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Abstract. We show that any institution 7 satisfying some reasonable
conditions can be transformed into another institution, Zpen, which cap-
tures formally and abstractly the intuitions of adding support for be-
havioral equivalence and reasoning to an existing, particular algebraic
framework. We call our transformation an “extension” because Zy.;, has
the same sentences as 7 and because its entailment relation includes that
of Z. Many properties of behavioral equivalence in concrete hidden logics
follow as special cases of corresponding institutional results. As expected,
the presented constructions and results can be instantiated to other log-
ics satisfying our requirements as well, thus leading to novel behavioral
logics, such as partial or infinitary ones, that have the desired properties.

1 Introduction

Many approaches to behavioral equivalence are defined as extensions of more
standard algebraic frameworks, following relatively well understood methodolo-
gies. For example, hidden algebra is defined as an extension of algebraic specifi-
cation: it adds appropriate machinery for experiments and then uses it to define
behavioral equivalence as “indistinguishability under experiments”, also known
to be the largest behavioral congruence consistent with the visible data.

Here we explore this problem from an abstract model theoretical perspective.
We investigate conditions under which an institution admits behavioral exten-
sions. The intuition of a behavioral signature extending an algebraic signature is
captured categorically in a general way covering all cases of operations in current
use, including the ones that tend to be problematic: constants of hidden sorts and
operations with multiple arguments of hidden sort. Let the original institution
be T = (Sign, Sen, Mod, |=), let ¥ be a fixed signature in Sign called the wvisible
signature, and let D be a ¥-model called the data model. Then we build the
behavioral extension of T over (¥, D), say Zper, = (Signyep, Senbeh, Modpen, E ),
as follows. The objects in Sign,,;, are those in the comma category ¥/Sign; the
(p : ¥ — X, X)-sentences in Zyp, are exactly the X-sentences in Z, while the
(¢ : ¥ — X, X)-models in Ty, are the data-consistent X-models in Z; finally,
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satisfaction A E o 5)P in Zpep, is defined as A, =5 p in Z, for a carefully chosen
model A, that symbolizes the “quotient” of A by its behavioral equivalence. An
appropriate novel notion of quotient system is introduced for this purpose.

The abstract relationship between behavioral and normal satisfactions is
studied via a model-theoretic notion of “visibility”, and some structural proper-
ties preserved by the behavioral extension are pointed out. We show that many of
the relevant properties of particular hidden logics can be proved at institutional
level. The motivation for such a generalization is, as usual, its logic-independent
status: a plethora of concrete algebraic logics formalizable as institutions satisfy
our mild restrictions, so they all admit behavioral extensions.

Notice that from the way we define the concepts, we restrict ourselves to the
fized-data approach. An adaptation of our construction to the loose-data setting
seems possible, and we shall sketch it in Section 7. Due to space limitations,
proofs of our results are omitted, but they can all be found in [24].

Preliminaries. We assume the reader familiar with basic categorical notions:
functor, colimit, etc. We use the terminology and notation from [23], with the
following exceptions: we let “;” denote the morphisms’ composition, which is
considered in diagrammatic order; by colimit and limit we mean small colimit
and small limit; by a filtered (chain) colimit we mean a colimit of a functor
defined on a non-empty filtered (total respectively) ordered set. We use the
following comma category notations: if A € |C|, A/C denotes the category whose
objects are pairs (h, B), where h : A — B is a morphism in C, and whose
morphisms u : (h, B) — (g,C) are such that v : B — C is a morphism in C with
h;u = g; there is a canonical forgetful functor U from A/C to C, which maps each
object (h, B) to B and each morphism u : (h, B) — (g9,C) to u : B — C; when
u: A — A’ is a morphism in C, there is a canonical comma functor u/C between
A’/C and A/C, mapping each object (h, B) to (u;h, B) and each morphism to
itself; to each functor F': C — D and object A in C, one can associate a functor
between comma categories Fi4 : A/C — F(A)/D, which maps each object (h, B)
to (F(h), F(B)) and each morphism g to F(g).

Since we need a special notion of quotient object, we define a parameterized
notion of co-well-powered-ness: let C be a category and £ be a class of morphisms
in C. |C| is said to be &-co-well-powered if for each A € |C| there is some set D
of morphisms in £ of source A, such that any morphism of source A in & is
isomorphic in A/C to some morphism in D. If £ is taken to be the class of all
epimorphisms, we get the usual notion of co-well-powered-ness. If C is a category,
C°P denotes its dual. We let Set denote the category of sets and functions and
Cat the category of categories and functors.

2 Institutions

In this section, we discuss several institutional concepts, many already known.
An institution [I7] consists of: a category Sign, whose objects are called

signatures; a functor Sen : Sign — Set, giving for each signature X a set whose

elements are called X'-sentences; a functor Mod : Sign — Cat°P giving for each
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signature X' a category whose objects are called X'-models and whose arrows
are called X-morphisms; a X-satisfaction relation Fx C |Mod(X)| x Sen(X)
for each X € |Sign|, such that for each morphism ¢ : ¥ — X’ in Sign, the
satisfaction condition “M’ =5 Sen(p)(e) iff Mod(p)(M') Ex €” holds for all
M' € [Mod(X')| and e € Sen(X). As usual, we may let _[, denote the reduct
functor Mod(yp) and ¢ denote Sen(yp). When M = M'|, we say that M’ is a
p-expansion of M and M is the p-reduct of M'.

The satisfaction relation is extended to sets of X-sentences and classes of X-
models: if E C Sen(X) and M C |Mod(XY)|, then we write M =5 E whenever
M k=5 eforeach e € E and M € M. We let E* denote the class {M | M 5 E}
and dually, M* the set of X-sentences {e | M |=x e}. The two “x” operators
form a Galois connection [I7]; we let “o” denote the two corresponding closure
operators. The satisfaction relation is also extended to a (semantic) consequence
relation, for which we use the same symbol, following classical logic tradition: if
E,E' C Sen(X), we write E =5 E' whenever E* C E'™*. To simplify notation,
we may write |= instead of Ex. A presentation [I7] is a pair (X, E), where
E C Sen(X). A theory [17] is a presentation (X, FE) with E with E* = E.
A presentation morphism ¢ : (X, E) — (X', E’') is a signature morphism ¢ :
Y — X' with ¢(E) C E'*. A presentation morphism between theories is called
a theory morphism. We let Mod(X, E) denote the full sub-category of Mod(X)
having as objects all the Y-models which satisfy E. An institution is w-ezact if
Mod preserves colimits of functors defined on the ordered set of natural numbers.

A signature morphism ¢ : X — X’ is representable [I0] if there exists a
Y-model Ti, (called the representation of ) and an isomorphism of cate-
gories I, : Mod(X') — Ti,/Mod(¥) such that I,;U = Mod(p), where U :
Tip)/ Mod(¥) — Mod(X) is the usual forgetful functor. Representable signature
morphisms capture the idea of first-order variable. For instance, in the institution
of first-order predicate logic with equality (FOPL_; see Example[Il(1)), given a
set of constant symbols X, the inclusion of X' = (5, F, P) into X/ = (S, FUX, P)
is represented by Tx(X), the term algebra over variables X and operations in
F, with all the relations in P empty.

The sentences of an institution Z can be naturally extended with first-order-
like constructions [29]: if ¢ : X — X', p,6 € Sen(X), p' € Sen(X’), and E C
Sen(X'), one can build the sentences A E, \/ E, =p, 6 = p, (Vo)p', (3p)p’, with
the following semantics, for each X-model M\: M = AEif M = E; M E\/ E
iff M =eforsomeeec Es M E=—-piff M ~Ep; M 6= piff M = 6 implies
M Ep; M = (Vo)p' iff M' | p’ for all p-expansions M’ of M; M | (3p)p’ iff
there exists some ¢-expansion M’ of M such that M’ |= p’. It might be the case
that the newly constructed sentences are equivalent to some existing sentences
in 7 - we take the convention that whenever we mention such a sentence, say
(Vp)p', we tacitly assume that it is equivalent to an existing one in Z and we
simply identify them, i.e., consider that (Vp)p' € Sen(X).

Given a signature X, a X-sentence p is called: basic [10] if there exits a X-
model T, such that for each X-model M, M = p iff there exists some morphism
T, — M; universal if there exists a signature morphism ¢ : ¥ — X’ and a basic
sentence p’ € Sen(X") such that p is of the form (Vi)p'; positive if it is either ba-
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sic or is obtained from basic sentences by a finite number of conjunctions (A E),
disjunctions (\/ E), universal quantification ((V¢)p’), and existential quantifica-
tion ((J¢)p’). The notion of basic sentence is an institutional generalization for
ground atom (equation, predicate etc.) - in our examples of institutions, the basic
sentences are the primary bricks used to construct the more complicated sen-
tences. For instance, in FOPL_, the basic sentences are just finite conjunctions
of ground term equalities t; = t5 and/or of relational statements over ground
terms R(t1,...,t,); in the institution of equational logic (EQL - see Example
@ (2)), the basic sentences are just ground term equalities. Universal sentences
capture institutionally the universally quantified atoms. Universal sentences con-
tain basic sentences: any basic sentence p € Sen(X) is equivalent to (V1x)p. The
institution 7 is said to: have basic Horn implications iff for each signature X,
each set of basic sentences E C Sen(XY), and each basic sentence p € Sen(X),
the sentence (A\ E) = e is in Sen(X); have finitary basic Horn implications if
the above condition is satisfied for F finite.

A signature morphism ¢ : X — X’ is called liberal [I7] iff Mod(y) has a
left adjoint. An institution is called liberal iff each of its signature morphisms is
liberal. Let Z be an institution, U be a |Sign|-indexed class of model morphisms
closed under composition and images by reduct functors, and ¢ : ¥ —X’ be
a morphism in Sign. We say that: ¢ creates U-morphisms iff for any A’ €
|Mod(X")| and any h : A'l, —B in Uy, there exists f : A’—B’ in Us; such that
flo= h; also, ¢ weakly creates U-morphisms iff for any A" € |Mod(X")| and any
h:A'l, =B in Ux, there exist g : B—C in Uy and f: A’—=B’ in Uy such that
flo= h;g. Morphism creation condition is used in [12] and [10] (under the name
lifting) for institution-independent interpolation and ultraproducts results. We
shall use weak creation at the bare definition of hidden signature morphisms.

Example 1. We briefly discuss two important institutions that will be used as
working examples. Their detailed descriptions, as well as several other examples
of institutions on which our results apply, are discussed in AppendixC of [24].
(1) FOPL. [I7] - the institution of (many-sorted) first order predicate logic
with equality. The signatures are triples (S, F, P), where S is a set of sorts,
F = U{Fuslw € S*, s € S} is a set of (S-sorted) operation symbols, and P =
U{Pw|w € 5*} is a set of (S-sorted) relation symbols. A signature morphism is a
triple ¢ = (%7, P p"¢!) : (S, F, P) — (S, F', P'), where p*°™ : § — S/ p°P :
F — F' and 9" : P — P’ are mappings such that ¢°P(F,, ;) C F;
and " (P,) C P

rel

50Tt (1) Ot (5)
sort () for each w € S* and s € S. (We may write ¢ instead
of p*ort prel and pP.) Given a signature X = (S, F, P), a Y-model is a triple
M = ({MS}SESa {Mw,s(a)}(w,s)GS*XSa {Mw(a)}wes*) interpreting each sort as a
set, each operation symbol as a function, and each relation symbol as a relation,
with appropriate arities. (We may write M, and M, instead of M, (o) and
M., ().) The model morphisms are S-sorted functions which preserve operations
and relations. The set of Y-sentences and the satisfaction relation are the usual
first-order ones. Each Sen(y) translates sentences symbol-wise, and Mod(y) is
the usual forgetful functor.
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(2) EQL, the institution of equational logic [I7], is a restriction of FOPL_,
with no relation symbols (its signatures are pairs (S, F')), and with only condi-
tional equations (VX)t; =) A...t, =t), =t =1') as sentences.

3 Hidden Algebra Logic and Behavioral Satisfaction

Hidden algebra extends algebraic specification to handle states naturally, us-
ing behavioral equivalence. Systems need only satisfy their requirements behav-
iorally, in the sense of appearing to satisfy them under all possible experiments.
Hidden algebra was introduced in [16] and developed further in [I8IT912027]
among many other places. CafeOBJ [14] and BOBJ [20], are executable specifi-
cation languages that support behavioral specification and reasoning. One dis-
tinctive feature of hidden algebra logics is to split sorts into wisible for data and
hidden for states. A model, or hidden algebra, is an abstract implementation of
a system, consisting of its possible states, with functions for operations. The
restriction of a model to the visible subsignature is called data. Hidden logics
refer to close relatives of hidden algebra, including both fized-data and loose-data
variants. This paper is concerned with the fixed-data approach. Hidden algebra
is constructed on top of many-sorted algebra and equational logic - we shall use
the notations of EQL (see Example [).

Given a set V of visible sorts, a V-sorted signature ¥ called the data signature,
and a W-algebra D called the data algebra, then a fized-data hidden (¥, D)-
signature is a (V' U H )-sorted signature X with X'[yy= ¥, where H is a set disjoint
from V' of hidden sorts. Hereafter we write “hidden signature” instead of “fixed-
data hidden (¥, D)-signature”. The operations in X' with one hidden argument
and visible result are called attributes, those with one hidden argument and
hidden result are called methods, those with two hidden arguments and hidden
result are called binary methods, and so on; those with only visible arguments and
hidden result are called hidden constants. Let X' = (S, F') be a hidden signature,
where S = VU H. A hidden X-algebra is a Y-algebra A with AJg= D; it can
be regarded as a universe of possible states of a system. A system can be seen
as a “black-box,” the inside of which is not seen, one being only concerned with
its behavior under “experiments”. A hidden X -morphism between two hidden
J-algebras A and B is a usual X-homomorphism h : A — B such that hjg= 1p.

An experiment is an observation of a system after it has been perturbed; the
below is a placeholder for the state being experimented upon. A context for sort
sisatermin Tx({e : s}UZ) having exactly one occurrence of a special variable o
of sort s, where Z is an S-indexed componentwise infinite set of special variables.
Let Cle : s] denote the S-indexed set of all contexts for sort s, and var(c) the
finite set of variables in a context ¢ except . A context with visible result sort
is called an experiment; let E[e : s] denote the V-indexed set of all experiments
for sort s. The interesting experiments are those for hidden sorts s € H. We
sometimes say that an experiment or a context for sort s is appropriate for terms
or equations of sort s. Contexts can be “applied” as follows. If ¢ € Cy[e : s] and
t € Ts 4(X), then c[t] denotes the term in Ts; o (var(c) U X) obtained from ¢ by
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substituting ¢ for e. Further, ¢ generates a map A.: As; — [A”‘”(C) — Ag] on
each Y-algebra A, defined by A.(a)(0) = aj(c), where a} is the unique extension
of the map (denoted ay) that takes ® to a and each z € var(c) to 6(z).

We recall the important notion of behavioral equivalence. Given a hidden X-
algebra A, the equivalence a =5 o’ iff Ay(a)(0) = A,(a’)(0) for all experiments
~ and all maps 6: var(y) — A is called behavioral equivalence on A. A hidden
congruence is a congruence which is the identity on visible sorts. The following
supports several important results in hidden logics. Since final models may not
exist when operations of zero or more than one hidden argument are allowed,
the existence of a largest hidden congruence does not depend on them.

Theorem 1. Given a hidden X-algebra A, the behavioral equivalence is the
largest hidden congruence on A (see [26] for a proof).

Given a hidden X-algebra A and a X-equation (VX) t = t/, say p, then A
behaviorally satisfies p, written A = yp, iff 6(t) =5 0(t') for all 6: X — A. Let
E[p] be either the set {(VX,var(y)) v[t] =[] | v € E[e : h]} when the sort
h of t,t is hidden, or the set {p} when the sort of ¢,¢ is visible. E[E] is the
set (J.cx Elp]. Behavioral satisfaction of an equation can be reduced to strict
satisfaction of a potentially infinite set of equations:

Proposition 1. If A is a hidden X-algebra then A £ o FE iff A =x E[E].
Behavioral satisfaction is “reflected” by hidden morphisms [19]:

Proposition 2. If h : A — B is a hidden X -morphism and p a X-equation,
then B E p implies A E p.

The notion of morphism of hidden signatures [I6] reflects at a syntactic level
the object-oriented principles of data encapsulation. A morphism of (¥, D)-
hidden signatures x : (VU H,F) — (VU H',F') of (¥, D)-hidden signatures
is a many sorted signature morphism such that: (C1) x is an identity on ¥;
(C2) x*°"*(H) C H'; (C3) for each operation ¢’ € F’ having an argument sort
in x*"(H), it is the case that o/ € x°P(F). These conditions have natural
interpretations in terms of information encapsulation: visible data remains un-
changed (C1); hidden states are not unhidden by imports (C2); and no new
methods or attributes are added on imported states (C3). Condition (C3), al-
though has a rather restrictive character, is quite faithful to the principle of
“behavior-protecting” inheritance mechanism. The above conditions ensure that
behavioral equivalence and satisfaction are preserved by the reduct functor:

Proposition 3. If x: X — X' is a hidden signature morphism with X = (V U
H,F) and A’ is a hidden X'-algebra, then: (1) for allh € H and a,b € A;(Sm(h),

a=xbiffa=sb; (2) (A'lx)/=x = (A=, )Ix; (3) AEX(p) ilf A'lx E p, for

each X -equation p.

4 Quotient Systems

Image factorization systems [1] are a categorical generalization of the system
of injections and surjections from set theory. Unlike bare monics and epics, the
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morphisms of a factorization system work together to provide, up to an isomor-
phism, a unique factorization for each morphism. Inclusion systems [15] and weak
inclusion systems [8], modifications of factorization systems by dropping the ”up
to an isomorphism” relaxation, turn out to be more suitable for the categorical
study of algebraic specification concepts. In this paper, because of the coalge-
braic nature of the involved notions, we introduce a variant of a factorization
system that is dual to the weak inclusion system:

Definition 1. A quotient system for a category C is a pair (£, M), where €
and M are subcategories of C such that: (1) € is a partial order, in the sense that
E(A, B) contains at most one morphism for any A, B € |C|, and A = B whenever
E(A,B) # 0 and E(B,A) # 0; (2) Morphisms in C can be factored uniquely as
e;m, with e € £, m € M. The elements of £ are called quotients and those of
M injections. B is called a quotient object of A when E(A, B) # ().

Note that (£, M) is a quotient system for C iff (M, ) is a weak inclusion
system for C°P. Thus, w.r.t. category theory, quotient systems bring nothing es-
sentially new. However, they model properly the important notion of congruence,
which is not to be considered, like in the case of factorization systems, up to an
isomorphism, but chosen in a unique, canonical way. This will have important
semantical and technical consequences when we define behavioral satisfaction:
first, we can model faithfully in an institutional framework the process of con-
structing the behavioral equivalence, originally defined in an internal fashion
within the set-theoretical structure of the algebras (see Section [)); second, by
regarding models as universes for congruences, we do not need to postulate the
existence of final objects; finally, delicate technical issues regarding lifting and
preserving properties can be elegantly treated using quotient systems.

The category of sets, as well as that of algebras, have natural quotient systems
if we allow a slight and non-problematic foundational modification: we assume
that all elements in the considered sets or carriers are sets themselves and in
addition they are mutually disjoint. That anything is a set is a harmless principle
of the Zermelo-Fraenkel Set TheoryE but note that we only take this assumption
about algebras (models), and not about sentences. Moreover, any algebra can be
isomorphically and uniformly transformed into one satisfying the above condition
by simply replacing its elements z with singletons {z}. Now, we can take M
as the category of all injective morphisms and £ as that of those surjective
morphisms f : A — B such that, for each element b € B, the elements a € A
with f(a) = b form a partition of b. Therefore, £ provides canonical ways to factor
algebras by refining their carrier sets, viewed as partitions, in a dual manner to
inclusions that give a canonical way to embed an algebra into another. We next
list some properties of quotient systems, some of them dual to ones for weak
inclusion systems [§]. Let (£, M) be a quotient system for C.

! This set-theoretical assumption that we take should be regarded as a meta-level
setting, having nothing to do with the duality algebra-coalgebra. In particular, it does
not imply that we are planning to treat the coalgebraic phenomena with algebraic
methods; at least not to a greater extent than any other “mathematical” approach.
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Proposition 4. (see Fact 5 in [§]) (1) Any e € € in an epic; (2) M contains
all the isomorphisms in C; and (8) all isomorphisms in & are identities.

Proposition 5. (see also Corollary 26 in [§]) If e, e’ € £ of same source admit
pushout in C, then they have a unique pushout whose morphisms are in €. If (1,<)
is a filtered set and ¢ = (e;; : Ai—Aj)ijeri<; an I-diagram in € admitting a
colimit in C, then there is a unique colimit of ¢ in C whose morphisms are in £.
In particular, if C is {pushout and filtered}-cocomplete, then so is &.

Ezample 2. For each signature (S, F) in EQL, £ ) consists of all surjective
morphisms h : A — B such that b = {J,c4 5, (a)=p @ for each sort s € S and
b € Bs, and Mg, ) consists of all injective morphisms. In the case of FOPL—, we
can consider two canonical ways to provide quotient systems, following the idea
of inclusion systems for FOPL_ [13]. Let (S, F, P) be a signature. An (S, F, P)-
morphism f : A — B is called strong if, for each (n-ary) relation symbol R € P
and each (ay, ..., ay), it holds that (a1, ...,a,) € Ariftf (f(a1),..., f(an)) € Br.
(1) The quotients are morphisms h : A — B such that h is a (5, F')-quotient
in EQL; the injections are the strong injective morphisms; (2) The quotients
are morphisms h : A — B such that h is a strong (5, F')-quotient in EQL; the
injections are the injective morphisms.

All the institutions that use some form of set-theoretical notion of model tend
to have quotient systems on models, although the choice is not always unique.

5 The Behavioral Extension of an Institution

Next we provide an institutional generalization of fixed-data hidden logic.

Definition 2. An institution with quotients is an institution equipped with
quotient systems (Ex, Mx) on each category of models Mod(X), such that all
reducts Mod(p) along signature morphisms ¢ : X — X' preserve quotients and
injections. (That is, for each e in Ex and m in My, it holds that e[, is in Ex
and ml, is in Mx.) An institution with quotients is co-well-powered if each
Mod(X) is Ex-co-well-powered.

Notice that the notion of £x-co-well-powered-ness becomes particularly sim-
ple thanks to Proposition 4.(3): one only asks that, for each A € |Mod(X)|, the
class of morphisms in £y of source A is a set. All throughout this section, we
shall work inside the following framework:

Framework 1: A co-well-powered institution with quotients Z, having fil-
tered colimits and pushouts of models, such that all reducts Mod(y) along
signature morphisms ¢ : X — X" preserve filtered colimits and pushouts of
quotient diagrams (i.e., diagrams consisting of morphisms in &).

Our examples of institutions with quotients all satisfy the above conditions.
While these institutions have not only filtered colimits and pushouts, but also
arbitrary colimits on models, the arbitrary colimits are usually not preserved by
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reduct functors. The only property that needs explanation is the preservation
of pushouts of quotients. In EQL, this follows from the fact that the supre-
mum of two congruences of a model does not depend on the signature where
the supremum is taken - see Appendix D of [24]. As for the case of the two
possible families of quotient systems in FOPL_, the quotient preservation prop-
erty follows from the equational case, using the fact that the forgetful functor
Mod(S, F, P) — Mod(S, F,0) creates colimits (and pushouts in particular).

Let ¥ be a fixed signature of T = (Sign, Mod, Sen, =), that we call the
visible signature, and D be a fixed ¥-model, that we call the data model. We
define an institution Zpen(¥, D), the behavioral extension of T over (¥, D). We
let Zper, = (Signpen, Modpen, Senpen, E ) denote Tpen(¥, D) without forgetting
though that our construction is parameterized by ¥ and D.

Signatures. The signatures of Ty, are pairs (¢: W—X, X)), where X is a sig-
nature in Z. (Instead of the entire class of objects of ¥/Sign, one could also
consider, without adding any technical difficulties, only a subclass, like the class
of inclusions [20].) We postpone the definition of signature morphisms.

Sentences. For a signature (¢, X) in Zpep, let Senpen(, X) be precisely Sen(X).
However, the sentences will get in 7y, a different meaning than in 7.

Models. For a signature (¢, X)) in Zpen, let Modpen(p, X) be the fiber category
2] D1;" of the functor _|,: Mod(X) — Mod(¥) over D: its objects are those
A € |Mod(X)| with Al,= D and its morphisms are those h : A — B in Mod(X)
with Al,= 1p. Interestingly, this fiber category captures precisely the intuition
of hidden algebra: models protect data and morphisms are data-consistent.

We are next going to define behavioral satisfaction (in Zp.p,) as satisfaction in
7 on smallest data-consistent quotient objects. We first need to introduce some
notation and show that such objects indeed exist.

Definition 3. For a signature (¢, X) and a (¢, X)-model A in Tpen, let AfpEx
be the category of data-consistent quotients of A: its objects are morphisms
e: A— B in Ex with e[,= 1p and its morphisms h: (e: A — B) — (¢/ : A —
B') are morphisms h: B — B’ with h{p=1p and e;h =¢’.

It follows from the above definition that all the mentioned morphisms h :
B — B’ are actually in s (one can see that by decomposing h as ep; i, and
using the unique factorization property for e; ep; i, = €’). Moreover, the category
A/pEx is isomorphic to the full subcategory of £x having the class of objects
restricted to quotient objects of A.

Proposition 6. The category A/pEx; has a unique final object, eg , : A — Ag.

The morphism ey4,, can be intuitively regarded as the “largest congruence on
A that is data-consistent”, or the “behavioral equivalence” on A. Note that the
construction of A, follows a final approach, without assuming the existence of
globally final models - rather, we get a final model, i.e., a greatest congruence,
starting from any given model. This allows our formalization to capture non-
coalgebraic variants of hidden algebra at no additional cost.
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Satisfaction relation. We can now define satisfaction in Zpep,, called behavioral
satisfaction and written E , as follows: for a signature (¢, X), a (p, X)-model A
and a (p, X)-sentence p, let A g, o)p in Tpep iff Ay =x pin I.

The only thing left to define in Zp.p is the morphism of signatures. As dis-
cussed in Section [3 this is a delicate concept to define even in the concrete
framework of hidden algebra, because it needs to imply the property that its
semantic counterpart, the reduct, preserves behavioral equivalences on models.
Whether the morphisms in Sign,,;, can be defined categorically in some “syntac-
tic” way capturing the conditions (C1), (C2), (C3) from Section [ seems to be a
difficult problem and perhaps not worthwhile the effort. Our approach, instead,
is to define morphisms of signatures by capturing precisely the above crucial

property.

Proposition 7. Let ¢ : =X, ¢ : U—Y' and x : X—2X' be three signature
morphisms in I such that @;x = ¢'. Then the following are equivalent: (a)
X weakly creates data-consistent quotients; and (b) for each 3'-model A’ with
A'ly= D, it is the case that (ear /)= €(art,),e-

Signature morphisms. The morphisms x : (¢, X)—(¢',2’) in Sign,,, are
now defined to be morphisms x : X—2X’ in Sign such that ¢;x = ¢’ and the
equivalent conditions in Proposition [ hold. It is not hard to see that Signyes
is now a (broad) subcategory of ¥/Sign. Senper, and Modpep, can be defined on
signature morphisms x : (¢, X)—(p’, X') as expected, that is, exactly as the
functors Sen and Mod are defined on x : ¥ — X’  but using the appropriate
restricted classes of models and model morphisms.

Condition (b) in Proposition [7 provides the motivation for the definition of
signature morphisms: one wants the “behavioral equivalence”, i.e. the largest hid-
den quotient, to be preserved by reduct functors - this is in fact the main reason
for the conditions (C2) and (C3) in the definition of hidden signature morphisms
(see Section [3]). As for condition (a), one can use the following intuition for the
weak creation property stated there. Let x : X=X’ be a morphism in ¥/Sign.
Also, let A € Modpen(p,X) and A’ € Modpep(¢', X’) such that A = A'[,. The
existence of a quotient e : A — B with e[,= 1p means that the hidden struc-
ture of A can be flattened in a behaviorally consistent way, i.e., not affecting
the data. This situation should not depend on notation, so one should be able
to alternatively perform this flattening on A’. Yet, because of the larger number
of expressible entities in X', here consistent flattening might cause more effects-
hence the “weak” nature of creation.

Theorem 2. Ty, is an institution with quotients, where, for each (¢, X) €
|Sign|, .5y and M, 5y are the restrictions of Ex and Mx to Modyen(X, @),
respectively. Moreover, there exists a canonical morphism of institutions (in the
sense of [17]) between Lyep, and I, projecting each Tpep signature (o, X) into X,
not changing the sentences, and mapping each (¢, X)-model A to A,.

The institution Zy., above generalizes the institutions of variants of fixed-data
hidden algebra [T6J20/26], constructed in a similar fashion on top of many-sorted



Behavioral Extensions of Institutions 341

equational logic. Theorem [ tells us that similar behavioral extensions of many
other logics are possible, in for particular those in Appendix C of [24], including
partial and infinitary ones. A first important property of behavioral satisfaction
is that entailment in 7 is “sound” in Zpp . The next proposition generalizes former
results on “behavioral soundness of equational deduction” [27], with syntactic
proofs in the concrete hidden algebraic framework.

Proposition 8. If (¢, X) € |Signeen|, p € Sen(X) and E C Sen(X), then
E x5 p implies E [ (, 5)p.
The following proposition generalizes another standard result in hidden algebra,

namely that behavioral satisfaction coincides with usual satisfaction on sentences
over the visible syntax.

Proposition 9. Let (¢, X)) € |Signpen|, p € Senz(¥) and A € |Modpen (0, ).
Then A E (, sy9(p) iff A s ¢(p) iff D =w p.

In hidden algebra, “visibility” does not concern only sentences over the visible
signature. The sentences of visible sort need not contain only data constructs;
indeed, sentences of visible sort may involve several attributes and methods.
There is no notion of “visible sort” in our abstract framework. However, we can
still define an institutional generalization of “sentences of visible sorts”, that we
call “visible sentences”, by model-theoretic means; the visible sentences will be
those preserved back and forth by data-consistent flattening, following the intu-
ition that these sentences should sense only modifications in the visible part of
a system. We also introduce “quasi-visible sentence”, for which the preservation
property holds only backwards. But let us set some terminology first:

Definition 4. Let (p,X) € |Signy.l, p € Sen(X), and K a subcategory of
Modpen(p, X). Then p is closed (behaviorally closed) under K if, for each
A— B in K, A p implies Bl= p (A E p implies B [E p, respectively).

Definition 5. Let (¢, X) be a signature in Tper,. Then p € Senpen(p, X) is -
visible if it is closed under both &5 ) and E(Og o) and p-quasi-visible if it is
closed under 5(05 o) If the signature ¢ is clear, we shall say “visible” (“quasi-

visible”) instead of “p-visible” (“p-quasi-visible”).

Proposition 10. Let (¢, X) € |Signpen| and p € Senpen(p, X). Then: (1) p is
visible iff, for each A € |Modyen(p, X)|, [A = p iff A E p]; (2) if p is quasi-visible
then, for each A € |Modyen(, X)|, [A |E p implies A |= p]; (8) if p is closed under
./\/12)572) and under &, 5y, then it is behaviorally closed under Modpen(p, X)°P.

Thus, according to Proposition [0, the visible sentences are precisely those for
which behavioral satisfaction coincides with usual satisfaction. On the other
hand, the quasi-visible sentences have the property that, in order to satisfy them
behaviorally, one has to satisfy them strictly. Moreover, (3) in Proposition [0l is
the abstract version of the hidden algebraic result (Proposition 2] saying that
equational behavioral satisfaction is preserved by reflexions of arbitrary hidden
morphisms. (Recall that in the usual algebraic settings, equations are closed
under arbitrary quotients and reflexions of embedding.)
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Proposition 11. Visible and quasi-visible sentences are preserved by signature
morphisms and closed under conjunctions, disjunctions, universal and existential
quantifications. In addition, visible sentences are also closed under negation.

An immediate consequence of the above proposition is that both visible and
quasi-visible sentences provide subinstitutions of Zp.p. Also, in the case of pos-
itive sentences (a very wide class, containing the basic and the universal sen-
tences), the notions of visibility and quasi-visibility coincide:

Corollary 1. Let (¢, X) be a signature in Tpep, and p be a positive X-sentence
in I. Then p is p-visible iff it is p-quasi-visible.

The next proposition deals with some structural properties inherited from Z
t0 Lpep,: filtered colimits of models and signatures. The former are usually impor-
tant for Birkhoff-like axiomatizability results, while the latter, which also bring
filtered colimits of theories [I7], can be used for approximating finite refinements
towards a fixed point. The comma nature of the signatures in Zp., “invite” us
to construct filtered colimits, starting from those of Z.

Proposition 12. (1) If (p,X) is a signature in Tpep, such that ¢ creates iso-
morphisms in I, then Modper(p, X) has filtered colimits; (2) If T has countable
filtered colimits of signatures and is w-exact, then Tyep, also has countable filtered
colimits of signatures.

In the case of many-sorted algebraic signatures, the signature morphisms
that create model isomorphisms are precisely those that are injective on sorts.
In particular, Proposition[I2(1) holds for the case, usually considered for hidden
algebra, of ¢ being an inclusion.

6 Behavioral Satisfaction of Universal Sentences

We next focus our study on basic and universal sentences. As already mentioned,
these are institutional generalizations of ground equations and arbitrary equa-
tions, respectively. Some important properties of hidden logics depend on the
equational character of these special sentences.

Before we define our next framework, let us first recall that, in FOPL_
or EQL, if p is some ground X-equation, then T, is the quotient by p of the
ground X-term model; then because of the special way to construct direct sums
in these logics, it follows that for any X-model A, the direct sum A II T} is
actually isomorphic to A “factored” by p, i.e., the least restrictive “flattening”
of A that satisfies p (this property is actually institution-independent). Following
this intuition, from here on we assume:

Framework 2: An institution Z satisfying Framework 1, such that for any
X, any A € |Mod(X)|, and any basic p € Sen(X'), the coproduct

(ma:A— AIlT,,ug, : T, — AL T),) exists and can be taken such that
14 € Ex. Then AIIT, is unique with this property and we denote it A/,.
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The following says that behavioral satisfaction of basic sentences can be equiv-
alently regarded as data-consistent factoring:

Proposition 13. If (¢, X)) is a signature, A is a (p, X)-model in Tpep, and p is
a basic X-sentence (in I), then A [ p iff (1a)l,= 1p.

In what follows, we shall place the discussion in the context of elementary
diagrams. Diagrams are a main concept in classical model theory [7]. The dia-
gram of a model M consists of a set of sentences in its parameterized language
which describe its structure well enough in order to axiomatize the class of mor-
phisms of source M. A first institutional definition of diagrams was given in
[29]. We shall make use of a more recent definition in [I1], which has the advan-
tage that asks the morphisms between models and signatures to yield smooth
translations of the diagram sentences. An institution Z = (Sign, Sen, Mod, =)
is said to have elementary diagrams [L1] if: (1) for each signature X' and each
Y-model M there exists a signature morphism ¢y (M) : X — X/ (called the
elementary extension of X wvia M) and a set Ejy of Xps-sentences (called the
elementary diagram of the model M) such that Mod(Xys, Enr) and M/ Mod(X)
are isomorphic by an isomorphism ix a such that ix a; U = Mod(vs(M))",
where U : M/ Mod(X) — Mod(X) is the usual forgetful functor from the comma
category and Mod(tx(M))" : Mod(Xn, Enr) — Mod(X) is the restriction of
Mod(tx(M)) : Mod(Xy) — Mod(X); (2) ¢ is functorial, i.e., for each sig-
nature morphism ¢ : ¥ — X/ each M € |Mod(X)|, M’ € |Mod(X")| and
h : M — M']|,, there exists a presentation morphism ¢, (h) : (X, En) —
(X%, Ear) such that o (M); i, (h) = ¢;es(M'); (3) ¢ is natural, i.e., for each
signature morphism ¢ : X' — X', each M € |Mod(X)|, M' € |Mod(X’)| and h :
M — M'ly in Mod(X), is/nr; Mod(@) s (h/ Mod(p)) = Mod(uy ()™ 10,0,
where h/Mod(p) : M/Mod(X) — (M'[,)/Mod(X') and Mod(¢)ar = (M'[,)/
Mod(X') — M'/Mod(X") are the usual functors between comma categories (see
the end of Section[)), and Mod(vy,(h))™" : Mod(Xa, Ene) — Mod(X),, Enr) is
the restriction and corestriction of Mod(t,(h)) : Mod(X'y) — Mod(X4,)).

For each h : A — B in Mod(X), we shall write ¢5(h) instead of ¢1, (h).

An important result in hidden algebra is that behavioral satisfaction of un-
conditional equational sentences can be reduced to usual satisfaction in the same
model of a set of visible sentences (see Proposition[l). We shall provide an insti-
tutional version of this result. For this, we further assume that the institution Z
is liberal and either has basic Horn implications, or {is compact and has finitary
basic Horn implications}. Regarding the elementary diagrams, we assume that
they are: basic, in the sense that, for each signature X' and X-model A, each
p € E4 is basic and (F4)°® N Basic(X) = (A4)* N Basic(E)E D-representable,
i.e., tx(D) is representable; basic-sensitive, i.e., for each signature X, Y-model
A and basic X-sentence p, tx(ia) " ((Eanr,)®) = (Ea Utx(A)(p))* (thus, if a
model is factored by a basic sentence, its diagram gains precisely that sentence);
quotient-sensitive, i.e., for each X-quotient e : A—B, if A # B, there exists a

2 Basic(X) denotes the set of basic X-sentences.
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basic X'4-sentence « such that A4 & a and B | « (so the fact that B is smaller
than A by a quotient is expressible in the language of A as a simple sentence).

For each (¢,X) € |Senpen| and p € Senpen(p, X)), define QV, = {(Vo)a |
¢ signature morphism of source X, o quasi-visible sentence, p E (V¢)a}.

Proposition 14. Let (¢, X) € |Senpen|, let p be a universal X-sentence, and let
A € |Modyen(p, X)|. Then AE , yp iff AEx QV).

Our two working examples of institutions, as well as the others listed in
Appendix C in [24], satisfy the hypotheses from our Frameworks 1 and 2, as
well as those needed for Proposition [[4l Let us take FOPL_ for instance. The
only properties which might not be clear (like the existence of basic Horn im-
plications) or well-known (like liberality or semi-exact-ness), are some of those
regarding diagrams: (E4)® N Basic(X) = (Aa)* N Basic(X) simply because the
first-order entailment system extends conservatively the ground equational en-
tailment system; each ¢x(A) is representable: it only adds some constants to
the source signature; basic-sensitivity asks that, if A is a model factored by a
ground equation or atomic relation p becoming A/, all that one can infer from
E4,, can be equivalently inferred from E4 together with p, which is obviously
true; quotient-sensitivity is fulfilled as follows: if B is a quotient object of A (by
h: A — B), different from A, then there exists a sort s and a,b € A such that
a#band hs(a) # hs(b) - then a = b is the desired sentence « from Ey4.

In the case of EQL, it happens that the quasi-visible sentences a: can be taken
to be basic, hence visible (since “quasi-visible” plus “basic” implies “visible”), so
the concrete equational result actually says more than we were able to prove at
our institutional level. Yet, it is not clear that a similar neater result as the equa-
tional one holds for our other examples of institutions (like FOPL_). Another
question would be whether Proposition [I4] holds for other types of sentences
besides universal ones - one could easily find examples of conditional equations
and existentially quantified sentences for which the property of reducing behav-
ioral satisfaction to normal satisfaction in the same model does not hold; thus
the class of universal sentences of an institution might be close to maximality
w.r.t. this property, if one wants to cover the classical relevant cases. Note that
universal sentences cover the cases when second-order quantification, i.e., over
relation and function symbols, are considered (see also [22] for a higher-order
result related to our Proposition [I4]).

7 Related Work and Concluding Remarks

The paper [25] was, at our knowledge, the first to introduce the notion of be-
havioral, or observational equivalence as we interpret it in this paper, and [2§]
was the first to sketch a treatment of observational equivalence in arbitrary in-
stitutions, where it is defined as existential elementary equivalence w.r.t. some
signature morphism. Then [6] considered the notions of hiding and behavior in
institutions; since this paper was an important source of inspiration for us, we
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shall discuss it below. The framework there was inspired by the following situa-
tion from “monadic” hidden algebra: the hidden models can be seen as behavior
algebras, some forms of Lawvere-like algebras, equipped with a distinguished ter-
minal object, having a fixed interpretation; moreover, the category of behavior
algebras has a final object constructed using the sets of all possible behaviors of
the (hidden) states; hence, thanks to a smooth back and forth communication
between the categories of hidden algebras and behavioral algebras, a final seman-
tics can be given for behavioral satisfaction of a sentence by a hidden model.
This situation is generalized in [6] to the institutional level, where the notion of
behavior algebra is provided as an extra data: a functor from a subcategory, of
hidden signatures, to Cat°?, for which the relevant properties (finality, communi-
cation to the hidden models, etc.) are postulated. Our approach shares with [6]
the idea of defining behavioral satisfaction as (normal) satisfaction inside a quo-
tient. However, our approach is not tributary to the monadic framework, which
only considers hidden operations with precisely one hidden argument, framework
which loses two important cases: that of hidden constants (in particular, that
of different cases of classical automata used in formal languages), and that of
operations having multiple hidden-sort arguments; also we do not use data pro-
vided “from outside” the institution (as is the case of abstract behavior algebras
in [6]), but construct the behavioral extension only by internal means of the
considered institution. A quasi-abstract treatment of behavioral equivalence can
also be found in [5], where a setting similar to the institutional one is used, but
localized to a fixed satisfaction frame; the behavioral satisfaction (in one of the
proposed variants) is also defined as usual satisfaction in a quotient, but in order
for the quotient to enjoy good set-theoretical properties, a concrete many-sorted
“carrier” set is considered attached to each model, through a concretization func-
tor. Another paper in the vicinity of our work, but more concerned with hiding
than with behavior, is [21], discussing compositional operations on modules that
can hide some of the information.

We believe that our results can be adapted to also cover loose-data behavioral
approach, such as observational logic [34]. The main point towards such an
adaptation is that the loose-data setting is still based on a notion of behavioral
equivalence, called observational equality in [34], hence it can still be formalized
by our final construction in a fiber category. The main difference is that loose-
data behavioral logics allows arrows between algebras that do not have the same
data reduct. However, roughly speaking, if we express the concepts in [4] using
our notations, we find that the arrows between two (¢, X')-models A and B are
the usual morphisms between their quotients A, and B, quotients which can
be constructed independently, taking the data model D to be first AJ, and then
BJ,. One can show that this construction yields yet another institution, which
takes only the data signature ¥ as a parameter this time. The latter institution
could be seen as a form of Grothendieck construction (in the style of [9]) obtained
by flattening the “indexed” institution {Zpx (¥, D)}DG\MOd(lP)|'
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