSec

A being BD secure w.r.t. F , written A |= F , means:
For all tr1 ∈ SysTrace and sl1, sl2 ∈ List(Sec),

if never T tr1, S tr1 = sl1 and B sl1 sl2,
then there exists tr2 ∈ SysTrace with O tr2 = O tr1 and S tr1 = sl1.

(where never T tr1 means “T holds for no event in tr1”)



Formal Definition of BD Security

A system A is an input/output (I/O) automaton.
An event (or transition) is a quadruple state-input-output-newState.

A flow policy F for A consists of:
• an observation infrastructure (Obs, isObs, getObs)

• a secrecy infrastructure (Sec, isSec, getSec)

• a declassification bound B : List(Sec)→ List(Sec)→ Bool

• a declassification trigger T : Event→ Bool

Let O = mapfilter getObs isObs and S = mapfilter getSec isSec

A being BD secure w.r.t. F , written A |= F , means:
For all tr1 ∈ SysTrace and sl1, sl2 ∈ List(Sec),

if never T tr1, S tr1 = sl1 and B sl1 sl2,
then there exists tr2 ∈ SysTrace with O tr2 = O tr1 and S tr1 = sl1.

(where never T tr1 means “T holds for no event in tr1”)



How to Prove BD Security

O can learn nothing about S beyond B unless T occurs

Given system trace tr1 with ¬T(tr1) and alternative list of secret secrets
sl2 (within B) ... exhibit another system trace tr2 such that

O(tr2) = O(tr1)

S(tr2) = sl2

Unwinding = Strategy for building tr2 from tr1 incrementally

Traditional unwinding: safety-like property

Unwinding for BD security: safety + liveness



How to Prove BD Security

O can learn nothing about S beyond B unless T occurs

Given system trace tr1 with ¬T(tr1) and alternative list of secret secrets
sl2 (within B) ...

exhibit another system trace tr2 such that
O(tr2) = O(tr1)

S(tr2) = sl2

Unwinding = Strategy for building tr2 from tr1 incrementally

Traditional unwinding: safety-like property

Unwinding for BD security: safety + liveness



How to Prove BD Security

O can learn nothing about S beyond B unless T occurs

Given system trace tr1 with ¬T(tr1) and alternative list of secret secrets
sl2 (within B) ... exhibit another system trace tr2 such that

O(tr2) = O(tr1)

S(tr2) = sl2

Unwinding = Strategy for building tr2 from tr1 incrementally

Traditional unwinding: safety-like property

Unwinding for BD security: safety + liveness



How to Prove BD Security

O can learn nothing about S beyond B unless T occurs

Given system trace tr1 with ¬T(tr1) and alternative list of secret secrets
sl2 (within B) ... exhibit another system trace tr2 such that

O(tr2) = O(tr1)

S(tr2) = sl2

Unwinding = Strategy for building tr2 from tr1 incrementally

Traditional unwinding: safety-like property

Unwinding for BD security: safety + liveness



How to Prove BD Security

O can learn nothing about S beyond B unless T occurs

Given system trace tr1 with ¬T(tr1) and alternative list of secret secrets
sl2 (within B) ... exhibit another system trace tr2 such that

O(tr2) = O(tr1)

S(tr2) = sl2

Unwinding = Strategy for building tr2 from tr1 incrementally

Traditional unwinding: safety-like property

Unwinding for BD security: safety + liveness



How to Prove BD Security

O can learn nothing about S beyond B unless T occurs

Given system trace tr1 with ¬T(tr1) and alternative list of secret secrets
sl2 (within B) ... exhibit another system trace tr2 such that

O(tr2) = O(tr1)

S(tr2) = sl2

Unwinding = Strategy for building tr2 from tr1 incrementally

Traditional unwinding: safety-like property

Unwinding for BD security: safety + liveness



How to Prove BD Security

Proof by unwinding X
E = "filter with isSec, then map getSec"

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

o o
o B o
o



How to Prove BD Security

Proof by unwinding X
Action/ Reaction: Match

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

�Ao o
o B o
o



How to Prove BD Security

Proof by unwinding X
Action / Reaction: Match

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

�Ao �Ao
o B o
o



How to Prove BD Security

Proof by unwinding X
Action / Reaction: Ignore

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

�Ao �Ao

�Ao B o
o



How to Prove BD Security

Proof by unwinding X
Action / Reaction: Ignorebl

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

�Ao �Ao

�Ao B o
o



How to Prove BD Security

Proof by unwinding X
Action / Reaction: Match

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

�Ao �Ao

�Ao B o

�Ao



How to Prove BD Security

Proof by unwinding X
Action / Reaction: Match

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

�Ao �Ao

�Ao B o

�Ao



How to Prove BD Security

Proof by unwinding X
Independent action . . .

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

�Ao �Ao

�Ao B o

�Ao



How to Prove BD Security

Proof by unwinding X
Independent action . . .

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

�Ao �Ao

�Ao B �Ao

�Ao



How to Prove BD Security

Proof by unwinding X
Independent action . . .

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

�Ao �Ao

�Ao B �Ao

�Ao



How to Prove BD Security

Proof by unwinding X
B 7→ ∆ : State × List(Sec) × State × List(Sec) → Bool

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec) B

O

S

• •
• •
• •
•

oo oo

�Ao �Ao

�Ao B �Ao

�Ao



Proof by Unwinding

∆ : State × List(Sec) × State × List(Sec) → Bool

+
Strategy for:

when to act independently
when to react
if react: when to match and when to ignore

Managing proof complexity:
split unwinding relation into components
have “error” component to exit the unwinding game ASAP

∆1

��

''

// ∆2

��

��

// . . . // ∆n

��

ww
∆error

Exit
��



Proof by Unwinding

∆ : State × List(Sec) × State × List(Sec) → Bool
+
Strategy for:

when to act independently
when to react
if react: when to match and when to ignore

Managing proof complexity:
split unwinding relation into components
have “error” component to exit the unwinding game ASAP

∆1

��

''

// ∆2

��

��

// . . . // ∆n

��

ww
∆error

Exit
��



Proof by Unwinding

∆ : State × List(Sec) × State × List(Sec) → Bool
+
Strategy for:

when to act independently
when to react
if react: when to match and when to ignore

Managing proof complexity:
split unwinding relation into components
have “error” component to exit the unwinding game ASAP

∆1

��

''

// ∆2

��

��

// . . . // ∆n

��

ww
∆error

Exit
��



Proof by Unwinding

∆ : State × List(Sec) × State × List(Sec) → Bool
+
Strategy for:

when to act independently
when to react
if react: when to match and when to ignore

Managing proof complexity:
split unwinding relation into components
have “error” component to exit the unwinding game ASAP

∆1

��

''

// ∆2

��

��

// . . . // ∆n

��

ww
∆error

Exit
��



How to Prove BD Security

Proof by unwinding X
Action / Reaction: Ignorebl

SysTrace¬T

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

• •
• •
• •
•

oo oo

�Ao �Ao

�Ao B o
o



Bounded-Deducibility (BD) Security

Takes an Epistemic (Knowledge) Logic perspective to information flow

Generalizes Nondeducibility (Sutherland 1986)

Related notions: Secrecy Maintenance (Halpern and O’Neill 2008) and
Gradual Release (Askarov & Sabelfeld 2007)

BD Unwinding generalizes the standard unwinding proof method (Goguen
& Meseguer 1984, Mantel 2003)



1 Introduction

2 Bounded-Deducibility (BD) Security

3 CoCon’s Verification

4 CoCon in the Wild

5 Other Applications and Developments of BD Security



CoCon’s Verified Confidentiality Properties

All formulated as instances of BD Security

All verified using BD Unwinding



Secret Trigger Bound
Paper
Content Paper Authorship Last Uploaded Version

Paper Authorship or PC MembershipB Nothing

Review Review Authorship
Last Edited Version
Before Discussion and
All the Later Versions

Review Authorship or
Non-Conflict PC MembershipD

Last Edited Version
Before Notification

Review Authorship or
Non-Conflict PC MembershipD or
Paper AuthorshipN

Nothing

Discussion Non-Conflict PC Membership Nothing
Decision Non-Conflict PC Membership Last Edited Version

Non-Conflict PC Membership or
PC MembershipN or Paper AuthorshipN

Nothing

Reviewer
Assignment
to Paper

Non-Conflict PC MembershipR
Non-Conflict PC Membership
of Reviewers

and Number of Reviewers

Non-Conflict PC MembershipR or
Paper AuthorshipN

Non-Conflict PC Membership
of Reviewers

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review



Secret Trigger Bound
Paper
Content Paper Authorship Last Uploaded Version

Paper Authorship or PC MembershipB Nothing

Review Review Authorship
Last Edited Version
Before Discussion and
All the Later Versions

Review Authorship or
Non-Conflict PC MembershipD

Last Edited Version
Before Notification

Review Authorship or
Non-Conflict PC MembershipD or
Paper AuthorshipN

Nothing

Discussion Non-Conflict PC Membership Nothing
Decision Non-Conflict PC Membership Last Edited Version

Non-Conflict PC Membership or
PC MembershipN or Paper AuthorshipN

Nothing

Reviewer
Assignment
to Paper

Non-Conflict PC MembershipR
Non-Conflict PC Membership
of Reviewers

and Number of Reviewers

Non-Conflict PC MembershipR or
Paper AuthorshipN

Non-Conflict PC Membership
of Reviewers

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review



Secret Trigger Bound
Paper
Content Paper Authorship Last Uploaded Version

Paper Authorship or PC MembershipB Nothing

Review Review Authorship
Last Edited Version
Before Discussion and
All the Later Versions

Review Authorship or
Non-Conflict PC MembershipD

Last Edited Version
Before Notification

Review Authorship or
Non-Conflict PC MembershipD or
Paper AuthorshipN

Nothing

Discussion Non-Conflict PC Membership Nothing
Decision Non-Conflict PC Membership Last Edited Version

Non-Conflict PC Membership or
PC MembershipN or Paper AuthorshipN

Nothing

Reviewer
Assignment
to Paper

Non-Conflict PC MembershipR
Non-Conflict PC Membership
of Reviewers

and Number of Reviewers

Non-Conflict PC MembershipR or
Paper AuthorshipN

Non-Conflict PC Membership
of Reviewers

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review



Secret Trigger Bound
Paper
Content Paper Authorship Last Uploaded Version

Paper Authorship or PC MembershipB Nothing

Review Review Authorship
Last Edited Version
Before Discussion and
All the Later Versions

Review Authorship or
Non-Conflict PC MembershipD

Last Edited Version
Before Notification

Review Authorship or
Non-Conflict PC MembershipD or
Paper AuthorshipN

Nothing

Discussion Non-Conflict PC Membership Nothing
Decision Non-Conflict PC Membership Last Edited Version

Non-Conflict PC Membership or
PC MembershipN or Paper AuthorshipN

Nothing

Reviewer
Assignment
to Paper

Non-Conflict PC MembershipR
Non-Conflict PC Membership
of Reviewers

and Number of Reviewers

Non-Conflict PC MembershipR or
Paper AuthorshipN

Non-Conflict PC Membership
of Reviewers

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review



Secret Trigger Bound
Paper
Content Paper Authorship Last Uploaded Version

Paper Authorship or PC MembershipB Nothing

Review Review Authorship
Last Edited Version
Before Discussion and
All the Later Versions

Review Authorship or
Non-Conflict PC MembershipD

Last Edited Version
Before Notification

Review Authorship or
Non-Conflict PC MembershipD or
Paper AuthorshipN

Nothing

Discussion Non-Conflict PC Membership Nothing
Decision Non-Conflict PC Membership Last Edited Version

Non-Conflict PC Membership or
PC MembershipN or Paper AuthorshipN

Nothing

Reviewer
Assignment
to Paper

Non-Conflict PC MembershipR
Non-Conflict PC Membership
of Reviewers

and Number of Reviewers

Non-Conflict PC MembershipR or
Paper AuthorshipN

Non-Conflict PC Membership
of Reviewers

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review



Secret Trigger Bound
Paper
Content Paper Authorship Last Uploaded Version

Paper Authorship or PC MembershipB Nothing

Review Review Authorship
Last Edited Version
Before Discussion and
All the Later Versions

Review Authorship or
Non-Conflict PC MembershipD

Last Edited Version
Before Notification

Review Authorship or
Non-Conflict PC MembershipD or
Paper AuthorshipN

Nothing

Discussion Non-Conflict PC Membership Nothing
Decision Non-Conflict PC Membership Last Edited Version

Non-Conflict PC Membership or
PC MembershipN or Paper AuthorshipN

Nothing

Reviewer
Assignment
to Paper

Non-Conflict PC MembershipR
Non-Conflict PC Membership
of Reviewers
and Number of Reviewers

Non-Conflict PC MembershipR or
Paper AuthorshipN

Non-Conflict PC Membership
of Reviewers

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review



Overall Verification Effort λ
→

∀
=Is

ab
el
le

β

α

 

BD Security framework: 1000 LOC

Confidentiality properties: 5000 LOC

1. Only non-conflict PC members may learn such and such

Safety properties: 1000 LOC

2. And authors are always in conflict with their papers
(1) + (2) −→ Authors never learn such and such

Traceback properties: 700 LOC



Overall Verification Effort λ
→

∀
=Is

ab
el
le

β

α

 

BD Security framework: 1000 LOC

Confidentiality properties: 5000 LOC
1. Only non-conflict PC members may learn such and such

Safety properties: 1000 LOC

2. And authors are always in conflict with their papers
(1) + (2) −→ Authors never learn such and such

Traceback properties: 700 LOC



Overall Verification Effort λ
→

∀
=Is

ab
el
le

β

α

 

BD Security framework: 1000 LOC

Confidentiality properties: 5000 LOC
1. Only non-conflict PC members may learn such and such

Safety properties: 1000 LOC
2. And authors are always in conflict with their papers

(1) + (2) −→ Authors never learn such and such

Traceback properties: 700 LOC



Overall Verification Effort λ
→

∀
=Is

ab
el
le

β

α

 

BD Security framework: 1000 LOC

Confidentiality properties: 5000 LOC
1. Only non-conflict PC members may learn such and such

Safety properties: 1000 LOC
2. And authors are always in conflict with their papers
(1) + (2) −→ Authors never learn such and such

Traceback properties: 700 LOC



Overall Verification Effort λ
→

∀
=Is

ab
el
le

β

α

 

BD Security framework: 1000 LOC

Confidentiality properties: 5000 LOC

1. Only non-conflict PC members may learn such and such

Safety properties: 1000 LOC

2. And authors are always in conflict with their papers
(1) + (2) −→ Authors never learn such and such

Traceback properties: 700 LOC



Traceback Properties

We proved: One cannot learn beyond such an such unless one is or
becomes such and such

But how can one become such and such?

E.g., how could become an author of ?

has registered

⇓

⇓

Confidentiality + Safety + Traceback =⇒ Relax



Traceback Properties

We proved: One cannot learn beyond such an such unless one is or
becomes such and such
But how can one become such and such?

E.g., how could become an author of ?

has registered

⇓

⇓

Confidentiality + Safety + Traceback =⇒ Relax



Traceback Properties

We proved: One cannot learn beyond such an such unless one is or
becomes such and such
But how can one become such and such?

E.g., how could become an author of ?

has registered

⇓

⇓

Confidentiality + Safety + Traceback =⇒ Relax



Traceback Properties

We proved: One cannot learn beyond such an such unless one is or
becomes such and such
But how can one become such and such?

E.g., how could become an author of ?

has registered
⇓

⇓

Confidentiality + Safety + Traceback =⇒ Relax



Traceback Properties

We proved: One cannot learn beyond such an such unless one is or
becomes such and such
But how can one become such and such?

E.g., how could become an author of ?

has registered
⇓
...
⇓

Confidentiality + Safety + Traceback =⇒ Relax



Traceback Properties

We proved: One cannot learn beyond such an such unless one is or
becomes such and such
But how can one become such and such?

E.g., how could become an author of ?

has registered
⇓
...
⇓

Confidentiality + Safety + Traceback =⇒ Relax



Some Trivia

One reviewer’s reaction to our submission describing CoCon’s verification:

“The authors cunningly chose a topic that
directly speaks to the reviewers of their paper.”

Andrei Voronkov’s assessment of (a preliminary version of) CoCon:

“A true Mickey Mouse system!”

CoCon has a superuser called “The Voronkov” to acknowledge CoCon’s
inspiration from EasyChair.



Some Trivia

One reviewer’s reaction to our submission describing CoCon’s verification:

“The authors cunningly chose a topic that
directly speaks to the reviewers of their paper.”

Andrei Voronkov’s assessment of (a preliminary version of) CoCon:

“A true Mickey Mouse system!”

CoCon has a superuser called “The Voronkov” to acknowledge CoCon’s
inspiration from EasyChair.



Some Trivia

One reviewer’s reaction to our submission describing CoCon’s verification:

“The authors cunningly chose a topic that
directly speaks to the reviewers of their paper.”

Andrei Voronkov’s assessment of (a preliminary version of) CoCon:

“A true Mickey Mouse system!”

CoCon has a superuser called “The Voronkov” to acknowledge CoCon’s
inspiration from EasyChair.



1 Introduction

2 Bounded-Deducibility (BD) Security

3 CoCon’s Verification

4 CoCon in the Wild

5 Other Applications and Developments of BD Security



CoCon in the Wild

CoCon has been used to manage two international conferences:

TABLEAUX 2015: The 24th Conference on Automated Reasoning
with Analytic Tableaux and Related Methods

ITP 2016: The 7th Conference on Interactive Theorem Proving
(29th if we count its predecessor conference)



CoCon at TABLEAUX 2015

Hans de Nivelle
conference chair

CoCon?? At TABLEAUX 2015?? Not a chance!

But maybe CoCon++. . .



CoCon at TABLEAUX 2015

Hans de Nivelle
conference chair

CoCon?? At TABLEAUX 2015?? Not a chance!

But maybe CoCon++. . .



CoCon at TABLEAUX 2015

Hans de Nivelle
conference chair

CoCon?? At TABLEAUX 2015?? Not a chance!

But maybe CoCon++. . .



CoCon++

CoCon plus the following features:

Various convenience listings, e.g.:

OK

• For PC members: papers listed by average score
• For the chair: paper load of each PC, reviewer number for each paper

Email notifications:

OK, if done right

• to authors about the decision
• to PC members about the addition of comments or new reviews to

their reviewed papers

Is CoCon++ as secure as CoCon?

We proved that it is!
On the way: designed framework for secure system extensions.



CoCon++

CoCon plus the following features:

Various convenience listings, e.g.:

OK

• For PC members: papers listed by average score
• For the chair: paper load of each PC, reviewer number for each paper

Email notifications:

OK, if done right

• to authors about the decision
• to PC members about the addition of comments or new reviews to

their reviewed papers

Is CoCon++ as secure as CoCon?

We proved that it is!
On the way: designed framework for secure system extensions.



CoCon++

CoCon plus the following features:

Various convenience listings, e.g.: OK

• For PC members: papers listed by average score
• For the chair: paper load of each PC, reviewer number for each paper

Email notifications:

OK, if done right

• to authors about the decision
• to PC members about the addition of comments or new reviews to

their reviewed papers

Is CoCon++ as secure as CoCon?

We proved that it is!
On the way: designed framework for secure system extensions.



CoCon++

CoCon plus the following features:

Various convenience listings, e.g.: OK

• For PC members: papers listed by average score
• For the chair: paper load of each PC, reviewer number for each paper

Email notifications: OK, if done right

• to authors about the decision
• to PC members about the addition of comments or new reviews to

their reviewed papers

Is CoCon++ as secure as CoCon?

We proved that it is!
On the way: designed framework for secure system extensions.



CoCon++

CoCon plus the following features:

Various convenience listings, e.g.: OK

• For PC members: papers listed by average score
• For the chair: paper load of each PC, reviewer number for each paper

Email notifications: OK, if done right

• to authors about the decision
• to PC members about the addition of comments or new reviews to

their reviewed papers

Is CoCon++ as secure as CoCon?

We proved that it is!
On the way: designed framework for secure system extensions.



CoCon at TABLEAUX 2015

Had proved about CoCon’s kernel:
An author learns nothing about the score of their paper before notification.

TABLEAUX
PC member in
Discussion phase

I’m also an author and I see my paper
listed somewhere in the middle.
Does it mean I can already infer
something about its score?

No, that was only a pseudo-leak.

Web interface written around the verified kernel – web developer decided to
treat score “unknown” as 0 when sorting papers by score to display to a user.



CoCon at TABLEAUX 2015

Had proved about CoCon’s kernel:
An author learns nothing about the score of their paper before notification.

TABLEAUX
PC member in
Discussion phase

I’m also an author and I see my paper
listed somewhere in the middle.
Does it mean I can already infer
something about its score?

No, that was only a pseudo-leak.

Web interface written around the verified kernel – web developer decided to
treat score “unknown” as 0 when sorting papers by score to display to a user.



CoCon at ITP 2016

Jasmin Blanchette
conference co-chair

Announcement: The 7th International
Conference on Interactive Theorem Proving
22 to 26 August 2016, Nancy, France
...

Papers should be submitted in PDF
format via EasyChair.

My email message to Jasmin: Traitor!
Jasmin: I know this will sound crazy, but the reason we’re using EasyChair is

simply that I forgot!!
Me: No hard feelings; in fact, it would’ve been a huge amount of stress for me.
Jasmin: In that case, it could be fun. Maybe we should go with CoCon.



CoCon at ITP 2016

Jasmin Blanchette
conference co-chair

Announcement: The 7th International
Conference on Interactive Theorem Proving
22 to 26 August 2016, Nancy, France
...

Papers should be submitted in PDF
format via EasyChair.

My email message to Jasmin: Traitor!

Jasmin: I know this will sound crazy, but the reason we’re using EasyChair is
simply that I forgot!!

Me: No hard feelings; in fact, it would’ve been a huge amount of stress for me.
Jasmin: In that case, it could be fun. Maybe we should go with CoCon.



CoCon at ITP 2016

Jasmin Blanchette
conference co-chair

Announcement: The 7th International
Conference on Interactive Theorem Proving
22 to 26 August 2016, Nancy, France
...

Papers should be submitted in PDF
format via EasyChair.

My email message to Jasmin: Traitor!
Jasmin: I know this will sound crazy, but the reason we’re using EasyChair is

simply that I forgot!!

Me: No hard feelings; in fact, it would’ve been a huge amount of stress for me.
Jasmin: In that case, it could be fun. Maybe we should go with CoCon.



CoCon at ITP 2016

Jasmin Blanchette
conference co-chair

Announcement: The 7th International
Conference on Interactive Theorem Proving
22 to 26 August 2016, Nancy, France
...

Papers should be submitted in PDF
format via EasyChair.

My email message to Jasmin: Traitor!
Jasmin: I know this will sound crazy, but the reason we’re using EasyChair is

simply that I forgot!!
Me: No hard feelings; in fact, it would’ve been a huge amount of stress for me.

Jasmin: In that case, it could be fun. Maybe we should go with CoCon.



CoCon at ITP 2016

Jasmin Blanchette
conference co-chair

Announcement: The 7th International
Conference on Interactive Theorem Proving
22 to 26 August 2016, Nancy, France
...

Papers should be submitted in PDF
format via EasyChair.

My email message to Jasmin: Traitor!
Jasmin: I know this will sound crazy, but the reason we’re using EasyChair is

simply that I forgot!!
Me: No hard feelings; in fact, it would’ve been a huge amount of stress for me.
Jasmin: In that case, it could be fun. Maybe we should go with CoCon.



CoCon at ITP 2016

Andrew Tolmach
PC member

I’m a little nervous that
some unintended leakage
may be occurring!
... why did I see the scores
of a paper I have conflict with?



What Had Happened?

CoCon’s Architecture

Web Application

Scalatra API

Scala
Program

Isabelle
Specification

code generation



Critical Data Race Bug Outside the Verified Kernel

Why have we not discovered it
• during heavy testing
• during countless conference simulations
• during TABLEAUX 2015

– 70 users
During ITP 2016 – 110 users

Because it occurs very seldom
• Needs sufficient delays (caused by high traffic)
• Is volatile: happens per single request, then vanishes



Critical Data Race Bug Outside the Verified Kernel

Why have we not discovered it
• during heavy testing
• during countless conference simulations
• during TABLEAUX 2015

– 70 users
During ITP 2016 – 110 users

Because it occurs very seldom
• Needs sufficient delays (caused by high traffic)
• Is volatile: happens per single request, then vanishes



Critical Data Race Bug Outside the Verified Kernel

Why have we not discovered it
• during heavy testing
• during countless conference simulations
• during TABLEAUX 2015 – 70 users

During ITP 2016 – 110 users
Because it occurs very seldom
• Needs sufficient delays (caused by high traffic)
• Is volatile: happens per single request, then vanishes



What were the consequences?

What we verified for the kernel
was compromised by the API layer.

However

• Due to rarity and volatilily, users would not notice

• Really sensitive data was at least two clicks away

• Authors and PC members were accessing the system at different times

The bug was fixed during the discussion phase.



What were the consequences?

What we verified for the kernel
was compromised by the API layer.

However

• Due to rarity and volatilily, users would not notice

• Really sensitive data was at least two clicks away

• Authors and PC members were accessing the system at different times

The bug was fixed during the discussion phase.



What were the consequences?

What we verified for the kernel
was compromised by the API layer.

However

• Due to rarity and volatilily, users would not notice

• Really sensitive data was at least two clicks away

• Authors and PC members were accessing the system at different times

The bug was fixed during the discussion phase.



Andrew Tolmach:

IMO, the whole episode is an unusually clear illustration of the perils of overselling
(even to oneself) the benefits of verification. The most interesting thing is not that
CoCon had a bug, but rather that the developers were (temporarily) in denial about it.
The most revealing pieces of the email exchange over the bug were the following from
Andrei in response to my bug report:

> A leak is impossible this way: such information does not leak through the kernel.

and a little later:

> Again, I am not sure what is going on, but I am sure that it is not a leak. The
server is accessed with your credentials, and the scores of reviews of conflicted papers
are not accessible with your credentials.



Lessons Learned

Unverified part deserves special attention

• Large effort verifying the kernel’s rich information flow

• Not enough effort in reviewing carefully the thin outer layer

Some discussion on extending CoCon’s verification to the outer layers.

Important to always state precisely which part of the system was verified – even
in a summary!



Lessons Learned

Unverified part deserves special attention

• Large effort verifying the kernel’s rich information flow

• Not enough effort in reviewing carefully the thin outer layer

Some discussion on extending CoCon’s verification to the outer layers.

Important to always state precisely which part of the system was verified – even
in a summary!



Lessons Learned

Unverified part deserves special attention

• Large effort verifying the kernel’s rich information flow

• Not enough effort in reviewing carefully the thin outer layer

Some discussion on extending CoCon’s verification to the outer layers.

Important to always state precisely which part of the system was verified – even
in a summary!



Before ITP 2016



After ITP 2016



More Details on CoCon’s Verification and Deployment Saga

Andrei Popescu, Peter Lammich, Ping Hou.
CoCon: A Conference Management System with Formally Verified
Document Confidentiality.
Journal of Automated Reasoning 2021



1 Introduction

2 Bounded-Deducibility (BD) Security

3 CoCon’s Verification

4 CoCon in the Wild

5 Other Applications and Developments of BD Security



CoSMed

Facebook-style social media platform
• users register, create posts (which can later be updated) and

establish friendship relationships
• post access can be public or friends-only (and this can change)

Implemented using the same scheme as CoCon



CoSMed – Example of Desirable Confidentiality Property

A group of users learn nothing about a post unless one of them is the
admin, or is the post’s owner, or becomes friends with the owner, or the
post gets marked as public.

Bound: complete nondeducibility
Trigger: Acquisition of various roles or the opening of access

Too weak

Better justice to what’s going on (stronger confidentiality property):

A group of users learn about a post nothing beyond the updates
performed while (or last before) one of them is the admin, or is the post’s
owner, or becomes friends with the owner, or the post is marked as public.

inductive boundBT



CoSMed – Example of Desirable Confidentiality Property

A group of users learn nothing about a post unless one of them is the
admin, or is the post’s owner, or becomes friends with the owner, or the
post gets marked as public.

Bound: complete nondeducibility
Trigger: Acquisition of various roles or the opening of access

Too weak

Better justice to what’s going on (stronger confidentiality property):

A group of users learn about a post nothing beyond the updates
performed while (or last before) one of them is the admin, or is the post’s
owner, or becomes friends with the owner, or the post is marked as public.

inductive boundBT



CoSMed – Example of Desirable Confidentiality Property

A group of users learn nothing about a post unless one of them is the
admin, or is the post’s owner, or becomes friends with the owner, or the
post gets marked as public.

Bound: complete nondeducibility
Trigger: Acquisition of various roles or the opening of access

Too weak

Better justice to what’s going on (stronger confidentiality property):

A group of users learn about a post nothing beyond the updates
performed while (or last before) one of them is the admin, or is the post’s
owner, or becomes friends with the owner, or the post is marked as public.

inductive boundBT



CoSMed – Example of Desirable Confidentiality Property

A group of users learn nothing about a post unless one of them is the
admin, or is the post’s owner, or becomes friends with the owner, or the
post gets marked as public.

Bound: complete nondeducibility
Trigger: Acquisition of various roles or the opening of access

Too weak

Better justice to what’s going on (stronger confidentiality property):

A group of users learn about a post nothing beyond the updates
performed while (or last before) one of them is the admin, or is the post’s
owner, or becomes friends with the owner, or the post is marked as public.

inductive boundBT



CoSMed – Example of Desirable Confidentiality Property

A group of users learn nothing about a post unless one of them is the
admin, or is the post’s owner, or becomes friends with the owner, or the
post gets marked as public.

Bound: complete nondeducibility
Trigger: Acquisition of various roles or the opening of access

Too weak

Better justice to what’s going on (stronger confidentiality property):

A group of users learn about a post nothing beyond the updates
performed while (or last before) one of them is the admin, or is the post’s
owner, or becomes friends with the owner, or the post is marked as public.

inductive boundB

T



CoSMed – Example of Desirable Confidentiality Property

A group of users learn nothing about a post unless one of them is the
admin, or is the post’s owner, or becomes friends with the owner, or the
post gets marked as public.

Bound: complete nondeducibility
Trigger: Acquisition of various roles or the opening of access

Too weak

Better justice to what’s going on (stronger confidentiality property):

A group of users learn about a post nothing beyond the updates
performed while (or last before) one of them is the admin, or is the post’s
owner, or becomes friends with the owner, or the post is marked as public.

inductive boundBT



CoSMed – Proved Confidentiality Properties

Secret (Trigger-Swallowing) Bound

Content of a given post

Updates performed while or last before
one of the following holds:
– Some user in G is the admin,
is the post owner
or is friends with its owner

– The post is marked as public

Friendship status between
two given users U and V

Status changes performed while or last before
the following holds:
– Some user in G is the admin
or is friends with U or V

Friendship requests between
two given users U and V

Existence of accepted requests while or last before
the following holds:
– Some user in G is the admin
or is friends with U or V

The observations are made by a group of users G. The trigger is vacuously false.

Bauereiss, Pesenti Gritti, Popescu, Raimondi. CoSMed: A Confidentiality-Verified Social
Media Platform. ITP 2016, JAR 2018.



CoSMeDis

Diaspora-style extension of CosMed:
• multiple CosMed nodes deployed at different sites
• any two nodes can connect: posts can be shared and friendships can

be established cross-nodes

Question: Do CosMed’s confidentiality guarantees extend to CoSMeDis?

Broader research question: How to compose BD Security flow policies of
individual nodes to form guarantees for the entire network?



CoSMeDis

Diaspora-style extension of CosMed:
• multiple CosMed nodes deployed at different sites
• any two nodes can connect: posts can be shared and friendships can

be established cross-nodes

Question: Do CosMed’s confidentiality guarantees extend to CoSMeDis?

Broader research question: How to compose BD Security flow policies of
individual nodes to form guarantees for the entire network?



CoSMeDis

Diaspora-style extension of CosMed:
• multiple CosMed nodes deployed at different sites
• any two nodes can connect: posts can be shared and friendships can

be established cross-nodes

Question: Do CosMed’s confidentiality guarantees extend to CoSMeDis?

Broader research question: How to compose BD Security flow policies of
individual nodes to form guarantees for the entire network?



Compositionality Theorem for BD Security

Rough Statement of the Theorem. If n communicating systems (e.g., n
CoSMeDis nodes) have their communication:

• observable to a sufficient degree, and

• secret-polarized (i.e., only of the nodes issues the secrets of interest),

and each of them satisfies a BD security policy Fi, then their communicating
product satisfies a naturally defined product policy

∏n
i=1 Fi.

Strength: Policy agnosticism – compose any policies Fi, no questions asked.

Weakness: Restriction on communicating with only one secret source.

Applied to lift CoSMed’s confidentiality guarantees to CoSMeDis.

Bauereiss, Pesenti Gritti, Popescu, Raimondi. CoSMeDis: A Distributed Social Media
Platform with Formally Verified Confidentiality Guarantees. IEEE Symposium on Security and
Privacy, 2017



Compositionality Theorem for BD Security

Rough Statement of the Theorem. If n communicating systems (e.g., n
CoSMeDis nodes) have their communication:

• observable to a sufficient degree, and

• secret-polarized (i.e., only of the nodes issues the secrets of interest),

and each of them satisfies a BD security policy Fi, then their communicating
product satisfies a naturally defined product policy

∏n
i=1 Fi.

Strength: Policy agnosticism – compose any policies Fi, no questions asked.

Weakness: Restriction on communicating with only one secret source.

Applied to lift CoSMed’s confidentiality guarantees to CoSMeDis.

Bauereiss, Pesenti Gritti, Popescu, Raimondi. CoSMeDis: A Distributed Social Media
Platform with Formally Verified Confidentiality Guarantees. IEEE Symposium on Security and
Privacy, 2017



Compositionality Theorem for BD Security

Rough Statement of the Theorem. If n communicating systems (e.g., n
CoSMeDis nodes) have their communication:

• observable to a sufficient degree, and

• secret-polarized (i.e., only of the nodes issues the secrets of interest),

and each of them satisfies a BD security policy Fi, then their communicating
product satisfies a naturally defined product policy

∏n
i=1 Fi.

Strength: Policy agnosticism – compose any policies Fi, no questions asked.

Weakness: Restriction on communicating with only one secret source.

Applied to lift CoSMed’s confidentiality guarantees to CoSMeDis.

Bauereiss, Pesenti Gritti, Popescu, Raimondi. CoSMeDis: A Distributed Social Media
Platform with Formally Verified Confidentiality Guarantees. IEEE Symposium on Security and
Privacy, 2017



Compositionality Theorem for BD Security

Rough Statement of the Theorem. If n communicating systems (e.g., n
CoSMeDis nodes) have their communication:

• observable to a sufficient degree, and

• secret-polarized (i.e., only of the nodes issues the secrets of interest),

and each of them satisfies a BD security policy Fi, then their communicating
product satisfies a naturally defined product policy

∏n
i=1 Fi.

Strength: Policy agnosticism – compose any policies Fi, no questions asked.

Weakness: Restriction on communicating with only one secret source.

Applied to lift CoSMed’s confidentiality guarantees to CoSMeDis.

Bauereiss, Pesenti Gritti, Popescu, Raimondi. CoSMeDis: A Distributed Social Media
Platform with Formally Verified Confidentiality Guarantees. IEEE Symposium on Security and
Privacy, 2017



Confidentiality Properties Lifted from CoSMed to
CoSMeDis

Secret Bound

Content of a given post at node i

Updates performed while or last before
one of the following holds:
– Some user in Gi is the node’s admin,
is the post owner
or is friends with its owner

– The post is marked as public
– Some user in Gj for j 6= i is the admin at node j
or is remote friends with the post’s owner

Friendship status between
two given users U and V at node i

Status changes performed while or last before
the following holds:
– Some user at node i is the node’s admin
or is friends with U or V

Friendship requests between
two given users U and V at node i

Existence of accepted requests while or last before
the following holds:
– Some user at node i is the node’s admin
or is friends with U or V

The observations are made by n groups of users—one group Gi at each node i.
The declassification trigger is again vacuously false.



Summary of BD Security

Framework for expressing and verifying fine-grained information flow
security properties

Formalized in Isabelle/HOL

Comes with mechanisms for managing complexity: compositional
incremental proof machinery, compositionality results

Fine-tuned on some large verification projects: CoCon, CoSMed,
CoSMeDis

Try it today for free (available from the Isabelle AFP)



Summary of BD Security

Framework for expressing and verifying fine-grained information flow
security properties

Formalized in Isabelle/HOL

Comes with mechanisms for managing complexity: compositional
incremental proof machinery, compositionality results

Fine-tuned on some large verification projects: CoCon, CoSMed,
CoSMeDis

Try it today for free (available from the Isabelle AFP)



More Related/Relevant/Inspiring Work

Systems verified for information-flow security: hardware architecture with
information flow primitives (Amorim et al.), an ARM-based separation
kernel (Dam et al.), noninterference for seL4 (Murray et al.), the Quark
verified browser (Jang et al.)

Automatic analysis of information flow security: Jif/Fabric (Myers, Liu et
al.), LIO/Hails (Giffin et al.), Paragon (Broberg et al.), Jeeves (Yang at
al.) and Ur/Web (Chlipala).

Information Flow Security for Conference Management Systems:
ConfiChair (Arapinis et al.), Qapla (Mehta et al.)

Temporal logic approaches: SecLTL (Dimitrova et al.), HyperLTL
(Clarkson et al.)

Compositionality results: McCullough’s early work, Mantel’s MAKS



Bounded-Deducibility Security. ITP 2021

Popescu, Lammich, Hou. CoCon: A Conference Management System with Formally
Verified Document Confidentiality. Journal of Automated Reasoning, 2021.

Bauereiss, Pesenti Gritti, Popescu, Raimondi. CoSMed: A Confidentiality-Verified
Social Media Platform. Journal of Automated Reasoning, 2018. (Journal version of
ITP 2016 paper)

Bauereiss, Pesenti Gritti, Popescu, Raimondi. CoSMeDis: A Distributed Social Media
Platform with Formally Verified Confidentiality Guarantees. IEEE Symposium on
Security and Privacy, 2017.

Kanav, Lammich, Popescu. A Conference Management System with Verified
Document Confidentiality. CAV 2014.

Support from DFG (through RS3), EPSRC and NCSC/VeTSS gratefully acknowledged.



Reserve Slides



Secret Trigger Bound
Paper
Content Paper Authorship Last Uploaded Version

Paper Authorship or PC MembershipB Nothing

Review Review Authorship
Last Edited Version
Before Discussion and
All the Later Versions

Review Authorship or
Non-Conflict PC MembershipD

Last Edited Version
Before Notification

Review Authorship or
Non-Conflict PC MembershipD or
Paper AuthorshipN

Nothing

Discussion Non-Conflict PC Membership Nothing
Decision Non-Conflict PC Membership Last Edited Version

Non-Conflict PC Membership or
PC MembershipN or Paper AuthorshipN

Nothing

Reviewer
Assignment
to Paper

Non-Conflict PC MembershipR
Non-Conflict PC Membership
of Reviewers

and Number of Reviewers

Non-Conflict PC MembershipR or
Paper AuthorshipN

Non-Conflict PC Membership
of Reviewers

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review



Example of Formalizing a Flow Policy

A group of users UIDs learns nothing about the content of a paper’s review (say,
review N of paper PID) beyond the last submitted version before the discussion
phase and the later versions unless one of them is that review’s author.

Observation infrastructure: retain from a trace all pairs input–output for users
in UIDs.

Secrecy infrastructure: retain from a trace all pairs phase–update, where:
“update” means “update to review N of paper PID”, and
“phase” means “the current phase of the conference”.

Trigger: T returns true for a transition iff the transition’s target state has a user
in UIDs as reviewer for review N of paper PID.

Bound: Two lists of secrets, which are lists of pairs phase–update, are related by
B iff:

their suffixes consisting of pairs having phase Discussion are equal, and
their last updates before those suffixes are also equal.



Example of Formalizing a Flow Policy

A group of users UIDs learns nothing about the content of a paper’s review (say,
review N of paper PID) beyond the last submitted version before the discussion
phase and the later versions unless one of them is that review’s author.

Observation infrastructure: retain from a trace all pairs input–output for users
in UIDs.

Secrecy infrastructure: retain from a trace all pairs phase–update, where:
“update” means “update to review N of paper PID”, and
“phase” means “the current phase of the conference”.

Trigger: T returns true for a transition iff the transition’s target state has a user
in UIDs as reviewer for review N of paper PID.

Bound: Two lists of secrets, which are lists of pairs phase–update, are related by
B iff:

their suffixes consisting of pairs having phase Discussion are equal, and
their last updates before those suffixes are also equal.



Example of Formalizing a Flow Policy

A group of users UIDs learns nothing about the content of a paper’s review (say,
review N of paper PID) beyond the last submitted version before the discussion
phase and the later versions unless one of them is that review’s author.

Observation infrastructure: retain from a trace all pairs input–output for users
in UIDs.

Secrecy infrastructure: retain from a trace all pairs phase–update, where:
“update” means “update to review N of paper PID”, and
“phase” means “the current phase of the conference”.

Trigger: T returns true for a transition iff the transition’s target state has a user
in UIDs as reviewer for review N of paper PID.

Bound: Two lists of secrets, which are lists of pairs phase–update, are related by
B iff:

their suffixes consisting of pairs having phase Discussion are equal, and
their last updates before those suffixes are also equal.



Example of Formalizing a Flow Policy

A group of users UIDs learns nothing about the content of a paper’s review (say,
review N of paper PID) beyond the last submitted version before the discussion
phase and the later versions unless one of them is that review’s author.

Observation infrastructure: retain from a trace all pairs input–output for users
in UIDs.

Secrecy infrastructure: retain from a trace all pairs phase–update, where:
“update” means “update to review N of paper PID”, and
“phase” means “the current phase of the conference”.

Trigger: T returns true for a transition iff the transition’s target state has a user
in UIDs as reviewer for review N of paper PID.

Bound: Two lists of secrets, which are lists of pairs phase–update, are related by
B iff:

their suffixes consisting of pairs having phase Discussion are equal, and
their last updates before those suffixes are also equal.



Example of Formalizing a Flow Policy

A group of users UIDs learns nothing about the content of a paper’s review (say,
review N of paper PID) beyond the last submitted version before the discussion
phase and the later versions unless one of them is that review’s author.

Observation infrastructure: retain from a trace all pairs input–output for users
in UIDs.

Secrecy infrastructure: retain from a trace all pairs phase–update, where:
“update” means “update to review N of paper PID”, and
“phase” means “the current phase of the conference”.

Trigger: T returns true for a transition iff the transition’s target state has a user
in UIDs as reviewer for review N of paper PID.

Bound: Two lists of secrets, which are lists of pairs phase–update, are related by
B iff:

their suffixes consisting of pairs having phase Discussion are equal, and
their last updates before those suffixes are also equal.



Network of Unwinding Relations for Proving It

∆1

��

**

// ∆2

��

##

// ∆3

��
//

{{
∆4

��

tt
∆error

∆1 (σ1, sl1, σ2, sl2)
(∀cid . PID ∈ paperIDs σ1 cid → phase σ1 cid < Reviewing)∧
σ1 = σ2 ∧ B sl1 sl2

∆2 (σ1, sl1, σ2, sl2)
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧

¬ (∃uid . isRevNth σ1 uid PID N)) ∧
σ1 = σ2 ∧ B sl1 sl2

∆3 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N ) ∧
σ1 =PID,N σ2 ∧ B sl1 sl2

∆4 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid ≥ Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N) ∧
σ1 = σ2 ∧ ( ∃wl . sl1 = sl2 = map (Pair Discussion) wl )

∆error (σ1, sl1, σ2, sl2)

sl1 6= [] ∧
((∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing∧
((∃cid . ¬ (∃uid . isRevNth σ1 uid PID N))
∨
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing ∧

((∃cid . fst (hd sl1) = Reviewing))



Network of Unwinding Relations for Proving It

∆1

��

**

// ∆2

��

##

// ∆3

��
//

{{
∆4

��

tt
∆error

∆1 (σ1, sl1, σ2, sl2)
(∀cid . PID ∈ paperIDs σ1 cid → phase σ1 cid < Reviewing)∧
σ1 = σ2 ∧ B sl1 sl2

∆2 (σ1, sl1, σ2, sl2)
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧

¬ (∃uid . isRevNth σ1 uid PID N)) ∧
σ1 = σ2 ∧ B sl1 sl2

∆3 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N ) ∧
σ1 =PID,N σ2 ∧ B sl1 sl2

∆4 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid ≥ Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N) ∧
σ1 = σ2 ∧ ( ∃wl . sl1 = sl2 = map (Pair Discussion) wl )

∆error (σ1, sl1, σ2, sl2)

sl1 6= [] ∧
((∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing∧
((∃cid . ¬ (∃uid . isRevNth σ1 uid PID N))
∨
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing ∧

((∃cid . fst (hd sl1) = Reviewing))



Network of Unwinding Relations for Proving It

∆1

��

**

// ∆2

��

##

// ∆3

��
//

{{
∆4

��

tt
∆error

∆1 (σ1, sl1, σ2, sl2)
(∀cid . PID ∈ paperIDs σ1 cid → phase σ1 cid < Reviewing)∧
σ1 = σ2 ∧ B sl1 sl2

∆2 (σ1, sl1, σ2, sl2)
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧

¬ (∃uid . isRevNth σ1 uid PID N)) ∧
σ1 = σ2 ∧ B sl1 sl2

∆3 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N ) ∧
σ1 =PID,N σ2 ∧ B sl1 sl2

∆4 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid ≥ Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N) ∧
σ1 = σ2 ∧ ( ∃wl . sl1 = sl2 = map (Pair Discussion) wl )

∆error (σ1, sl1, σ2, sl2)

sl1 6= [] ∧
((∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing∧
((∃cid . ¬ (∃uid . isRevNth σ1 uid PID N))
∨
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing ∧

((∃cid . fst (hd sl1) = Reviewing))



Network of Unwinding Relations for Proving It

∆1

��

**

// ∆2

��

##

// ∆3

��
//

{{
∆4

��

tt
∆error

∆1 (σ1, sl1, σ2, sl2)
(∀cid . PID ∈ paperIDs σ1 cid → phase σ1 cid < Reviewing)∧
σ1 = σ2 ∧ B sl1 sl2

∆2 (σ1, sl1, σ2, sl2)
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧

¬ (∃uid . isRevNth σ1 uid PID N)) ∧
σ1 = σ2 ∧ B sl1 sl2

∆3 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N ) ∧
σ1 =PID,N σ2 ∧ B sl1 sl2

∆4 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid ≥ Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N) ∧
σ1 = σ2 ∧ ( ∃wl . sl1 = sl2 = map (Pair Discussion) wl )

∆error (σ1, sl1, σ2, sl2)

sl1 6= [] ∧
((∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing∧
((∃cid . ¬ (∃uid . isRevNth σ1 uid PID N))
∨
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing ∧

((∃cid . fst (hd sl1) = Reviewing))



Network of Unwinding Relations for Proving It

∆1

��

**

// ∆2

��

##

// ∆3

��
//

{{
∆4

��

tt
∆error

∆1 (σ1, sl1, σ2, sl2)
(∀cid . PID ∈ paperIDs σ1 cid → phase σ1 cid < Reviewing)∧
σ1 = σ2 ∧ B sl1 sl2

∆2 (σ1, sl1, σ2, sl2)
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧

¬ (∃uid . isRevNth σ1 uid PID N)) ∧
σ1 = σ2 ∧ B sl1 sl2

∆3 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N ) ∧
σ1 =PID,N σ2 ∧ B sl1 sl2

∆4 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid ≥ Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N) ∧
σ1 = σ2 ∧ ( ∃wl . sl1 = sl2 = map (Pair Discussion) wl )

∆error (σ1, sl1, σ2, sl2)

sl1 6= [] ∧
((∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing∧
((∃cid . ¬ (∃uid . isRevNth σ1 uid PID N))
∨
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing ∧

((∃cid . fst (hd sl1) = Reviewing))



Network of Unwinding Relations for Proving It

∆1

��

**

// ∆2

��

##

// ∆3

��
//

{{
∆4

��

tt
∆error

∆1 (σ1, sl1, σ2, sl2)
(∀cid . PID ∈ paperIDs σ1 cid → phase σ1 cid < Reviewing)∧
σ1 = σ2 ∧ B sl1 sl2

∆2 (σ1, sl1, σ2, sl2)
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧

¬ (∃uid . isRevNth σ1 uid PID N)) ∧
σ1 = σ2 ∧ B sl1 sl2

∆3 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N ) ∧
σ1 =PID,N σ2 ∧ B sl1 sl2

∆4 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid ≥ Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N) ∧
σ1 = σ2 ∧ ( ∃wl . sl1 = sl2 = map (Pair Discussion) wl )

∆error (σ1, sl1, σ2, sl2)

sl1 6= [] ∧
((∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing∧
((∃cid . ¬ (∃uid . isRevNth σ1 uid PID N))
∨
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing ∧

((∃cid . fst (hd sl1) = Reviewing))



Network of Unwinding Relations for Proving It

∆1

��

**

// ∆2

��

##

// ∆3

��
//

{{
∆4

��

tt
∆error

∆1 (σ1, sl1, σ2, sl2)
(∀cid . PID ∈ paperIDs σ1 cid → phase σ1 cid < Reviewing)∧
σ1 = σ2 ∧ B sl1 sl2

∆2 (σ1, sl1, σ2, sl2)
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧

¬ (∃uid . isRevNth σ1 uid PID N)) ∧
σ1 = σ2 ∧ B sl1 sl2

∆3 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N ) ∧
σ1 =PID,N σ2 ∧ B sl1 sl2

∆4 (σ1, sl1, σ2, sl2)

(∃cid uid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid ≥ Reviewing ∧
(∃cid uid . isRevNth σ1 uid PID N) ∧
σ1 = σ2 ∧ ( ∃wl . sl1 = sl2 = map (Pair Discussion) wl )

∆error (σ1, sl1, σ2, sl2)

sl1 6= [] ∧
((∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing∧
((∃cid . ¬ (∃uid . isRevNth σ1 uid PID N))
∨
(∃cid . PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing ∧

((∃cid . fst (hd sl1) = Reviewing))


	Introduction
	Bounded-Deducibility (BD) Security

