
Nominal Recursors as Epi-Recursors

ANDREI POPESCU, University of Sheffield, UK

We study nominal recursors from the literature on syntax with bindings and compare them with respect to
expressiveness. The term “nominal” refers to the fact that these recursors operate on a syntax representation
where the names of bound variables appear explicitly, as in nominal logic. We argue that nominal recursors
can be viewed as epi-recursors, a concept that captures abstractly the distinction between the constructors on
which one actually recurses, and other operators and properties that further underpin recursion. We develop an
abstract framework for comparing epi-recursors and instantiate it to the existing nominal recursors, and also to
several recursors obtained from them by cross-pollination. The resulted expressiveness hierarchies depend on
how strictly we perform this comparison, and bring insight into the relative merits of different axiomatizations
of syntax.We also apply ourmethodology to produce an expressiveness hierarchy of nominal corecursors, which
are principles for defining functions targeting infinitary non-well-founded terms (which underlie _-calculus
semantics concepts such as Böhm trees). Our results are validated with the Isabelle/HOL theorem prover.

CCS Concepts: • Theory of computation→ Logic and verification.

Additional Key Words and Phrases: nominal recursion and corecursion, nominal logic, epi-(co)recuror, syntax
with bindings, formal reasoning, theorem proving

ACM Reference Format:

Andrei Popescu. 2024. Nominal Recursors as Epi-Recursors. Proc. ACM Program. Lang. 8, POPL, Article 15
(January 2024), 32 pages. https://doi.org/10.1145/3632857

1 INTRODUCTION

Syntax with bindings is pervasive in _-calculi, logics and programming languages. Powerful mecha-
nisms for performing definitions and reasoning involving bindings are important for formalizing the
meta-theory of such systems [Abel et al. 2017; Aydemir et al. 2005; Felty et al. 2018]. Central among
these mechanisms are recursion principles (recursors for short), allowing one to define functions by re-
cursing over the syntax—e.g., for syntactic translations, semantic interpretations, and static analysis.

Much research has been dedicated to devising such mechanisms, within three main paradigms:
nominal / nameful, nameless / De Bruijn, and higher-order abstract syntax (HOAS). Each of the three
paradigms has pros and cons discussed at length in the literature (e.g., [Abel et al. 2017; Berghofer
and Urban 2007; Blanchette et al. 2019; Felty and Momigliano 2012; Norrish and Vestergaard 2007]).
A major selling point of the nominal paradigm, of which the most prominent representative is
nominal logic [Aydemir et al. 2007; Gabbay and Pitts 1999; Urban and Tasson 2005], is that it employs
a formal representation that is close to the one used in textbooks and informal descriptions, where
on the one hand the names of bound variables are shown explicitly, and on the other hand their
particular choice is irrelevant. Moreover, definitions and reasoning within this paradigm mimic
informal practice, such as avoiding the capturing of bound variables by conveniently choosing
their names in definition and proof contexts [Copello et al. 2018; Pitts 2006; Urban et al. 2007].

A delicate subject, where the nominal paradigm must walk a tightrope to achieve its goals, is the
recursion principles. The specific challenge for recursion here is that terms with bindings, which

Author’s address: Andrei Popescu, University of Sheffield, Sheffield, UK, a.popescu@sheffield.ac.uk.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART15
https://doi.org/10.1145/3632857

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-8747-0619
https://doi.org/10.1145/3632857
https://orcid.org/0000-0001-8747-0619
https://doi.org/10.1145/3632857

15:2 Andrei Popescu

are equated modulo (i.e., quotiented to) U-equivalence (§2.1), do not form a free, hence standardly
recursable datatype. To overcome this problem, various nominal recursors have been proposed
and successfully deployed in formal developments (e.g., [Gabbay and Pitts 1999; Norrish 2004; Pitts
2006; Popescu and Gunter 2011; Urban and Berghofer 2006]). These recursors come in a variety
of formats and flavors: they use different operators and have different features that enhance their
cores (§2.2).
This paper contributes a general, systematic account of nominal recursors, highlighting their

underlying principles and inter-connections. We ask two questions. First,what is a nominal recursor?

In particular, what are the essential features that nominal recursors from the literature have in
common (§3)? After an analysis of what the existing recursors aim to achieve and how they operate
(§3.1) and the uniform rephrasing of their original presentations using signatures and models (§3.2),
we synthesize the concept of an epi-recursor (§3.3). This concept captures abstractly their essential
behavior, which can be summarized as follows: On top of the constructor infrastructure specific
to standard recursion, these recursors take advantage of additional infrastructure employing non-
constructor operators, to make the recursive definitions go through. And indeed, all the considered
nominal recursors, and others obtained by cross-pollinating them, are particular cases of epi-
recursors (§3.4).

Second, what does it mean for a nominal recursor to be more expressive than another, and how do the

existing recursors compare? (§4). Apart from its theoretical interest, this question is of practical impor-
tance for designers and developers of formal reasoning frameworks.We answer it by introducing two
relations for comparing the strength of epi-recursors, which differ in the amount of effort required in
simulating one recursor by another. The first, stricter relation (§4.1) follows naturally from the defini-
tion of epi-recursors. The second, laxer relation (§4.3) is more elaborate, andwas inspired by previous
efforts to make a nominal recursor work on a brittle terrain where syntax meets semantics (§4.2).
Instantiating the two relations to compare the nominal recursors yields two different hierarchies of
strength. The comparisons reveal some interesting phenomena about the relative merits of consid-
ering various combinations of operations and axioms. Quite surprisingly given the wide variability
of the underlying infrastructures, the laxer comparison yields an almost flat hierarchy, revealing
that most of the recursors have the same strength—but still revealing that the symmetric operators
(swapping and permutation) fare better than the asymmetric ones (renaming and substitution).

Analogous questions make sense when moving from the inductive to the coinductive world (§5).
Here, we deal with infinitary non-well-founded _-terms where we allow an infinite number of
constructor applications (§5.1) and we study corecursors, which are principles for defining functions
not from but to the set of infinitary terms. While our abstract notion of epi-corecursor (§5.2)
is perfectly dual to that of epi-recursor, this is far from the case with the nominal corecursor
versus recursor instances. However, there are elements of duality between these instances which
we explore systematically, establishing a similar but different nominal corecursor expressiveness
hierarchy (§5.3).
We have mechanized the discussed nominal (co)recursors and their comparison results in the

Isabelle/HOL theorem prover [Nipkow et al. 2002] (§6). An extended technical report published on
arXiv [Popescu 2023b] accompanies the paper, giving more details about our results and their proofs.

2 BACKGROUND

This section provides background on syntax with bindings (§2.1) and recalls several nominal
recursors recursion from the literature (§2.2).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:3

2.1 Terms with Bindings

We work with the paradigmatic syntax of lambda-calculus, but our results generalize to arbitrary
binding syntaxes, as in [Pitts 2006; Urban and Kaliszyk 2012]. Let Var be a countably infinite set of
variables, ranged over by G, ~, I. The set Tr of _-terms, ranged over by C, B , is defined by the grammar:

C ::= Vr G | Ap C1 C2 | Lm G C

with the proviso that terms are equated (identified) modulo U-equivalence (a.k.a. naming equiv-
alence). Thus, for example, Lm G (Ap (Vr G) (Vr G)) and Lm ~ (Ap (Vr ~) (Vr ~)) are considered
to be the same term. We will often omit writing the injection Vr of variables into terms.

In more detail, the above definition means the following: One first defines the set PTr of preterms

(also called “raw terms”) to be freely generated by the grammar ? ::= PVr G | PAp ?1 ?2 | PLm G ? .
Then one defines U-equivalence ≡ : PTr → PTr → Bool inductively and defines Tr by quotienting:
Tr = PTr/≡. Finally, one proves that the preterm constructors are compatible with ≡, which allows
to define the constructors on terms: Vr : Var → Tr, Ap : Tr → Tr → Tr and Lm : Var → Tr → Tr.

Working with terms rather than preterms has well-known advantages, including the substitution
operator being well-behaved. This is why most formal and informal developments prefer terms.
For the rest of this paper, we will focus on terms and mostly forget about preterms—the latter will
show up only occasionally, when we discuss certain intuitions.
Let Perm denote the set of finite permutations (bijections of finite support) on variables, {f :

Var → Var | {G | f G ≠ G} finite }. We will consider generalizations of some common operations
and relations on terms, namely:

• the constructors Vr : Var → Tr, Ap : Tr → Tr → Tr and Lm : Var → Tr → Tr

• (capture-avoiding) substitution _[_ /_] : Tr → Tr → Var → Tr; e.g., we have
(Lm G (Ap G ~)) [Ap G G / ~] = Lm G ′ (Ap G ′ (Ap G G)) for some G ′ ≠ G

• (capture-avoiding) renaming _[_ /_] : Tr → Var → Var → Tr, the restriction of substitution to
variables, i.e., it substitutes variables for variables rather than terms for variables; e.g., we have
(Lm G (Ap G ~)) [G / ~] = Lm G ′ (Ap G ′ G) for some G ′ ≠ G

• swapping _[_ ∧ _] : Tr → Var → Var → Tr; e.g., we have (Lm G (Ap G ~)) [G ∧ ~] =

Lm ~ (Ap ~ G)

• permutation _[_] : Tr → Perm → Tr; e.g., we have (Lm G (Ap I ~)) [G ↦→ ~, ~ ↦→ I, I ↦→ G] =

Lm ~ (Ap G I)

• free-variables FV : Tr → P(Var) (the powerset of Var); e.g., we have FV(Lm G (Ap ~ G)) = {~}

when ~ ≠ G

• freshness _#_ : Var → Tr → Bool; e.g., we have G # Lm G G , and ¬ G # Lm ~ G when G ≠ ~

We let G ↔ ~ be the permutation that takes G to ~, ~ to G and everything else to itself. Note that
permutation generalizes swapping, in that C [G ∧~] = C [G ↔ ~]. Also, note that free variables and
freshness are of course two faces of the same coin: a variable G is fresh for a term C (i.e., G # C) if
and only if it is not free in C (i.e., G ∉ FV C).
We will not give definitions for the above operators, but count on the reader’s familiarity with

them. The definitions can be done in several equivalent ways—see, e.g., [Barendregt 1985; Pitts 2006].

2.2 Nominal Recursors

Next we look at nominal recursors in their “natural habitat”, using concepts and terminology used
by the authors who introduced them. Later on, in §3, we will recast them in a uniform format. For
convenience, we refer to these recursors by the additional operators they are based on; e.g., the
“perm/free”, or “swap/fresh” recursor (not forgetting though that not only the chosen operators,
but also the axioms imposed on them are responsible for a recursor’s behavior).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:4 Andrei Popescu

2.2.1 The Perm/Free Recursor. This is the best known nominal recursor, originating in the context
of nominal logic [Gabbay and Pitts 1999]. In the form we present here, which does not require any
special logical foundation (e.g., axiomatic nominal set theory), it is due to Pitts [2006], who builds
on previous work by Gabbay and Pitts [1999] and Urban and Berghofer [2006].

Some preparations are needed for describing this recursor. (Perm, id, ◦) forms a group, where id
is the identity permutation and ◦ is composition. A pre-nominal set is a set equipped with a Perm-
action, i.e., a pairA = (�, _[_]A) where� is a set and _[_]A : � → Perm → � is an action of Perm
on�, i.e., is idle for identity (0[id]A = 0 for all 0 ∈ �) and compositional (0[f ◦g]A = 0[g]A [f]A).

Given a pre-nominal set A = (�, _[_]A), an 0 ∈ � and a set - ⊆ Var, we say that 0 is supported
by - , or - supports 0, if 0[G↔~]A = 0 holds for all G, ~ ∈ Var ∖ - . An element 0 ∈ � is called
finitely supported if there exists a finite set - that supports 0. A nominal set is a pre-nominal set
where every element is finitely supported. If A = (�, _[_]A) is a nominal set and 0 ∈ �, then the
smallest set that supports 0 can be shown to exist—it is denoted by suppA (0) and called the support
of 0. Given two pre-nominal sets A = (�, _[_]A) and B = (�, _[_]B), the set � = (� → �) of
functions from � to � forms a pre-nominal set F = (�, _[_]F) by defining 5 [f] to be the function
that sends each 0 ∈ � to 5 (0[f−1]) [f]. The set of terms with their Perm-action, (Tr, _[_]), forms
a nominal set, where the support of a term C consists of its free variables.

The recursion theorem states that it is possible to define a function 6 from terms to any other set
provided� is equipped with a nominal-set structure and additionally has some “term-like” operators
matching the variable-injection, application and _-abstraction operator, satisfying a specific condi-
tion. Concretely, it states that there exists a unique function 6 that commutes with these operators:

Thm 1. [Gabbay and Pitts 1999; Pitts 2006] Let A = (�, _[_]A) be a nominal set and let
VrA : Var → �, ApA : � → � → � and LmA

: Var → � → � be functions, all supported by a
finite set - of variables and such that the following freshness condition for binders (FCB) holds:
there exists G ∈ Var such that G ∉ - and G #

A LmA G 0 for all 0 ∈ �.
Then there exists a unique 6 : Tr → � supported by - such that the following hold:

(1) 6 (Vr G) = VrA G (2) 6 (Ap C1 C2) = ApA (6 C1) (6 C2) (3) 6 (Lm G C) = LmA G (6 C) if G ∉ -

Note that the recursor features a parameter set of variables - , and requires the term-like oper-
ators to be supported by - ; in exchange, it guarantees that the defined function 6 is also supported
by - ; moreover, the recursive clause for Lm is conditioned by the abstracted variable G being fresh
for - . The rationale of this - -parametrization is the modelling of Barendregt’s famous variable
convention [Barendregt 1985][p.26]: “If [the terms] "1, . . . , "= occur in a certain mathematical
context (e.g. definition, proof), then in these terms all bound variables are chosen to be different
from the free variables.” According to this, functions can be defined on terms while conveniently
assuming that the _-abstracted variables do not clash with other variables in the context of the
definition—in the perm/free recursor, the set of these other variables is over-approximated by - .

2.2.2 The Swap/Free Recursor. The next recursor is due to Norrish [2004], who takes the free-
variable operator as a primitive—whereas in nominal logic this operator, called support, is defined
in terms of permutation. While this distinction is not important in the concrete case of terms, it does
matter when one discusses abstract “term-like” structure on target domains. Another difference
from the perm/free recursor is in taking swapping rather than permutation as primitive.
Norrish’s recursor employs swapping structures, which are sets equipped with swapping- and

free-variable-like operators, namely triplesA = (�, _[_∧_]A, FVA) where _[_∧_]A : � → Var →

Var → � and FVA
: � → P(Var) such that the following hold for all G, ~, I ∈ Var and 0 ∈ �:

(i) 0[G ∧G]A = 0 (ii) 0[G ∧~]A [G ∧~]A = 0

(iii) G, ~ ∉ FVA 0 implies 0[G∧~] = 0 (iv) G ∈ FVA (0[~∧I]A) if and only if G [~∧I] ∈ FVA0

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:5

The set of terms with their swapping and free-variable operations, (Tr, _[_∧_], FV), form a swap-
ping structure. The recursion theorem says that, given a suitable “term-like” infrastructure on a set�,
which includes� being a swapping structure, and factors in a set of parameter variables- , there ex-
ists a unique function from terms to� that commutes with the term-like operators in a manner that
obeys Barendregt’s variables convention. And the function commutes with swapping and preserves
the free variables, again in a Barendregt-convention observing manner. (Norrish also considers
dynamic parameters, but Pitts [2006, Ex. 5.6] shows how to encode these using static parameters.)

Thm 2. [Norrish 2004] Let A = (�, _[_∧_]A, FVA) be a swapping structure, VrA : Var → �,
ApA : (Tr ×�) → (Tr ×�) → � and LmA

: Var → (Tr ×�) → � some functions, and - a finite
set of variables such that the following hold: (1) FVA (VrAG) ⊆ {G} ∪ -

(2) If FVA01 ⊆ FV C1 ∪ - and FVA 02 ⊆ FV C2 ∪ - then
FVA (ApA (C1, 01) (C2, 02)) ⊆ FV (Ap C1 C2) ∪ -

(3) If FVA 0 ⊆ FV C ∪ - then FVA (LmA G (C, 0)) ⊆ FV (Lm G C) ∪ -

(4) If G, ~ ∉ - , then (VrA I) [G ∧~]A = VrA (I [G ∧~])

(5) IfG, ~ ∉ - , then (ApA (C1, 01) (C2, 02)) [G∧~]
A

= ApA (C1 [G∧~], 01 [G∧~]
A) (C2 [G∧~], 02 [G∧~]

A)

(6) If G, ~ ∉ - , then (LmA I (C, 0)) [G ∧~]A = LmA (I [G ∧~]) (C [G ∧~], 0[G ∧~]A)

Then there exists a unique function 6 : Tr → � such that the following hold:

(i) 6 (Vr G) = VrA G (ii) 6 (Ap C1 C2) = ApA (C1, 6 C1) (C2, 6 C2)

(iii) 6 (Lm G C) = LmA G (C, 6 C) if G ∉ - (iv) 6 (C [G ∧~]) = (6 C) [G ∧~]A if G, ~ ∉ -

(v) FVA (6 C) ⊆ FV C ∪ -

An enhancement present in this recursor is the enabling of full-fledged (primitive) recursion rather
than mere iteration—as seen in the constructor-like operators VrA , ApA and LmA taking as inputs
not only elements of� but also terms. Hence the recursive clauses for 6 allow the computed value to
depend not only on the recursive results for smaller terms, but also on the smaller terms themselves.

2.2.3 The Swap/Fresh Recursor. The next recursor was described by Gheri and Popescu [2020].
Similarly to the previous recursors, it uses structures that generalize term operators, here freshness
and swapping. It is similar to the swap/free recursor by its focus on swapping, but different in that
it (a) uses freshness rather than free variables, (b) requires different properties from the models, (c)
does not support Barendregt’s convention and (d) extends full-fledged recursion to non-constructor
operators (in that these operators also take additional term arguments).
A freshness-swapping model is a set equipped with constructor-, swapping- and freshness-like

operators, namely a tuple A = (�, VrA, ApA, LmA, _[_∧_]A, #A) where VrA : Var → �, ApA :

(Tr ×�) → (Tr ×�) → �, LmA
: Var → (Tr ×�) → �, _[_∧_]A : (Tr ×�) → Var → Var → Tr

and #
A

: Var → (Tr ×�) → Bool satisfying: (1) G ≠ ~ implies G #
A VrA~

(2) G # C1, G #
A (C1, 01), G # C2 and G #

A (C2, 02) implies G #
A ApA (C1, 01) (C2, 02)

(3) ~ = G or [~ # C and ~ #A (C, 0)] implies ~ #A LmA G (C, 0)

(4) (Vr G, VrA G) [~∧I]A = VrA (G [~∧I])

(5) (Ap C1 C2, ApA (C1, 01) (C2, 02)) [~∧I]
A
=ApA (C1 [~∧I], (C1, 01) [~∧I]

A) (C2 [~∧I], (C2, 02) [~∧I]
A)

(6) (Lm G C, LmA G (C, 0)) [~∧I]A = LmA (G [~∧I]) (C [~∧I], (C, 0) [~∧I]A)

(7) I ∉ {G1, G2}, I #A (C1, 01), I #A (C2, 02) and (C1, 01) [I∧G1] = (C2, 02) [I∧G2] implies
LmA G1 (C1, 01) = LmA G2 (C2, 02)

The recursion theorem states that terms are the initial freshness-swapping model (hence initial
in a certain Horn theory), i.e., for any freshness-swapping model there exists a unique function
from terms that commutes with the constructors and swapping, and preserves freshness.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:6 Andrei Popescu

Thm 3. [Gheri and Popescu 2020] For any freshness-swapping model A = (�, VrA, ApA, LmA,

[∧_]A, #A), there exists a unique function 6 : Tr → � such that the following hold:

(i) 6 (Vr G) = VrA G (ii) 6 (Ap C1 C2) = ApA (C1, 6 C1) (C2, 6 C2)

(iii) 6 (Lm G C) = LmA G (C, 6 C) (iv) 6 (C [G ∧~]) = (C, 6 C) [G ∧~]A

(v) G # C implies G #
A (C, 6 C)

2.2.4 The Subst/Fresh Recursor. The next recursor, introduced by Popescu and Gunter [2011], has
a similar structure to the previous one but uses substitution rather than swapping.

A freshness-substitution model is similar to a freshness-swappingmodel, but instead of a swapping-
like operator it has a substitution-like operator _[_/_]A : (Tr ×�) → (Tr ×�) → Var → Tr and:

• instead of clauses (4)–(6) of swapping commuting with the constructors, it satisfies similar clauses
for substitution—but where commutation with _-abstraction is restricted by a freshness condition

• instead of clause (7), it satisfies a substitution-based renaming clause for _-abstraction.

Namely, it satisfies the following clauses: (4) (Vr G, VrA G) [(C, 0)/I]A = (if G = I then 0 else VrAG)

(5) (Ap C1 C2, ApA (C1, 01) (C2, 02)) [(B, 1)/I]
A

=

ApA (C1 [B/I], (C1, 01) [(B, 1)/I]
A) (C2 [B/I], (C2, 02) [(B, 1)/I]

A)

(6) G ≠ I and G #
A (B, 1) implies

(Lm G C, LmAG (C, 0)) [(B, 1)/I]A = LmAG (C [B/I], (C, 0) [(B, 1)/I]A)

(7) I ≠ G and I #A (C, 0) implies LmA I [(C, 0) [(Vr I, VrA I)/G]] = LmA G (C, 0)

Thm 4. [Popescu andGunter 2011] For any freshness-substitutionmodelA = (�, VrA, ApA, LmA,

[/_]A, #A), there exists a unique6 : Tr → � such that the clauses listed in Thm. 3 hold, except that
the clause for swapping is replaced by a clause for substitution: 6 (C [B/~]) = (C, 6 C) [(B, 6 B)/~]A .

2.2.5 The Renaming Recursor. The next recursor was introduced by Popescu [2023c]. Besides the
constructors, it only uses one operator, renaming—subject to an equational theory described next.

A constructor-enriched renset is a tupleA = (�, _[_/_]A, VrA, ApA, LmA) where _[_/_]A : � →

Var → Var → �, VrA : Var → �, ApA : � → � → � and LmA
: Var → � → � are such that the

following hold: (1) 0[G/G]A = 0 (2) If G1 ≠ ~ then 0[G1/~]A [G2/~]
A

= 0[G1/~]

(3) ~ ≠ G2 then 0[~/G2]A [G2/G1]
A [G3/G2]

A
= 0[~/G2]

A [G3/G1]
A

(4) If G2 ≠ ~1 ≠ G1 ≠ ~2 then 0[G2/G1]A [~2/~1]
A

= 0[~2/~1]
A [G2/G1]

A

(5) (VrA G) [~/I]A = VrA (G [~/I]) (6) (ApA 01 02) [~/I]
A

= ApA (01 [~/I]
A) (02 [~/I]

A)

(7) if G ∉ {~, I} then (LmA G 0) [~/I]A = LmA G (0[~/I]A) (8) (LmA G 0) [~/G]A = LmA G 0

(9) if I ≠ ~ then LmA G (0[I/~]A) = LmA ~ (0[I/~]A [~/G]A)

Equations (1)–(3) refer to standard properties of renaming, while (4)–(9) connect renaming and the
constructors. The recursion theorem characterizes terms as initial model in this equational theory.

Thm 5. [Popescu 2023c] For any constructor-enriched renamable set A = (�, _[_/_]A, VrA,
ApA, LmA), there exists a unique 6 : Tr → � such that the following hold:

(i) 6 (Vr G) = VrA G (ii) 6 (Ap C1 C2) = ApA (6 C1) (6 C2)

(ii) 6 (Lm G C) = LmA G (6 C) (iv) 6 (C [G/~]) = (6 C) [G/~]A

2.2.6 Enhancements. The above recursors clearly have many aspects in common, but also display
some essential variability regarding the non-constructor operators they are based on and the
conditions imposed on the target-domain counterparts of these operators. Other dimensions of
variability were what we called the “enhancements”: support for Barendregt’s convention and
full-fledged recursion. It turns out that both types of enhancements can be made uniformly to all
nominal recursors (as we detail in Popescu [2023b, App. D]). So in what follows, for comparing these
recursors we will strip them of their enhancements and focus on their essential variability only.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:7

3 NOMINAL RECURSORS AS EPI-RECURSORS

In this section, we will propose regarding nominal recursors as mechanisms for helping recursion
to proceed “as if freely”, i.e., by writing clauses for each constructor as if the datatype of terms were
freely generated by the constructors. We start by describing this view informally on an example
(§3.1). To formalize the view, we introduce signatures and models that describe uniformly the
term-like operators featured in the previous section’s recursion theorems (§3.2). Then we define the
central concept of this paper, that of an epi-recursor (§3.3), which captures this view in a general
category-theoretic form. Finally, we show that all the discussed nominal recursors, and others that
are obtained as variations or combinations of these, are epi-recursors (§3.4).

As mentioned, we will not consider the recursors in their original forms—as introduced by their
authors, recalled in §2.2—but their essential cores, stripped of their full-fledged recursion and
Barendregt convention enhancements. (The enhancements, discussed in Popescu [2023b, App. D],
turn out to be orthogonal.)

3.1 The Purpose of Nominal Recursors

Let us start with recursion over a free datatype, i.e., freely generated by the constructors, such as
that of preterms (recalled in §2.1). To define a function 6 : PTr → � between preterms and some
target domain �, informally speaking we write recursive clauses for each of the constructors:

• 6 (PVr G) = ⟨expression depending on G⟩
• 6 (PAp ?1 ?2) = ⟨expression depending on 6 ?1 and 6 ?2⟩
• 6 (PLm G ?) = ⟨expression depending on G and 6 ?⟩

The above “expression depending on” formulation can be made rigorous by considering preterm-
like operations on the target domain �. Namely, for a recursive definition like the above to be
possible, we must organize � as a model A = (�, PVrA, PApA, PLmA), where PVrA : Var → �,
PApA : � → � → � and PLmA

: Var → � → �. Now, the recursive definition of 6 is nothing but
the statement that 6 commutes with the operations that correspond to each other:

6 (PVr G) = PVrA G 6 (PAp ?1 ?2) = PApA (6 ?1) (6 ?2) 6 (PLm G ?) = PLmA G (6 ?)

In fact, we could say that the model A is the recursive definition of 6—because it determines a
unique function 6 : PTr → � that commutes with the operations.

Now, let’s switch from preterms to terms. We can summarize the purpose of all nominal recursors:

to define functions 6 : Tr → � between terms and target domains � by recursing over
the constructors as if the datatype of terms was freely generated,

i.e., by writing recursive clauses similarly to those of the free datatype of preterms:

• 6 (Vr G) = ⟨expression depending on G⟩
• 6 (Ap C1 C2) = ⟨expression depending on 6 C1 and 6 C2⟩
• 6 (Lm G C) = ⟨expression depending on G and 6 C⟩

But the datatype of terms is not freely generated, so such a definition cannot work out of the box.
One needs to further underpin recursion by describing the interaction of the intended function 6
not only with the constructors, but also with other operators. For example, the swap/fresh recursor
described in §2.2.3 requires two additional clauses, for the swapping and freshness operators:

• 6 (C [G ∧~]) = ⟨expression depending on G , ~ and 6 C⟩
• G # C implies ⟨expression depending on G and 6 C⟩

This is also made rigorous using models. The requirement is to define term-like operators on
the target domain � corresponding not only to the constructors but also to other operators; i.e.,
in this case, organize � as a model A = (�, VrA, ApA, LmA, _[_∧_]A, #A), consisting of:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:8 Andrei Popescu

• (as before for preterms) counterparts of the constructors, VrA : Var → �, ApA : � → � → �,
and LmA

: Var → � → � ,
• as well as counterparts of the swapping operation and the freshness relation, _[_∧_]A : � →

Var → Var → � and #
A

: Var → � → Bool

Another new requirement compared to the case of free datatypes is that the model A is similar to
terms not only in the matching arities of its operators, but also in satisfying specific term-like prop-
erties, i.e,A-counterparts of properties of the terms—e.g., swapping commuting with _-abstraction.
If the above is successfully achieved, i.e., if one provides a model A satisfying the required

properties, then the recursor guarantees the existence of a unique function 6 : Tr → � commuting
with the operations (here, constructors and swapping) and preserving the relations (here, freshness).

The next simple example illustrates the above discussion. §4.2 and Popescu [2023b, App. B] show
more examples; many others can be found in, e.g., [Norrish 2004; Pitts 2006; Popescu and Gunter
2011].

Example 6. (number of free occurrences) Let us consider the task of defining the function noccs :

Tr → (Var → N), where noccs C G counts the number of (free) occurrences of the variable G in the
term C . The natural recursive clauses we would wish to write are

(i) noccs (Vr ~) G = (if G = ~ then 1 else 0) (ii) noccs (Ap C1 C2) G = noccs C1 G + noccs C2 G

(iii) noccs (Lm ~ C) G = (if G = ~ then 0 else noccs C G)

As discussed, such a definition does not work out of the box (in that, in itself, it does not constitute
a correct recursive definition) because of the non-freeness of the terms. To make this work, we can
add clauses describing the intended behavior of noccs with respect to swapping and freshness:

(iv) noccs (C [~1∧~2]) G = noccs C (G [~1∧~2]) (v) G # C implies noccs C G = 0

Thismeans organizing the target domainVar → N as amodelA by defining the following operators:

• VrA = (_G. if G = ~ then 1 else 0) • < [~1∧~2]
A

= (_G. < (G [~1∧~2]))

• ApA <1 <2 = (_G . <1 G +<2 G) • G #
A < = (< G = 0)

• LmA ~ < = (_G . if G = ~ then 0 else< G)

After checking that A satisfies some required properties (which in this case are trivial arithmetic
properties) we obtain a unique function noccs satisfying clauses (i)–(v).

3.2 Signatures and Models

Next we introduce notation that allows us to discuss the various recursors uniformly. Let Sym, the set
of (operation or relation) symbols, be {vr, ap, lm, pm, sw, sb, ren, fv, fr}. The symbols refer to variable,
application and _-abstraction constructors, permutation, swapping, substitution, renaming and free-
variable operations, and the freshness relation, respectively. A signature Σwill be any subset of Sym.

Given a signature Σ, a Σ-model M consists of a set" , called the carrier set, and operations and/or
relations on " as indicated in the signature. More precisely: if vr ∈ Σ then M has an operation
VrM : Var → " ; if ap ∈ Σ thenM has an operation ApM : " → " → " ; if lm ∈ Σ thenM has
LmM

: Var → " → " ; if pm ∈ Σ then M has _[_]M : " → Perm → " ; if sw ∈ Σ then M has
[∧ _]M : " → Var → Var → " ; if sb ∈ Σ then M has _[_ /_]M : " → " → Var → " ; if
ren ∈ Σ thenM has _[_ /_]M : " → Var → Var → " ; if fv ∈ Σ thenM has FVM

: " → P(Var);
if fr ∈ Σ then M has #M : Var → " → Bool.

Given two Σ-modelsM andM ′, amorphism between them is a function between their carrier sets
6 : " → " ′ that commutes with the operations and preserves the relations. For example: if vr ∈ Σ,
we require that 6(VrM G) = VrM

′

G ; if lm ∈ Σ, we require that 6(LmM G <) = LmM′

G (6 <); if
fr ∈ Σ, we require that G #

M < implies G #
M′

(6 <); if fv ∈ Σ, we require that FVM′

(6 <) ⊆ FVM <.
We write 6 : M → M ′ to indicate that the function 6 is a morphism betweenM andM ′. Σ-models

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

C

'
��

�
!� ,�

// �

B) = ' �
' !� ,�

// � = ' �

Fig. 1. Epi-recursor in action

and their morphisms form a category. We write TA (Σ) for the Σ-model whose carrier is the set of
terms Tr and whose operations and relations are the standard ones for terms.
Let Σctor = {vr, lm, ap} be the signature comprising the constructor symbols only. Ignoring the

full-fledged recursion and Barendregt enhancements, what all the described nominal recursors have
in common, which is also shared with the standard recursors over free datatypes, is that they allow
one to recurse over terms using constructors, i.e., they (1) require the intended target domain to be (at
least) a Σctor-modelM, and (2) ensure the existence of a function6 that commutes with the construc-
tors, i.e., a morphism6 : TA (Σctor) → M. Also, as illustrated in §3.1, another aspect that the nominal
recursors have in common is that, to make recursing over terms possible, they (1) require extending
M to a Σext-modelM ′ for an extended signature Σext ⊇ Σctor and verifying certain properties forM ′,
and (2) capitalize on the fact that TA (Σext) is initial among Σext-models that satisfy these properties—
which yields a morphism TA (Σext) → M ′, i.e., a function 6 that commutes not only with the con-
structors but also with the other operators in Σext. In short, what all these recursors do is underpin
constructor-based recursion by extending the signature and exploiting initiality of the term model there.

3.3 Epi-Recursors

We capture the above phenomenon in the following concept:

Def 7. An epi-recursor is a tuple A = (B,) , C, � , ') where:

• B is a category called the base category •) is an object in B called the base object

• C is a category called the extended category • � is an initial object in C

• ' : C → B is a functor such that ' � =)

In typical examples C and B will be categories of models, i.e., sets with algebraic/relational
structure, so that the models in C have more structure than those in B, and ' will be a structure-
forgetting functor. The base object) will be the syntactic model of interest—such as the term model
TA (Σctor) with constructors only—which is the source object of the intended recursive definitions.
Then � is its extension to an object of C that makes recursion possible—for our nominal recursors,
this is a model TA (Σext), having other “recursion-underpinning” operators besides the constructors.
To define a morphism 6 :) → � in B (to some object � in B) using the epi-recursor A = (B,) ,

C, � , '), we do the following (see Fig. 1): (1) extend� to an object� inC (with' � = �) which gives us
a morphism !� ,� : � → � in C from the initiality of � ; (2) take 6 to be ' !� ,� , the restriction of !� ,� to B.

Def 8. Amorphism6 :)→� is definable by the epi-recursor A if6 = ' !� ,� for some extension� of �.

So an epi-recursor defines a morphism in the base categoryB. However, beyond having the defini-
tion go through, we often want to also “remember what happened” in the larger category C because,
e.g., properties such as commutation with the non-constructor operators can be useful in themselves.

3.4 Nominal Recursors as Epi-Recursors, Formally

Fig. 2 collects the properties of the operations and relations on terms that are relevant for the
recursors—incidentally including some that are generally useful for reasoning about terms. SwVr,
SwAp, SwLm relate swapping with the constructors. SwLm points to one of the main appeals of

15:10 Andrei Popescu

SwVr (Vr G) [I1∧I2] = Vr (G [I1∧I2])

SwAp (Ap B C) [I1∧I2] = Ap (B [I1∧I2]) (C [I1∧I2])

SwLm (Lm G C) [I1∧I2] =

Lm (G [I1∧I2]) (C [I1∧I2])

SwId C [I∧I] = C

SwCp C [G ∧~] [I1∧I2] =

(C [I1∧I2]) [(G [I1∧I2]) ∧ (~ [I1∧I2])]

SwIv C [G ∧~] [G ∧~] = C

SwFr if G # C and ~ # C then C [G ∧~] = C
FrSw I # C [G ∧~] if and only if I [G ∧~] # C
SwFv if G, ~ ∉ FV C then C [G ∧~] = C
FvSw I ∈ FV(C [G ∧~]) if and only if

I [G ∧~] ∈ FV C

SwCg if I ∉ {G1, G2} and I # C1, C2
and C1 [I∧G1] = C2 [I∧G2]
then Lm G1 C1 = Lm G2 C2

SwBvr if G ′ ≠ G and G ′ # C
then Lm G C = Lm G ′ (C [G ′∧G])

RnVr (Vr G) [~/I] = Vr (G [~/I])

RnAp (Ap C1 C2) [~/I] = Ap (C1 [~/I]) (C2 [~/I])

RnLm1 if G ∉ {~, I} then
(Lm G C) [~/I] = Lm G (C [~/I])

RnLm2 (Lm G C) [I/G] = Lm G C

RnCg if I ∉ {G1, G2} and I # C1, C2
and C1 [I/G1] = C2 [I/G2]
then Lm G1 C1 = Lm G2 C2

RnBvr if G ′ ≠ G and G ′ # C
then Lm G C = Lm G ′ (C [G ′/G])

RnBvr2 if ~ ≠ G ′ then
Lm G (C [~/G ′]) = Lm G ′ (C [~/G ′] [G ′/G])

RnId C [I/I] = C

RnIm if G1 ≠ ~ then C [G1/~] [G2/~] = C [G1/~]
RnCh if ~ ≠ G2 then

C [~/G2] [G2/G1] [G3/G2] =

C [~/G2] [G3/G1]

RnCm if G2 ≠ ~1 ≠ G1 ≠ ~2 then
C [G2/G1] [~2/~1] = C [~2/~1] [G2/G1]

RnFr if ~ # C then C [G/~] = C
FrRn I # C [G/~] if and only if

(I = ~ or I # C) and (~ # C or G ≠ I)
FrRn2 I [G/~] # C [G/~] implies I # C
RnChFr if G2 # C then

C [G2/G1] [G3/G2] = C [G3/G1]

FrVr if I ≠ G then I # Vr G
FrAp if I # B and I # C then I # Ap B C
FrLm if I = G or I # C then I # Lm G C

FvVr FV(Vr G) ⊆ {G}

FvAp FV(Ap C1 C2) ⊆ FV C1 ∪ FV C2
FvLm FV(Lm G C) ⊆ FV C ∖ {G}

PmVr (Vr G) [f] = Vr (f G)

PmAp (Ap B C) [f] = Ap (B [f]) (C [f])

PmLm (Lm G C) [f] = Lm (f G) (C [f])

PmId C [id] = C

PmCp C [f] [g] = C [g ◦ f]

PmFv if supp f ∩ FV C = ∅ then C [f] = C
FvPm I ∉ FV(C [f]) if and only if

I [f−1] ∉ FV C

PmBvr if G ′ ≠ G and G ′ ∉ FV C

then Lm G C = Lm G ′ (C [G ′ ↔ G])

SbVr (Vr G) [B/I] =

(if G = I then B else Vr G)
SbAp (Ap C1 C2) [B/I] =

Ap (C1 [B/I]) (C2 [B/I])

SbLm if G ≠ I and G # B then
(Lm G C) [B/I] = Lm G (C [B/I])

SbCg if I ∉ {G1, G2} and I # C1, C2 and
C1 [(Vr I)/G1] = C2 [(Vr I)/G2]

then Lm G1 C1 = Lm G2 C2
SbBvr if G ′ ≠ G and G ′ # C then

Lm G C = Lm G ′ (C [(Vr G ′)/G])

SbId C [I/I] = C

SbIm if G1 ≠ ~ then
C [(Vr G1)/~] [B/~] = C [(Vr G1)/~]

SbCh if ~ ≠ G2 then
C [(Vr ~)/G2] [(Vr G2)/G1] [B/G2] =

C [(Vr ~)/G2] [B/G1]

SbCm if G ≠ ~, ~ # B and G # C then
C [B/G] [C/~] = C [C/~] [B/G]

SbFr if ~ # C then C [B/~] = C
FrSb I # C [B/~] if and only if

(I = ~ or I # C) and (~ # C or I # B)
SbChFr if G2 # C then

C [(Vr G2)/G1] [B/G2] = C [B/G1]

FSupFv FV C is finite
FvDPm FV C = {G ∈ Var | {~ | C [G ↔ ~] ≠ C}

is infinite}
FvDSw FV C = {G ∈ Var | {~ | C [G ∧~] ≠ C}

is infinite}
FCB there exists G such that

G ∉ FV(Lm G C) for all C
FSupFr {G . ¬ G # C} is finite
FrDSw G # C if and only if

{~ | C [G ∧~] ≠ C} is finite
FrDRn G # C if and only if

{~ | C [~/G] ≠ C} is finite

Fig. 2. Recursion-relevant properties of operations and relations on terms

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:11

the swapping operator for developing the theory of _-calculus: It shows that swapping commutes
with _-abstraction on terms exactly in the same way as it does for preterms, i.e., is oblivious
to the non-injectiveness of _-abstraction. SwId, SwCp, SwIv are algebraic properties of swapping:
identity, compositionality and involutiveness. SwFr and FrSw are properties connecting swapping
to freshness (and SwFv and FvSw are their alternative free-variable-based formulations). SwFr says
that swapping two fresh variables has no effect on the term. FrSw says that freshness of a variable
for a swapped term is equivalent to freshness of the swapped variable for the original term—stating
for the freshness predicate a variant of what in nominal logic is called equivariance. SwCg is a
swapping-based congruence property describing a criterion for the equality of two _-abstractions.
SwBvr is a property allowing the renaming of a _-bound variable with any fresh variable, again via
swapping. SwCg and SwBvr are reminiscent of preterm U-equivalence. Most properties of swapping
generalize to corresponding properties of permutation, those listed with “Pm” in their name.

FrVr, FrAp and FrLm relate freshness with the constructors, corresponding to an inductive def-
inition of freshness; and FvVr, FvAp and FvLm are their free-variable counterparts. Note that the “if
and only if” versions of FrVr, FrAp and FrLm and the equality versions of FvVr, FvAp and FvLm also
hold for terms; though for recursion it is not the stronger, but the weaker versions of properties
that lead to stronger definitional principles—since they mean weaker constraints on models.
Like swapping, substitution commutes with the constructors, which is expressed in SbVr, SbAp,

SbLm. As shown by SbLm, unlike in the case of swapping, substitution’s commutation with _-
abstraction requires a freshness condition. Substitution also enjoys congruence and bound-variable
renaming properties similar to those of swapping, as expressed by SbCg and SbBvr, and some alge-
braic properties, as expressed by SbId, SbIm, SbCh and SbCm. The renaming operator of course enjoys
all the properties of substitution; e.g., RnVr, RnAp, RnLm1 and RnCg are the counterparts of SbVr, SbAp,
SbLm and SbCg. One may ask why we bother considering renaming, which is a restriction of substitu-
tion; the reason is that, again, for expressive recursors we want less structure and weaker properties.

The last group in the figure are nominal-logic specific properties. FSupFv states that terms have fi-
nite support, i.e., finite set of free variables; it can also be expressed directly in terms of swapping (as
in §2.2.1). FvDPm and FvDSw state the definability of free-variables from permutations and (alterna-
tively) from swapping. FCB is the freshness condition for binders from the statement of the perm/free
recursion theorem (Thm. 1), but with the Barendregt set - removed. FCB is weaker than FvLm since
it quantifies existentially rather than universally over the bound variable, though in nominal logic
they are equivalent (the “some/any” property [Pitts 2006]). Finally, this last group also includes
alternative, freshness-based and renaming-based formulations of some of the above properties.
Note that, unlike FrDSw, FrDRn would stay true for terms if we replaced “finite” with “empty”.
Each of the properties listed in Fig. 2 is satisfied by the terms with their basic operations and

relations, i.e., by the term model TA (Σ) for any signature Σ that contains all the symbols referred to
in the property. But we can speak of the corresponding properties in relation to any other Σ-model
M, and they may or may not be satisfied by M. For example, when we say that the model M
(with carrier ") satisfies SwCg, we mean the following: For all<1, <2 ∈ " and G1, G2, I ∈ Var, if
I ∉ {G1, G2} and I #M <1, <2 and<1 [I∧G1]

M
=<2 [I∧G2]

M then LmM G1 <1 = LmM G2 <2.
Given a subset Props of the properties in Fig. 2 and a signature Σ comprising the symbols re-

ferred to in Props, any Σ-model satisfying Props will be called a (Σ, Props)-model. Now we can
(re)formulate nominal recursors as epi-recurors:

Thm 9. Consider the nine choices, for 8 ∈ {1, . . . , 9}, of tuples A8 = (B,) , C
8
, �8 , '8) given by the

sets of propertiesProps8 shown in Fig. 3. (E.g.,Props5 is {SwVr, SwAp, SwLm, SwBvr, FrVr, FrAp, FrLm}.)
Namely, we assume that the signature Σ8 consists of all the operation and relation symbols occurring
in Props8 , and:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:12 Andrei Popescu

A1 (perm/free)
PmVr, PmAp, PmLm,

PmId, PmCp,
FvDPm, FCB

FSupFv

A2 (perm/free variant)
PmVr, PmAp, PmLm,

PmId, PmCp,
PmFv, FvPm,

FvVr, FvAp, FvLm

A3 (swap/free variant)
SwVr, SwAp, SwLm,
SwId, SwIv, SwCp,

FvDSw, FCB
FSupFv

A4 (swap/free)
SwVr, SwAp, SwLm,

SwId, SwIv,
SwFv, FvSw,

FvVr, FvAp, FvLm

A5 (swap/fresh variant)
SwVr, SwAp, SwLm,

SwBvr,
FrVr, FrAp, FrLm

A6 (swap/fresh)
SwVr, SwAp, SwLm,

SwCg,
FrVr, FrAp, FrLm

A7 (subst/fresh)
SbVr, SbAp, SbLm,

SbBvr,
FrVr, FrAp, FrLm

A8 (renaming)
RnVr, RnAp, RnLm1,
RnLm2, RnBvr2,

RnId, RnIm, RnCh, RnCm

A9 (renaming/fresh variant)
RnVr, RnAp, RnLm1,

RnBvr,
FrVr, FrAp, FrLm

Fig. 3. Sets of properties underlying different nominal recursors. The crossed-out properties FSupFv in A1 and

SwId, SwIv, FvSw in A4 were in the original recursors but turn out not to be needed.

• B is the category of Σctor-models and) = TA (Σctor)

• C
8
is the category of (Σ8 , Props8)-models and �8 is TA (Σ8)

• '8 : C8
→ B

8
is the forgetful functor sending (Σ8 , Props8)-models to their underlying Σctor-models

Then A8 is an epi-recursor. In particular, TA (Σ8) is the initial (Σ8 , Props8)-model.

Next we discuss this theorem’s nine statements of epi-recursion principles. We distinguish be-
tween five “original recursors” from the literature and four “variant recursors” obtained from those.

3.4.1 The Original Recursors. As suggested by the names in Fig. 3, five of these principles, A1, A4,
A6, A7 and A8, are reformulations of the (stripped down versions of) nominal recursors from §2.2.

This is easy to see in the case of A6 and A7. Indeed, after removing the term arguments of the opera-
tions and relations, Thms. 3 (swap/fresh) and 4 (subst/fresh) simply state, for a suitable extension of
the constructor signature Σctor, the initiality of the corresponding term model among all models sat-
isfying Props

6
or Props

7
. Moreover, Thm. 5 (about renaming recursion) is easily seen to be exactly A8.

Seeing that A1 is the stripped down version of the perm/free recursor (from Thm 1) requires a
bit of work. After removing - from (i.e., taking - to be ∅ in Thm. 1), we see that a nominal set
A = (�, _[_]A) together with ∅-supported operations VrA , ApA and LmA can be equivalently
described as a (Σ1, Props1)-model. Moreover, the properties of the unique function 6 : Tr → � guar-
anteed by Thm. 1 are equivalent to those of Σ8 -morphisms. (Popescu [2023b, App. A] gives details.)
Thm. 1 does not actually need the finite-support condition FSupFv for the target domain—which
is why in Fig. 3 we show it for A1 (and for the variant A3 discussed below) as crossed out.
Seeing that A4 is the stripped down version of the swap/free recursor (from Thm. 2) is also not

immediate. After removing the Barendregt parameterization on - from Thm. 2, we obtain oper-
ations and relations that fit the pattern of full-fledged recursion, i.e., iteration plus additional term
arguments—e.g., VrA : Var → �, ApA : (Tr×�) → (Tr×�) → � and LmA

: Var → (Tr×�) → �.
So the situation becomes similar to that of A6 and A7 versus Thms. 3 and 4. However, two of Thm. 2’s
assumptions, (2) and (3), do not directly fit the normal full-fledged recursion pattern. But after
using that FV (Ap C1 C2) = FV C1 ∪ FV C2 and FV (Lm G C) = FV C ∖ {G}, they are seen equivalent to:

(2) If FVA 01 ⊆ FV C1 and FVA 02 ⊆ FV C2 then FVA (ApA (C1, 01) (C2, 02)) ⊆ FV C1 ∪ FV C2
(3) If FVA 0 ⊆ FV C then FVA (LmA G (C, 0)) ⊆ FV C ∖ {G}

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:13

In this form, they are seen to express a kind of full-fledged recursion that is optimized for the
free-variable operator. Indeed, they are weaker versions of ones that do fit the pattern:

(2) FVA (ApA (C1, 01) (C2, 02)) ⊆ (FVA 01 ∪ FV C1) ∪ (FVA 02 ∪ FV C2)

(3) FVA (LmA G (C, 0)) ⊆ (FVA 0 ∪ FV C) ∖ {G}

(In Popescu [2023b, App. D] we show how this free-variable-specific optimization can be seen as
a general enhancement available to all our discussed recursors that involve freeness or freshness.)
Removing the term arguments from the latter turns them into Fig. 2’s FvAp and FvLm; and removing
the term arguments from the other assumptions in Thm. 2 turns them into the other properties
of Props

4
. Finally, the conclusion of Thm. 2 corresponds precisely to the Σ2-morphism conditions.

Three of the properties originally postulated by Norrish [2004] for the swap/free recursor, SwId,
SwIv and FvSw, are not needed, meaning that the recursion theorem holds without them (hence they
are crossed out under A4 in Fig. 3.) This is a surprising result, given the careful analysis done by
Norrishwhen distilling the required properties for his recursor towork.We detected this redundancy
while subsuming the (Σ4, Props4)-models to the more general (Σ5, Props5)-models during recursor
comparison (discussed in §4), so this strengthening owes to the different path taken when proving A5.

3.4.2 The Variant Recursors. The remaining principles, A2, A3, A5 and A9, are obtained by combining
axioms of the original recursors. They act as bridges between the latter helping their comparison, but
are also of independent interest, e.g., A9 will be seen to be maximal with respect to expressiveness.

We call A2 a “perm/free variant” because it is another recursor based on permutation and freeness,
just like the original perm/free recursor A1. However A2 does not follow the nominal-set route
of A1 (which defines the free-variable, i.e., support operator from permutation, via FvDPm) but
instead follows the idea of the swap/free recursor A4 (using permutation instead of swapping) and
postulates properties connecting the free-variable operator with permutation (via PmFv and FvPm)
and with the constructors (via FvVr, FvAp and FvLm). In short, A2 is a hybrid between A1 and A4. For
the symmetry of presentation, under A2 the figure also shows FvPm—the permutation counterpart of
FvSw, but crosses it out because, like FvSw, is also not needed. Another hybrid between the two is the
swap-free variant A3, which uses the swapping operator like A4 and nominal-set-like axioms like A1.
A5 is an A6–A7 hybrid, born from the observation that A6 and A7 have similar structures, in that they

both axiomatize the interaction between constructors and freshness, and between constructors and
their specific operator (either swapping or substitution); of course, substitution behaves differently
from swapping w.r.t. constructors, but the respective constructor-commuting properties (SbVr, SbAp
and SbLm vs. SwVr, SwAp and SwLm) have a similar flavor. The difference between A6 and A7 lies in the
additional property that they use to further underpin recursion over the constructors: in one case via
a congruence rule SwCg and in the other via a bound-variable-renaming rule SbBvr. However, both
these latter types of rules make sense for the other operator too,mutatis mutandis. As it turns out, we
can replace SwCg with SbBvr in the swap/fresh recursor A6, obtaining the swap/fresh variant A5. But
we cannot perform the dual modification to the subst/fresh recursor A7, where replacing SbBvr with
SbCgwould not give a valid recursor; the reason is that, unlike swapping, substitution-like operators
need a more delicate handling of the bound variables, which SbBvr but not SbCg can achieve.

Finally, A9 is a A7–A8 hybrid, in that it has axioms similar to A7, but uses renaming like A8 rather than
substitution. And similarly to the case of substitution, replacing RnBvr with RnCg would not work.

Proof idea for Thm. 9. For any 8 ∈ {1, . . . , 9}, the only non-trivial part of the statement that A8 is
an epi-recursor is the initiality theorem, i.e., the fact that TA (Σ8) is the initial (Σ8 , Props8)-model.
The initiality theorems for the original recursors already have been proved in the literature

(as we discussed in §2), whereas the variant recursors A2, A3, A5 and A9 are new. We (re)proved all
these recursors via the following route: First we gave direct proofs for A6 and A9, and then we
used the transformations underlying the expressiveness relations in Thm. 12 in order to infer

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:14 Andrei Popescu

� C

'
��

∃�

++
C′

'′ss

� ′ = � �

' � = '′ � ′ =) B

Fig. 4. Criterion for comparing expressiveness

(“borrow”) the initiality theorems for the others from the above two (which are at the top of
Thm. 12’s expressiveness hierarchy). Popescu [2023b, App. C] gives details.

Next, we show the proof idea for A9, which is a generalization/adaptation of that for A7 from
Popescu [2023c]. Let M be a (Σ9, Props9)-model. We first define a relation ' : Tr → " → Bool,
with inductive clauses reflecting the desired properties of commutation with the constructors:

' (Vr G) (VrM G)
' C1 <1 ' C2 <2

' (Ap C1 C2) (Ap
M <1 <2)

' C <

' (Lm G C) (LmM G <)

To obtain a Σ9-morphism 5 : Tr → " , it suffices to prove that ' (1) is total, (2) is functional,
(3) preserves renaming and (4) preserves freshness, since then we can take 5 to be the function
induced by '. Property (1) (totality) follows easily by standard induction on terms. The remaining
properties, (2)–(4), follow by a simultaneous inductive proof using a form of “renaming-based
induction” on terms: Given a predicate i : Tr → Bool, to show ∀C ∈ Tr. i C it suffices to show
the following: (i) ∀G ∈ Var. i (Vr G), (ii) ∀C1, C2 ∈ Tr. i C1 & i C2 → i (Ap C1 C2), and (iii)
∀G ∈ Var, C ∈ Tr. (∀B ∈ Tr. RConnect C B → i B) → i (Lm G C), where RConnect C B means that
B is obtained from C by a chain of renamings. (So we take i to be the conjunction of (2)–(4).) The
uniqueness of 5 follows by induction on terms. The proof for A6 is similar to that for A9, but uses
a corresponding swapping-based induction. □

4 COMPARING RECURSORS

An advantage of viewing nominal recursors as epi-recursors is clear sight on their relative expres-
siveness. In this section, we start with a direct means of comparing epi-recursor expressiveness and
instantiate it to our nominal recursors (§4.1). Then we analyze a problematic example, semantic
interpretation (§4.2), which suggests a gentler comparison—yielding a much flatter expressiveness
hierarchy (§4.3). While the kind of relationships we establish show how a recursor can replace
another, they do not imply that the converse is not true, and indeed in some cases the converse
is true, making the recursors equivalent (w.r.t. a tighter or gentler comparison); but in two cases
we also know that the converse is not true, meaning the relation there is strict (§4.4).

4.1 A Head-to-Head Comparison

Def 10. Given epi-recursors A = (B,) , C, � , ') and A ′ = (B,) , C′, � ′, '′) with the same base
categoryB and base object) , we call A ′ stronger than A , written A ′ ≥ A , if A ′ can define everything that
A can, i.e.: for all objects � in B and morphisms 6 :) → �, 6 definable by A implies 6 definable by A ′.

It is easy to see that ≥ is a preorder on epi-recursors. We write A ≡ A ′ to state that A and A ′ have
equal strengths, i.e., both A ′ ≥ A and A ≥ A ′ hold. We can establish A ′ ≥ A by showing how to move
from A ′ to A in an initial-object preserving way, as depicted in Fig. 4:

Prop 11. Let A = (B,) , C, � , ') and A ′ = (B,) , C′, � ′, '′), and assume � : C → C′ is a pre-
functor (i.e., a functor but without the requirement of preserving identity and composition of
morphisms) such that '′ ◦ � = ' and � � = � ′. Then A ′ ≥ A .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:15

Proof. Assume 6 :) → � is definable by A , meaning that 6 = ' !� ,� for some � in C. Let
� ′

= � � . By the initiality of � ′ and the fact that � � = � ′, we have that !� ′,�′ = � !� ,� . Hence
6 = ' !� ,� = '′ (� !� ,�) = '

′
!� ′,�′ , meaning that 6 is definable by A ′. □

(In all our examples, the above initial-object preserving pre-functor condition will be satisfied by
actual functors that are left adjoints.) One way to read Prop. 11’s criterion (and Fig. 4’s picture) is the
following: Thinking of ' as a kind of “distance" from the extended category C (and its initial object
�) to the base category B (and the base object �), we have that the smaller this distance, the more ex-
pressive the recursor. We have applied this criterion to prove the following expressiveness hierarchy:

Thm 12. The epi-recursors described in Thm. 9 (and in Fig. 3) compare as follows with respect
to their expressiveness: A6 ≥ A5 ≥ A4 ≥ A2 ≥ A1 ≡ A3 and A9 ≥ A8, A7.

Proof idea.When proving each A8 ≥ A 9 , we instantiate Prop. 11 taking A ′ = A8 and A = A 9 . So here B
is the category of Σctor-models, C′ that of (Σ8 , Props8)-models, and C that of (Σ 9 , Props9)-models;
'′ is the forgetful functor from (Σ8 , Props8)-models to Σctor-models, and ' the forgetful functor
from (Σ 9 , Props9)-models to Σctor-models; � = TA (Σctor), � ′ = TA (Σ8) and � = TA (Σ 9). In each case,
we must define a pre-functor � : C → C′ such that '′ ◦ � = ' and � � = � ′. This essentially means
showing how to transform (Σ 9 , Props9)-models into (Σ8 , Props8)-models in such a manner that
TA (Σ 9) becomes TA (Σ8)—which gives � ’s behavior on objects, while on morphisms � will be the
identity. Each time, � will transform models by preserving the carrier set and the constructor-like
operators, and possibly defining (1) permutation-like from swapping-like operators or vice versa,
(2) freshness-like from free-variable-like operators, or (3) renaming-like from substitution-like
operators; these definitions are done just like for concrete terms (where, e.g., we can standardly
define freshness from freeness). In each case, the only interesting fact that needs to be checked
is that � is well-defined on objects: when starting with a Σ 9 -model satisfying Props9 , the result
Σ8 -model indeed satisfies Props8 . Everything else amounts to either well-known or trivial properties.
Thus, � � = � ′ means that the standard inter-definability properties (1)–(3) hold for terms, e.g., G # C

iff G ∉ FV C ; and '′ ◦ � = ' (i.e., � commutes with the forgetful functors to Σctor-models) follows
immediately from the fact that � does not change the carrier set or the constructor-like operators.
Next, we informally discuss these transformations and highlight the intuitions behind them.
A1 ≡ A3 holds because permutation-like and swapping-like operators correspond bijectively

to each other, allowing one to (functorially) move back and forth between Props
1
-models and

Props
3
-models [Pitts 2013, Section 6.1]. For A2 ≥ A1, we note that A2 seems a priori more flexible

than A1 in that it does not require the free-variable operator to be definable from permutation, but
only to be related to permutation by some weaker properties; and indeed, any (Σ1, Props1)-model
can be proved to be in particular a (Σ2, Props2)-model. A4 ≥ A2 holds essentially for the same reason
why A3 ≥ A1 holds, since the restriction of a permutation to a swapping operator carries over to
their axiomatized relationships with free-variable operators, PmFv versus SwFv. (But the converse
is not true because A4 lacks (does not need) some of the swapping axioms that ensure extension to
a permutation operator.) A5 ≥ A4 follows using a model transformation that turns the free-variable
operator of A4 into a freshness operator for A5, using negation; indeed, save for the straightforwardly
corresponding FvVr, FvAp, FvLm versus FrVr, FrAp and FrLm, the only difference between A4 and A5 is
the replacement of SwFvwith SwBvr; and the former axiom implies the latter in the presence of FvLm.
A6 ≥ A5 follows from the fact that, in the presence of the other axioms in Props

5
, SwBvr implies SwCg.

A9 ≥ A7 holds because the axioms for substitution imply those for renaming (for the straightforward
restriction of a substitution operator to a renaming operator). Finally, the proof of A9 ≥ A8 takes
advantage of the fact that, in a constructor-enriched renset (structures axiomatizing renaming that
form the basis of recursor A8), freshness is definable from renaming [Popescu 2023c]. □

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:16 Andrei Popescu

Thus, there are two recursors at the top of the expressiveness hierarchy: the swap/fresh recursor A6
and the renaming/fresh variant recursor A9. Roughly speaking, these two recursors’ expressiveness
is strong because their underlying axiomatizations:

• keep freshness only loosely coupled with other operators such as swapping, permutation or
renaming—unlike A1, A3 and A8 which ask that freshness be definable from them;

• use congruence or renaming axioms that target exactly the ingredients needed for having re-
cursion go through—unlike those of A1, A2, A3, A4 and A8, which employ algebraic axiomatizations
such as nominal sets, swapping structures or rensets;

• keep the structure of their operators minimalistic and non-redundant—unlike A7, whose operator
emulates substitution, which is more than needed (since renaming would suffice).

Choosing between swapping and permutation as recursion primitives turned out to be interesting.
The two are known to be equivalent for nominal sets [Pitts 2013, §6.1], as reflected by A1 ≡ A3.

But they are no longer equivalent when loosening the axiomatization to include freshness as
a primitive—as reflected by the fact that A4 ≥ A2 but (as we will show in §4.4) not vice versa. This
is because the proof of the A4 recursor (by Norrish [2004]) gets away without assuming swapping
compositionality SwCp, which is a crucial ingredient for extending swapping to permutation. More-
over, in an indirect way, we also showed the other crucial ingredients needed for this extension,
namely SwId and SwIv, are not required for recursion either. Thus, in this case swapping-based
recursion requires significantly weaker assumptions than permutation-based recursion.

4.2 Semantic-Interpretation Example

The notion of interpreting syntax in semantic domains is a well-known challenging example for
binding-aware recursion. Let � be a set and AP : � → � → � and LM : (� → �) → � be opera-
tors modeling semantic notions of application and abstraction. (Subject to some axioms that are not
of interest here, the structure (�, AP, LM) is known as a Henkin model for _-calculus [Barendregt
1985].) An environment will be a function b : Var → � . Given G, ~ ∈ Var and 3, 4 ∈ � , we write
b ⟨G := 3⟩ for b updated with value 3 for G , and write b ⟨G := 3, ~ := 4⟩ instead of b ⟨G := 3⟩⟨~ := 4⟩.

The semantic interpretation sem : Tr → (Var → �) → � should go recursively by the clauses:

(1) sem (Vr G) b = b G (2) sem (Ap C1 C2) b = AP (sem C1 b) (sem C2 b)

(3) sem (Lm G C) b = LM (3 ↦→ sem C (b ⟨G := 3⟩))

Of course, these clauses do not work out of the box (i.e., do not form a correct recursive definition
yet), and here is where the nominal recursors can help. First, let us attempt to deploy the perm/free
recursor A1. To this end, we try to organize the target domain � = (Var → �) → � as a (Σ1, Props1)-
model I. The three desired clauses above already determine constructor operations VrI , ApI and
LmI on the set of interpretations, � = (Var → �) → � , namely:

(1) VrI : Var → � by VrIG 8 b = b G (2) ApI : � → � → � by ApI81 82 b = AP (81 b) (82 b)

(3) LmI
: Var → � → � by LmIG 8 b = LM (3 ↦→ 8 (b ⟨G := 3⟩))

Thus, we already have the Σctor component of our intended model. Now we must define a permuta-
tion operator on � . The definition is obtained by analyzing the desired behavior of the to-be-defined
function sem w.r.t. permutation; i.e., determining the value of sem(C [f]) from sem C and f . The
answer is (4) sem (C [f]) b = sem C (b ◦ f), and leads to defining _[_]I by 8 [f]I b = 8 (b ◦ f).

Note that, towards the goal of building a (Σ1, Props1)-modelI, we had no other choice on defining
the operatorsVrI, ApI, LmI and [_]I on the target domain � . And the free-variable (support) opera-
tor FVI is also uniquely determined by the axiom FvDPm (definability of freeness from permutation).

Finally, to deploy A1 and obtain a function sem satisfying clauses (1)–(4), it remains to check that
I satisfies Props

1
. But, as it turns out, I does not satisfy one of the axioms in Props

1
, namely FCB

(freshness condition for binders). Indeed, FCB requires that there exists a variable G such that for all

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:17

8 ∈ � , G ∉ FVI (LmI G 8). Applying FvDPm and the definitions of _[_]I and LmI , we see that G ∉

FVI (LmI G 8) means LM (3 ↦→ 8 (b ⟨G := 3, ~ := b G⟩) = LM (3 ↦→ 8 (b ⟨G := 3⟩)) holds for all but a
finite number of variables~. The only chance for the above to be true is if 8 , when applied to an envi-
ronment, say b ′, ignores the value of ~ in b ′ for all but a finite number of variables ~; in other words,
8 only analyzes the values of a finite number of variables in b ′—but this is not guaranteed to hold
for arbitrary elements 8 ∈ � . Thus, A1 cannot be deployed directly to define semantic interpretations.

Other recursors in our list can. E.g., the perm-free variant A2 can be deployed as follows.We use the
same definitions for VrI, ApI, LmI and [_]I, but now we can choose the free-variable operator FVI

more flexibly, making sure that the (Σ2, Props2)-morphism condition holds for FVIversus FV, i.e.,
that (5) FVI(sem C) ⊆ FV C holds. Namely, we define FVI8 as {G ∈ Var | ∃b : Var → �, 3 ∈ �. 8 b ≠

8 (b ⟨G := 3⟩)}. The definition identifies a natural notion of what it means for a variable to “occur
freely” in a semantic item 8 ∈ � : when 8 actually depends on G , i.e., when changing the value of G in
an input environment b makes a difference in the result of applying 8 . And indeed, with FVIdefined
like this, I forms a (Σ2, Props2)-model, which gives us a unique function sem satisfying (1)–(5).

Thus, semantic interpretation is an example where our “head-to-head” comparison has a visible
outcome. But there is still an unexplored nuance here, which we discuss next.

Above, we argued that the semantic-interpretation example cannot be defined directly using the
perm/free recursor A1. However, as discussed by Pitts [2006, §6.3], it turns out that it can be defined
in a more roundabout manner, after some technical hassle. The trick is to restrict the target domain
� to a subset � ′ on which the above defined operators do form an (Σ1, Props1)-model, and use A1 to
define sem : Tr → � ′. Namely, � ′ is defined as {8 ∈ � | ∃+ ⊆ Var. + finite and ∀G ∈ + . ∀b, 3. 8 b =

8 (b ⟨G := 3⟩)}. Then one proves that � ′ is closed under the constructors VrI, ApI, LmI . Moreover,
for � ′ the above problem with FCB disappears, roughly because all the elements of � ′ are finitary.
So � ′, with the same operators as those we tried for � , now forms a (Σ1, Props1)-model, and A1
recursion can proceed and define sem : Tr → � ′, hence also sem : Tr → � .
Having different nominal recursors in front of us laid out as epi-recursors, we can view Pitts’s

trick in a new light. Remember that, when deploying A2 to define sem, we used the operator FVI,
which is a laxer notion of free-variable than that allowed by A1. An equivalent definition of � ′ is as
the set of all elements of � that have FVIfinite. Thus, Pitts’s trick can be seen as borrowing the free-
variable operator from the different recursor A2, in order to single out a suitable target domain for
deploying A1! One can also prove that, on � ′, the nominal-logic support (defined from permutation
via FvDPm) coincides with FVI—which means that, for the target domain � ′, A1 works as well as A2.

Thus, on a subset of the target domain that is closed under constructors, the previously deemed
weaker recursor A1 can simulate A2. As it turns out, this is a general phenomenon, which we can
phrase for epi-recursors as a gentler expressiveness comparison.

4.3 A Gentler Comparison

Our relation A ′ ≥ A compares the strength of epi-recusors directly, as inclusion between what A
can define and what A ′ can define. The discussion ending §4.2 suggests that this relation may be
too strict. More flexibly, we could check if what A can define is obtainable from what A ′ can define
up to composition with a morphism (which can be an inclusion, as in Pitts’s trick).
Formalizing this for two epi-recursors A = (B,) , C, � , ') and A ′ = (B,) , C′, � ′, '′) must make

sure to avoid pathological dependencies. Indeed, a first attempt is: For all objects � in B and
morphisms 6 :) → �, if 6 is definable by A then there exists an object �0 and two morphisms
60 :) → �0 and ℎ : �0 → � such that 60 is definable by A ′ and 6 = ℎ ◦ 60. But this would yield a
vacuous concept, rendering any epi-recursor A ′ stronger than any other A : just take �0 =) , 60 = 1)

(which is obviously definable by A ′) and ℎ = 6. So we should be careful not to allow the above

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:18 Andrei Popescu

“transition” morphism ℎ to depend on the A -definability morphism 6. Otherwise, we would use
A -definability itself to reduce A -definability to A ′-definability.

For producing morphisms to objects � of B independently of other data, the following concept
comes handy. An initial segment of a categoryC is a pair (C

0
, (<(�) : > (�) → �)�∈Obj(C))whereC0

is a full subcategory of C and, for each object� of C, > (�) is an object of C
0
and<(�) a morphism in

C. Using an orderingmetaphor, an initial segment of a category provides a “smaller” object for any of
its objects. Now we can formulate our gentler relation for comparing strength, called quasi-strength:

Def 13. A ′ = (B,) , C′, � ′, '′) is quasi-stronger than A = (B,) , C, � , '), written A ′ ≳ A , when there
exists an initial segment (B

0
, (<(�) : > (�) → �)�∈Obj(B)) ofB such that, for all6 :) → � definable

by A , there exists a morphism 60 :) → > (�) such that 60 is definable by A ′ and 6 =<(�) ◦ 60.

Thus, A ′ ≳ A says that what A can define is obtainable from what A ′ can define up to composition
with a morphism that only depends on the target object in the base category. Note that we use
initial segments to make sure that the morphisms that “fill the gap” between the two recursors A
and A ′ are given before hand, so that they are independent from any specific recursively defined
function (in particular, preventing bogus expressiveness orderings like the one exemplified above).
≳ is a preorder weaker than ≥. We write A � A ′ to mean that A ′ ≳ A and A ≳ A ′, i.e., A and A ′ have

quasi-equal strengths.
While being a reasonable weakening of ≥, the relation ≳ is likely to be more costly to deploy

than ≥. Indeed, as suggested by our discussion in §4.2, applying A ′ ≳ A , i.e., using A ′ in lieu of A ,
in particular extracting > (�) from � and using > (�) as a “more precise” target domain, can involve
non-negligible formal bureaucracy in concrete situations.
Our effective criterion for checking ≥ (Prop. 11) can be generalized to deal with ≳. Given

two categories C and C′, each with initial segments (C
0
, (<(�) : > (�) → �)�∈Obj(C)) and (C′

0
,

(<′(�) : > ′(�) → �)�∈Obj(C′)), a functor � : C → C′ is said to preserve the indicated initial
segments if � > (�) = > ′(� �) and � (<(�)) =<′(� �) for all � ∈ Obj(C).

Prop 14. Let A = (B,) , C, � , ') and A ′ = (B,) , C′, � ′, '′). Assume (B
0
, (<(�) : > (�) →

�)�∈Obj(B)) is an initial segment of B and (C
0
, (<1 (�) : >1 (�) → �)�∈Obj(C)) is an initial segment

of C such that C
0
contains � and ' preserves the above initial segments, and � : C

0
→ C′ is a

pre-functor such that � � = � ′ and'′◦� = '↾C
0
(where'↾C

0
is the restriction of' to C

0
). Then A ′ ≳ A .

The gist of this criterion (and also its proof idea) is shown in Fig. 5: We start with a morphism 6

definable by A and use the two initial segments to factor it as a morphism 60 definable by A ′ and a
remainder morphism<(�).

C
0
⊆ C

'

��

∃�
��

�
!� ,�

33
!� ,>1 (�)

// >1 (�)
<1 (�)

// �

C′

'′

��

� ′ = � �
� !� ,>1 (�) = !� ′,�′

// � ′
= � >1 (�)

B
0
⊆ B ' �='′ � ′=)

6 = ' !� ,�

33

60=' !� ,>1 (�)='
′
!� ′,�′

// > (�)
< (�) = ' <1 (�)

// � = ' �

Fig. 5. Gentler criterion for comparing expressiveness

Applying the gentler comparison to our recursors (via Prop. 14) yields a quite surprising result:

Thm 15. The epi-recursors described in Thm. 9 (and in Fig. 3) compare as follows by quasi-
strength: A1 � A2 � A3 � A4 � A5 � A6 ≳ A8 � A9 ≳ A7.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:19

Proof idea. When proving each A8 ≳ A 9 , we instantiate Prop. 14 taking A ′ = A8 and A = A 9 . So here
B is the category of Σctor-models, C′ that of (Σ8 , Props8)-models, and C that of (Σ 9 , Props9)-models;
'′ is the forgetful functor from (Σ8 , Props8)-models to Σctor-models, and ' the forgetful functor
from (Σ 9 , Props9)-models to Σctor-models; � = TA (Σctor), � ′ = TA (Σ8) and � = TA (Σ 9).
We define the initial segment (B

0
, (<(A) : > (A) → A)A∈Obj(B)) of B as follows: For any

Σctor-model A we take > (A) to be its minimal submodel (subalgebra), i.e., the one generated by
VrA , ApA and LmA ; we take<(A) : > (A) → A to be the inclusion morphism; and we take B

0
to

be the full subcategory given by constructor-generated models. Each time, we will define the initial
segment (C

0
, (<1 (M) : >1 (M) → M)M∈Obj(C)) so that, for each (Σ 9 , Props9)-modelM, >1 (M)

is a submodel of M whose carrier is generated by the constructors (VrM , ApM and LmM) and
will have the other operators from Σ 9 defined in specific ways; and C

0
will be the full subcategory

given by the objects >1 (M). This way, it will be guaranteed that ' preserves initial segments.
To prove the �-chain going from A1 to A6, thanks to Thm. 12 and the fact that ≳ is weaker than ≥,

it suffices to prove A3 ≳ A6. We proceed as follows: Given a (Σ6, Props6)-model M of carrier" , we
take >1 (M) to be a submodel M ′ of M, having as carrier set the subset" ′ of" generated by the
constructors VrM , ApM and LmM , having the constructors and swapping operators inherited from
M and having freshness defined from swapping in nominal style (as in FrDSw); crucially, this defini-
tion of freshness turns out to be equivalent to an inductive one using FrVr, FrAp and FrLm, makingM ′

the minimal (Σ6, Props6)-submodel of M. Now, the pre-functor � is defined on objects as follows:
� M ′ is the Σ3-model having the same constructors and swapping operator as M ′, and having the
free-variable operator defined standardly from the freshness operator ofM ′, via negation. (And on
morphisms, � is the identity.) � M ′ satisfies Props

3
: SwVr, SwAp, SwLm and FvDSw hold by construc-

tion, and FCB, SwId, SwIv and SwCp follow by induction on the definition of" ′. The other required
properties are trivial, e.g., � � = � ′ here means that the standard definition of free-variables from
freshness is correct for terms; and '′ ◦ � = '↾C

0
means that � commutes with the forgetful functors.

To prove the (�, ≳)-chain going from A6 to A7, again thanks to Thm. 12 it suffices to prove A8 ≳ A9
and A6 ≳ A8. (We will no longer show explicitly the definitions of the initial segment and the
pre-functor, but give the ingredients from which they can be constructed similarly to how we did
above.) For A8 ≳ A9, we start similarly to the proof of A3 ≳ A6, namely for a (Σ9, Props9)-modelM
we take the minimal submodel M ′ where freshness definable from renaming (via FrDRn) turns out
to coincide with the inductively defined version via FrVr, FrAp and FrLm. Because the carrier" ′ of
M ′ is the image of the unique Σ9-morphism 5 : TA (Σ9) → M ensured by the initiality of TA (Σ9),
M ′ satisfies all unconditional equations satisfied by TA (Σ9), in particular, all the Props

8
properties.

Finally, the proof of A6 ≳ A8 exploits the observation that renaming is definable from swap-
ping not only for terms, but also for any (Σ8, Props8)-modelM that guarantees the existence of
fresh variables, i.e., having its elements finitely supported:< [I1 ∧

M I2] is defined as< [~/MI1]

[I1/
MI2] [I2/

M~] where~ is fresh (and, using the Props
8
axioms, the choice of~ can be proved not

to matter). While arbitrary (Σ8, Props8)-models M do not guarantee finite support, we can again
switch to a minimal submodelM ′ that does guarantee it—and inM ′ the above definition indeed
yields a swapping operator that together with the constructors and freshness satisfies Props

6
. □

Thus, ≳ brings a dramatic flattening of the ≥ hierarchy established by Thm. 12: All the swapping-
and permutation-based recursors A1–A6 have equal quasi-strengths. The intuition for this, as we dis-
covered during the proofs, is the following. Recall that the differences in strength (using ≥) between
these recursors were due to: (1) looseness or tightness of their connection between swapping/per-
mutation and freeness/freshness, (2) higher flexibility of swapping compared to permutation, and (3)
more focused nature of congruence compared to an algebraic axiomatization. Remarkably, all these
differences vanish if we are allowed to navigate along submodels, which ≳ enables. This is because

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:20 Andrei Popescu

(as explained in the proof of Thm. 15), certain minimal submodels are much more “term-like” than
an arbitrary model; they generalize Pitts’s submodel definition for semantic interpretation, where
nominal-style freshness coincides with other, more loosely axiomatized notions of freshness.

An interesting takeover when switching from ≥ to ≳ is the swapping/permutation-based recur-
sors A1–A6 becoming (quasi-)stronger than the renaming-based recursors A8 and A9. Indeed, defining
renaming from swapping or vice versa seems impossible in arbitrary models, meaning these two
types of recursors are ≥-incomparable. But when switching to submodels (allowed by ≳) one
direction is possible: The swapping of two variables can be defined in a renaming-based model
similarly to how it is done for concrete terms, via picking an intermediate fresh variable; and
“picking fresh” is possible in minimal submodels because everything there is finitely supported.

Summary. Epi-recursors are comparable for expressiveness by a strict relation ≥, saying that every-
thing definable by one is definable by the other, and a laxer relation ≳, saying that everything defin-
able by one can be defined by the other with the help of an additional morphism, typically a submodel
inclusion. The handling of the semantic-interpretation example with the nominal-logic recursor was
our inspiration for ≳, and suggests the additional overhead incurred by ≳. The ≳-hierarchy is signifi-
cantly flatter than the ≥-hierarchy, sending an egalitarianmessage:Most nominal recursors turn out to

have the same strength, with the only nuance that those based on symmetric operators (swapping and
permutation) are more expressive than those based on asymmetric ones (renaming and substitution).

4.4 Negative Results

Thms. 12 and 15 establish ≥ and ≳ relationships between recursors, which essentially tell us that a re-
cursor can replace/simulate another recursor (under a tighter or a looser notion of replacement). But
how about the question of when a recursor cannot replace another? The discussion in §4.2 suggests
that A1 ≥ A2 does not hold. The next proposition states the two negative results we know so far:

Prop 16. A1 ≱ A2 (i.e., it is not the case that A1 ≥ A2) and A2 ≱ A4 (i.e., it is not the case that A2 ≥ A4).

Proof sketch. To prove A8 ≱ A 9 , we must provide a (Σ 9 , Props9)-modelM for which the Σctor-reduct
(i.e., the Σctor-model obtained by forgetting the operators from Σ 9 \ Σctor) cannot be the Σctor-reduct
of any (Σ8 , Props8)-model.
For A1 ≱ A2, we take the (Σ2, Props2)-model M to have as carrier the set " = Tr ∪�, where �

consist of all the streams of variables (in VarN) whose sets of occurring variables are infinite. We let
(C8)8∈N be a family of terms such that all are ground (FV C8 = ∅) and mutually distinct. We defineM’s
operators on" by extending the standard term operators from Tr as follows, for any xs ∈ � (where
mapf is the standard stream-map operator and rem~ xs removes all occurrences of ~ from xs):

• FVM
xs = Vars xs

• LmM ~ xs = rem~ xs for any ~ ∈ Var

• ApM xs C8 = Vr xs8 for any 8 ∈ N

• ApM xs < = C0 for any< ∈ " ∖ {C8 | 8 ∈ N}

• ApM B xs = C0 for any B ∈ Tr

• xs[f]M = mapf xs for any f ∈ Perm
Note that, on �, the free-variable-like and abstraction-like operators are natural, in particular

LmM removes all occurrences of the abstracted variable. On the other hand, the application-like
operator is contrived: the only interesting case is ApM xs C8 , where application emulates the 8’th
projection, retrieving the 8’th element of the stream xs; in the other cases application simply returns
the ground term C0. We can check thatM thus defined satisfies the Props

2
properties. One the other

hand, the Σctor-reduct ofM, i.e., Tr∪� equipped with the above-defined constructor-like operators,
cannot be the reduct of any (Σ1, Props1)-model, i.e., there is no way to define the operators _[_] ′ and
FV′ on Tr∪� that, together with VrM , ApM and ApM , make it a (Σ1, Props1)-model. Indeed, if such
operators _[_] ′ and FV′ existed, then the Props

1
axiomswould imply that _[_] ′ extends the standard

permutation operators from Tr and �, and then that FV′
xs = Var for all xs, which contradicts FCB.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:21

For A2 ≱ A4, we take the (Σ4, Props4)-model M to have as carrier the set " = Tr ∪ {0} (where
0 ∉ Tr), i.e., to consist of terms plus an additional element 0. Let G be a fixed variable. We define
M’s operators on" by extending the standard term operators from Tr as follows:
• FVM0 = Var (the set of all variables)
• LmM ~ 0 = LmM ~ (Vr G) for any ~ ∈ Var

• ApM 0 0 = ApM (Vr G) (Vr G)

• ApM 0 C = ApM (Vr G) C for any C ∈ Tr

• ApM C 0 = ApM C (Vr G) for any C ∈ Tr

• 0[I1∧I2]
M

= Vr (G [I1∧I2]) for any I1, I2 ∈ Var
Thus, the free variables of 0 are the entire set of variables, and the constructor and swapping

operators on 0 yield the same results as for Vr G , i.e., have Vr G act in lieu of 0. We can check
that M satisfies Props

4
. On the other hand, the Σctor-reduct of M, i.e., Tr ∪ {0} equipped with the

above-defined constructor-like operators, cannot be the reduct of any (Σ2, Props2)-model, i.e., there
is no way to define the operators _[_] ′ and FV′ on Tr∪{0} that, together with VrM , ApM and ApM ,
make it a (Σ2, Props2)-model. Indeed, if such operators _[_] ′ and FV′ existed, then the axioms in
Props

2
would imply that _[_] ′ extends the standard permutation operator on Tr, and also that

_[f] ′ is bijective on Tr∪ {0} for any permutation f ; so the only possibility is that 0[f] ′ = 0 for any
f ; this together with PmAp would imply that (ApM 0 0) [f] ′ = ApM (0[f] ′) (0[f] ′) = ApM 0 0,
i.e., (Ap (Vr G) (Vr G)) [f] = Ap (Vr G) (Vr G), which is false for any f that modifies G . □

Note that, if we write > for the strict version of ≥ (defined as A > A ′ iff A ≥ A ′ and A ′ ≱ A),
then assuming A ≥ A ′, a negative result A ′ ≱ A is a strictness result A > A ′. So from Thm. 12 ,
Prop. 16 and Thm. 15 we have A2 > A1 but A2 � A1, and also A4 > A2 but A4 � A2. We do not yet have
negative/strictness results across the board, in particular, none for ≳.

5 THE COINDUCTIVE SPECTRUM

Next we will shift focus from the standard terms with bindings discussed so far, which were defined
inductively, to (possibly) infinitary non-well-founded terms with bindings, defined coinductively,
where the constructors can be applied an infinite number of times. Unlike with the inhabitants of
standard coinductive datatypes, we will still identify termsmodulo U-equivalence. Rather than recur-
sion, we will now study corecursion, that is, mechanisms for defining functions having terms not as
source domain, but as target domain (codomain). Building on the experience of having handled the
recursors, we will now take a more direct route, and at a faster pace: After recalling infinitary terms
(§5.1), we introduce abstract epi-corecursors (§5.2), then delve into the spectrum of nominal core-
cursor instances, connect with pre-existing nominal corecursors, and establish a hierarchy (§5.3).

5.1 Infinitary Terms with Bindings

Let Var be a set of variables whose cardinality isℵ1, the first uncountable cardinal. (Any uncountable
regular cardinal would do—we only care about the existence of fresh variables for any term.) The
set Tr∞ of infinitary _-terms, iterms for short, is defined by the same grammar as before, C ::= Vr G |

Ap C1 C2 | Lm G C , but interpreted coinductively, i.e., allowing an infinite number of constructors. For
example, . . . (Ap (Lm G= (. . . (Ap (Lm G1 (Vr G0)) (Vr G1)) . . .)) (Vr G=)) . . . is an iterm, infinitely
alternating abstractions and applications. Similarly to terms, iterms are equated modulo U .
In more detail, the above definition means: One first defines the set PTr∞ of pre-iterms to be

(co)freely generated by the grammar ? ::= PVr G | PAp ?1 ?2 | PLm G ? under the coinductive
interpretation, i.e., under the assumption that constructors can be applied infinitely. Thus, PTr∞ is a
standard coinductive datatype, given by the final coalgebra of the functor on sets taking, on objects,
any set � to Var + � × � + Var × � (and operating on morphisms as expected; Popescu [2023b,
App. E.1] gives full details). Then one defines the U-equivalence relation ≡ : PTr∞ → PTr∞ → Bool

coinductively, proves that it is an equivalence, and defines Tr∞ by quotienting PTr∞ to it, i.e.,
takes Tr∞ = PTr∞/≡. Finally, one proves that the pre-iterm constructors are compatible with ≡,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:22 Andrei Popescu

which allows to define the constructors on iterms: Vr : Var → Tr∞, Ap : Tr∞ → Tr∞ → Tr∞ and
Lm : Var → Tr∞ → Tr∞. We will focus on iterms, forgetting about pre-iterms.

The iterms have been studied in the context of _-calculus denotational semantics, e.g., the Böhm,
Lévy-Longo and Berarducci trees of a _-term [Barendregt 1985]. A bottom element ⊥ is often
included in the iterm grammar, but we omit it here since it would be entirely passive in our results.

We also consider the usual operators (just like in the inductive case), namely (capture-avoiding)
substitution _[_ /_] : Tr∞ → Tr∞ → Var → Tr∞, (capture-avoiding) renaming _[_ /_] : Tr∞ →

Var → Var → Tr∞, swapping _[_∧ _] : Tr∞ → Var → Var → Tr∞, permutation _[_] : Tr∞ →

Perm → Tr∞, free-variables FV : Tr∞ → P(Var), and freshness _#_ : Var → Tr∞ → Bool.
Finally, for any set �, let P≠∅ (�) denote the set of nonempty subsets of �. We consider the iterm

destructor, Dest : Tr∞ → Var + Tr∞ × Tr∞ + P≠∅ (Var × Tr∞) , defined as follows, where we write V,
A and L for the three injections into the sum type S = Var + Tr∞ × Tr∞ + P≠∅ (Var × Tr∞) (so that
V : Var → S, A : Tr∞ × Tr∞ → S and L : P≠∅ (Var × Tr∞) → S):

Dest C =





V G, if C = Vr G

A (C1, C2), if C = Ap C1 C2
L {(G, C ′) | C = Lm G C ′}, otherwise (i.e., if C is a Lm-abstraction)

Dest is the dual of the constructors, peeling off the last constructor from an iterm and returning its
arguments.1 It is similar to the destructors for standard datatypes, except that on Lm-abstractions
it is nondeterministic. This is because the Lm constructor is not injective and therefore an iterm
C could have been built in different ways using Lm. Dest considers all these ways, i.e., returns the
set of all pairs (G, C ′) such that C has the form Lm G C ′. We thus have: C = Lm G C ′ ⇐⇒ ∃ . Dest C =

L and (G, C ′) ∈ . For iterms (and for terms too, where the destructor is defined in the same way),
destructor and constructors are two faces of the same coin. But since the models for corecursion will
have to emulate the destructor, we will look at destructor-based (re)formulations of iterm properties.
Of the basic properties of terms listed in Fig. 2, all except for the last group (the nominal-logic

specific properties) also hold for iterms, so we will consider some of them in the context of iterms
as well. The properties in this last group are tied to the finiteness of a term’s free variables; for
them to become true for iterms, we must replace “(in)finite” with “(un)countable”.
Moreover, Fig. 6 collects destructor-based iterm counterparts of some term properties from

Fig. 2. Often, these are just (equivalent) destructor-based reformulations of the constructor-based
properties. For example, this is the case of SwVr∞, SwAp∞, SwLm∞ versus SwVr, SwAp, SwLm.
However, sometimes we reformulate not the original property from Fig. 2, but a converse (or

“almost converse”) of it. For example, the converse of SwCg from Fig. 2 is: Lm G1 C1 = Lm G2 C2
implies that there exists I such that I ∉ {G1, G2}, I # C1, C2, and C1 [I∧G1] = C2 [I∧G2]. This converse
does hold for terms, and for iterms as well. However, we prefer to consider a weaker version of
it: Lm G1 C1 = Lm G2 C2 implies that there exists I such that (I = G1 or I # C1), (I = G2 or I # C2),
and C1 [I∧G1] = C2 [I∧G2]. The latter, reformulated using destructor notation, is exactly SwCg∞
from Fig. 6. The reason why we prefer a weaker version (here due to a weaker conclusion) is the
same as why we preferred a weaker version of SwCg in the inductive case (there, due to a stronger
hypothesis): because, to make the (co)recursors as expressive as possible, we want the models to
have axioms as weak as possible. Sometimes we include in Fig. 6 two different destructor-based
counterparts of a constructor-based property, e.g., RnBvr∞ and RnBvr′∞ for RnBvr.
Save for the finite vs. countable nuance in the last group, all properties in Figs. 2 and 6 hold

for both terms and iterms. Their selection becomes relevant when regarding them as properties
of models. The duality between the Fig. 2 and Fig. 6 properties, which informs the naming of the
latter, is neither perfect nor fully systematic. But this naming will allow us to draw parallels.

1See page 26 for a discussion of alternative types for the destructor and destructor-like operators.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:23

SwVr∞ if Dest C = V G then
Dest(C [I1∧I2]) = V(G [I1∧I2])

SwAp∞ if Dest C = A(C1, C2) then
Dest(C [I1∧I2]) =

A(C1 [I1∧I2], C2 [I1∧I2])

SwLm∞ if Dest C = L then there
exists ′ such that
Dest (C [I1∧I2]) = L ′ and
((G [I1∧I2], C ′[I1∧I2]) ∈ ′

for all (G, C ′) ∈)
SwCg∞ if Dest C = L and

{(G1, C1), (G2, C2)} ⊆

then there exists I such that
(I = G1 or I # C1), (I = G2 or I # C2),
and C1 [I∧G1] = C2 [I∧G2]

SwBvr∞ if Dest B = L and
{(G, C), (G ′, C ′)} ⊆ then
(G ′ = G or G ′ # C) and C ′ = C [G ′∧G]

SwBvr∞,2 same as SwBvr∞ but with
G ′ ∉ FV C instead of G ′ # C

RnVr∞ if Dest C = V G then
Dest(C [~/I]) = V(G [~/I])

RnAp∞ if Dest C = A(C1, C2) then
Dest(C [~/I]) = A(C1 [~/I], C2 [~/I])

RnLm1,∞ if Dest C = L then there
exists ′ s.t. Dest (C [~/I]) = L ′

and ((G, C ′[~/I]) ∈ ′ for all
(G, C ′) ∈ s.t. G ∉ {~, I})

RnLm2,∞ if Dest C = L and (G, C ′) ∈

then C [G/I] = C
RnCg∞ if Dest B = L and

{(G1, C1), (G2, C2)} ⊆

then there exists I such that
(I = G1 or I # C1), (I = G2 or I # C2),
and C1 [I/G1] = C2 [I/G2]

RnBvr∞ if Dest B = L and
{(G, C), (G ′, C ′)} ⊆ then
(G ′ = G or G ′ # C) and C ′ = C [G ′/G]

RnBvr′∞ if Dest B = L , (G, C) ∈ and
G ′ # C then (G ′, C [G ′/G]) ∈

FrVr∞ if Dest C = V G and I # C then I ≠ G
FrAp∞ if Dest C = A(C1, C2) and I # C

then I # C1 and I # C2
FrLm∞ if Dest C = L , (G, C ′) ∈ and I # C

then I = G or I # C ′

FvVr∞ if Dest C = V G then G ∈ FV(C)

FvAp∞ if Dest C = A(C1, C2) then
FV C1 ∪ FV C2 ⊆ FV C

FvLm∞ if Dest C = L and (G, C ′) ∈ then
FV C ′ ∖ {G} ⊆ FV C

PmVr∞ if Dest C = V G then
Dest(C [f]) = V(G [f])

PmAp∞ if Dest C = A(C1, C2) then
Dest(C [f]) = A(C1 [f], C2 [f])

PmLm∞ if Dest C = L then there
exists ′ such that
Dest (C [f]) = L ′ and
((G [f], C ′[f]) ∈ ′ for all (G, C ′) ∈)

PmBvr∞ if Dest B = L and
{(G, C), (G ′, C ′)} ⊆ then
(G ′ = G or G ′ ∉ FV C)
and C ′ = C [G ′ ↔ G]

PmBvr′∞ if Dest B = L , (G, C) ∈ and
G ′ # C then (G ′, C [G ↔ G]) ∈

SbVr∞ if Dest C = V G then
Dest(C [B/I]) =

(if G = I then Dest B else V G)
SbAp∞ if Dest C = A(C1, C2) then

Dest(C [B/I]) = A(C1 [B/I], C2 [B/I])

SbLm∞ if Dest C = L then there
exists ′ such that
Dest (C [B/I]) = L ′ and
((G, C ′[B/I]) ∈ ′ for all
(G, C ′) ∈ such that G ≠ I and G # B)

SbBvr∞ if Dest B = L and
{(G, C), (G ′, C ′)} ⊆ then
(G ′ = G or G ′ # C) and C ′ = C [(Vr G ′)/G]

SbBvr′∞ if Dest B = L , (G, C) ∈ and
G ′ # C then (G ′, C [(Vr G ′)/G]) ∈

FSupFv∞ FV C is countable
FvDPm∞ FV C = {G ∈ Var | {~ | C [G ↔ ~] ≠ C}

is uncountable}
FvDSw∞ FV C = {G ∈ Var | {~ | C [G ∧~] ≠ C}

is uncountable}
FSupFr∞ {G . ¬ G # C} is countable
FrDSw∞ G # C if and only if

{~ | C [G ∧~] ≠ C} is countable
FrDRn∞ G # C if and only if

{~ | C [~/G] ≠ C} is countable

Fig. 6. Corecursion-relevant properties of iterms. We only list properties that are counterparts of those from

Fig. 2 involving constructors and finiteness conditions. As for the others, namely the algebraic properties of

the operators, their formulation does not change, so we will use the same notation. For example, SwId from

Fig. 2 denotes a property that makes sense not only for terms but also for iterms (and will, in due course,

for our corecursor models too).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:24 Andrei Popescu

5.2 Epi-Corecursors

We introduce abstract epi-corecursors as a natural dual of epi-recursors. The idea is the same: A
definition of a morphism in a base category is underpinned by adding more structure coming from
an extended category. The difference is that the base object is now not the source, but the target of
the to-be-defined morphism, and the underpinning occurs not via initiality but via finality.

Def 17. An epi-corecursor is a tuple cr = (B,) , C, � , ') where:

• B is a category called the base category •) is an object in B called the base object

• C is a category called the extended category • � is a final object in C

• ' : C → B is a functor such that ' � =)

Just like for epi-recursors, in typical epi-corecursor examples C andB will be categories of models,
with the models in C having more structure than those in B, and ' will be a structure-forgetting
functor. To define a morphism 6 : � →) in B (where � is some object in B) using an epi-corecursor
cr = (B,) , C, � , '), we (1) extend � to an object � in C (with ' � = �) yielding a morphism !�, � :

� → � in C from the finality of � , then (2) take 6 to be ' !�, � , the restriction of !�, � to B. Thus, we
call a morphism 6 : � →) definable by the epi-corecursor cr if 6 = ' !�, � for some extension � of �.

5.3 A Hierarchy of Nominal Corecursors

To discuss concrete nominal corecursors, we adapt §3.2’s signatures and models used for nominal
recursors. We use the same notions except that we replace the constructor symbols vr, ap, lm with
a destructor symbol dest, interpreted accordingly. All signatures Σ now extend not the constructor
signature Σctor = {vr, ap, lm}, but the destructor signature Σdtor = {dest}. A Σ-model M has a
carrier set" , interprets the signature’s non-destructor symbols as in §3.2, and dest as an operation
DestM : " → Var +" ×" + P≠∅ (Var ×"). The iterm Σ-model TA∞ (Σ) is the Σ-model whose
carrier set is Tr∞ and whose operations and relations are the standard ones for iterms (see §5.1).
The notion of morphism of Σ-models 6 : M → M ′ is defined like in §3.2, but replacing

commutation with the constructors by sub-commutation with the destructor: (1Var + 6 × 6 +

image(1Var × 6)) (Dest
M<) ⊑ DestM

′

(6 <) for all< in the carrier set" . The above relation ⊑ on
Var +" ′ ×" ′ + P≠∅ (Var ×"

′) is defined by taking D ⊑ E to mean that: either D = V G = E for
some G ; or D = A(<′

1
, <′

2
) = E for some<′

1
, <′

2
; or D = L , E = L ′ and ⊆ ′ for some , ′.

Thus, the sub-commutation shows in the abstraction case (which is nondeterministic), where we
allow inclusion instead of equality. To see why sub-commutation is the natural condition here, note
that for a morphism that targets iterms, 6 : M → TA∞ (Σ), it is equivalent to the conjunction of
the following three conditions: (1) DestM < = V G implies 6 < = Vr G ; (2) DestM < = A(<1, <2)

implies 6 < = Ap (6 <1) (6 <2); (3) DestM < = L and (G,<′) ∈ implies 6 < = Lm G (6 <′).
Our nominal (epi-)corecursors will underpin corecursive definitions having TA∞ (Σdtor) as target

model by considering extensions of Σdtor to larger signatures Σ, along with certain axiomatizations
of Σ-models given by subsets of the properties in Fig. 6 (interpreted not on iterms, but on Σ-models).
Previous work [Blanchette et al. 2019; Kurz et al. 2012] discovered corecursive counterparts of

two nominal recursors. Next we show that this is a quite pervasive phenomenon:

Thm 18. Consider the eight choices, for 8 ∈ {1, 2, 3, 5, 6, 7, 8, 9}, of tuples cr8 = (B,) , C
8
, �8 , '8)

given by the sets of properties Props8 shown in Fig. 7. Namely (analogously to what we assumed in
Thm. 9), we assume that Σ8 consists of the operation and relation symbols occurring in Props8 , and:

• B is the category of Σdtor-models and) = TA∞ (Σdtor)

• C
8
is the category of (Σ8 , Props8)-models and �8 is TA∞ (Σ8)

• '8 : C8
→ B

8
is the forgetful functor sending (Σ8 , Props8)-models to their underlying Σdtor-models

Then cr8 is an epi-corecursor. In particular, TA∞ (Σ8) is the final (Σ8 , Props8)-model.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:25

cr1 (perm/free)
PmVr∞, PmAp∞, PmLm∞,

PmId, PmCp,
FvDPm∞, PmBvr∞

cr2 (perm/free variant)
PmVr∞, PmAp∞, PmLm∞,

PmId, PmCp,
PmFv, PmBvr∞,

FvVr∞, FvAp∞, FvLm∞

cr3 (swap/free variant)
SwVr∞, SwAp∞, SwLm∞,

SwId, SwIv, SwCp,
FvDSw∞, SwBvr∞,2

cr5 (swap/fresh variant)
SwVr∞, SwAp∞, SwLm∞,

SwId , SwIv , SwCp ,

SwFr, SwBvr∞,
FrVr∞, FrAp∞, FrLm∞

cr6 (swap/fresh)
SwVr∞, SwAp∞, SwLm∞,

SwId , SwIv , SwCp ,

SwFr, FrSw , SwCg∞
FrVr∞, FrAp∞, FrLm∞

cr7 (subst/fresh)
SbVr∞, SbAp∞, SbLm∞,
SbId, SbChFr, SbCm

SbFr, FrSb, SbBvr∞, SbBvr′∞
FSupFr∞, FrVr∞, FrAp∞, FrLm∞

VrInv, FrVr

cr8 (renaming)
RnVr∞, RnAp∞, RnLm1,∞,
RnId, RnIm, RnCh, RnCm
FrDRn∞, RnBvr∞, RnBvr′∞

FSupFr∞, FrRn2

cr9 (renaming/fresh variant)
RnVr∞, RnAp∞, RnLm1,∞,
RnId, RnChFr, RnCm,

RnFr, FrRn, RnBvr∞, RnBvr′∞
FSupFr∞, FrVr∞, FrAp∞, FrLm∞

Fig. 7. Sets of properties underlying different nominal corecursors. The highlighted properties are ones that

turned out to be redundant in the analogous nominal recursor, but must be added back for the corecursor.

Next we unpack Thm. 18’s statements of epi-corecursion principles, exploring the connections
with Thm. 9’s nominal epi-recursors.We used for the corecursors the same names as for the recursors
to which they roughly correspond—although, as we will discuss, a corecursor will often “inherit”
axioms from two different recursors. (We do not have a cr4 corecursor because the axioms specific
to A4 were mixed into cr5 and cr6; either of cr5 and cr6 could have alternatively been named “cr4”.)
cr1 and cr3 are corecursors in the style of nominal logic. Like their recursor counterparts A1

and A3, they have the free-variable (support) operator completely determined from permutation
(via FvDPm∞), or alternatively swapping (via FvDSw∞). However, these corecursors are not strictly
speaking nominal-logic based, because this determination of free-variables involves not finiteness,
but countability. Another difference between cr1 / cr3 and A1 / A3 is that the freshness condition for
binders FCB (or anything analogous to it) is no longer needed; but instead we need the (corecursive
counterpart of) the bound-variable renaming axiom which was specific to the more expressive
recursor A5—in permutation or swapping form (PmBvr∞ or SwBvr∞,2). Thus, when switching from
recursion to corecursion, the nominal-logic style definitional principles trade FCB for PmBvr∞ or
SwBvr∞,2; they are the only ones not to become axiomatically heavier during this switch.

The cr2 corecursor requires both the algebraic properties of permutation and freshness specific
to A2 (PmId, PmCp and PmFv) and the bound-variable renaming property specific to A5 (converted
from swapping to permutation form, PmBvr∞). The situation is similar for cr5, the swapping-based
counterpart of cr2, which gets axioms from both A4 (with freeness converted to freshness) and
A5. All these are in sharp contrast to the recursion case, where, at the recursor A5, bound-variable
renaming (SwBvr) was the only axiom needed (in addition to the “unavoidable” ones describing
the interaction of constructors with the other operators). Similarly to cr5 which “descends” from A4
and A5, cr6 “descends” from A4 and A6. Unlike in the recursive case where A4 did not need SwCp and
turned out not to need SwId and SwIv either, here all three axioms, SwId, SwIv and SwCp, are actually
needed by its corecursor “descendants” cr5 and cr6. Additionally cr6 requires FvSw, another axiom
we had discovered to be redundant for A4. Thus, for the principles discussed in this paragraph,
the axiomatizations become heavier when switching from recursion to corecursion, because: (1)
axioms from different recursors now need to be joined, and (2) previous axioms that were seen
to be redundant for recursors must be added back to their corecursor counterparts.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:26 Andrei Popescu

As for the substitution- and renaming-based principles cr7, cr8 and cr9, their axiomatizations
also become heavier in a similar way, in that both algebraic axioms (e.g., RnId, RnIm, RnCh, RnCm)
and bound-variable renaming axioms must be present. But their axiomatizations are even heavier,
because they feature (1) two versions of the bound-variable renaming axioms (e.g., RnBvr∞ and
RnBvr′∞ as opposed to just RnBvr∞) as well as (2) countable support (FSupFr∞). Roughly speaking,
these additional axioms are needed to make corecursion go through (i.e., establish finality of the
iterm model) because, substitution/renaming not commuting unconditionally with abstractions,
stronger bound-variable avoidance facilities must be supplied by an (arbitrary) model; this was not
a problem for recursors, where fresh induction on (concrete) terms could handle that elegantly.
Specific to the substitution corecursor cr7 is that it features, for the variable case, not only the

destructor freshness axiom FrVr∞, but also its constructor counterpart FrVr, and the implicit require-
ment that the signature Σ7 contains the variable-constructor symbol vr. So a Σ7-model M has, in
addition to the destructor DestM, a variable-constructor-like operator VrM : Var → M; the two
are required to act as mutual inverses by the following axiom VrInv (which, due its hybrid nature,
fits neither Fig. 2 nor Fig. 6): Dest C = V G if and only if C = Vr G . This monad-like variable-injection
setting is needed to accommodate the substitution of arbitrary elements< ∈ " for variables G .

Connection with previous corecursors. Thm. 18 recovers, and slightly improves on, the two existing
nominal corecursors from the literature we are aware of: that developed by Kurz et al. [2012] for
_-terms and extended by Kurz et al. [2013] to functors on nominal sets, and that developed by
Blanchette et al. [2019] in a functorial framework covering complex binders. Next we discuss these
corecursors’ instantiations to the syntax of _-calculus. The Blanchette et al. corecursor corresponds
to cr2 almost exactly, just that it assumes FvPmwhich is not needed. (See Popescu [2023b, App. F.2].)

Designed for nominal logic, the Kurz et al. corecursor assumes finite support, and targets not the
entire Tr∞ but the subset Tr′∞ ⊆ Tr∞ of finitely supported iterms. Their corecursor can be obtained
from our cr1 by noting that, if we assume the source modelM to satisfy finite support (FSupFv), then
the image of the unique morphism 6 : M → TA∞ (Σ1) guaranteed by cr1 is included in Tr′∞ (thanks
to 6’s preservation of free variables). So we obtain a unique morphism from M to the submodel of
TA∞ (Σ1) with carrier set Tr′∞, i.e., the termmodel of Kurz et al. The above summary ignores one tech-
nicality: The Kurz et al. destructor does not have type" → Var+"×"+P≠∅ (Var×") like ours, but
" → Var+" ×" + [Var]" , where [Var]" is the nominal set of abstractions, obtained by quotient-
ing Var×" to an U-like equivalence relation∼ defined by (G, <)∼(G ′, <′) iff<[I ↔ G]M =<[I ↔

G ′]M for some fresh I. Since [Var]" consists of∼-equivalence classes, we have [Var]" ⊆ P≠∅ (Var×

"), so the only difference is that our destructor has a less constrained codomain. But our cr1 axiom
PmBvr∞ constrains the elements of P≠∅ (Var×") from the image of the destructor to contain mutu-
ally ∼-equivalent items. If we also added PmBvr′∞ to the axiomatization of cr1, we would further con-
strain these to be entire ∼-equivalence classes, obtaining exactly the Kurz et al. models. Hence, due
to its models being less constrained, cr1 is (slightly) more expressive than the Kurz et al. corecursor.

A note on nominal abstractions. The above recalled abstractions are a standard concept in nominal
logic [Gabbay and Pitts 1999], and using abstractions as primitives is a valid alternative when intro-
ducing nominal recursors and corecursors. For the recursors, the Lm-constructor in models would
have type [Var]" → " rather thanVar → " → " . However, like the authors of the nominal recur-
sors reviewed in §2.2, we too favor the abstraction-free (hence quotient-free) (co)recursors, and this
is for two reasons. First, they are likely easier to deploy: During a recursive definition, it seems incon-
venient for the user to have to provide an operator in [Var]" → " , which usually requires making
a choice and showing that the choice is immaterial; providing instead a “free” operator in Var →

" → " and verifying an additional axiom (such as SwBvr) seems more manageable. Second, they
can be more expressive than their abstraction-based alternatives. For example, most of the recursors

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:27

in Thm. 9 do not require swapping/permutation to have the algebraic properties needed for ∼ to be
an equivalence, so quotienting is not an option unless we strengthen the model axiomatization, thus
placing a higher proof burden on the user. Admittedly, these advantages are less consequential when
talking about corecursors, where the relevant algebraic properties are required across the board.

Comparing expressiveness. We use a strength relation that is similar to that from our “head-to-
head” comparison of epi-recursors (in §4.1): Given epi-corecursors cr = (B,) , C, � , ') and cr

′
=

(B,) , C′, � ′, '′), we call cr ′ stronger than cr , written cr
′ ≥ cr , if cr ′ can define everything that cr

can, in that: for all objects � in B and 6 : � →) , 6 definable by cr implies 6 definable by cr ′. Again,
we write cr ≡ cr

′ to state that cr and cr ′ have equal strengths, i.e., both cr
′ ≥ cr and cr ≥ cr

′ hold.

Thm 19. The epi-corecursors from Thm. 18 (and Fig. 7) compare as follows w.r.t. expressiveness:
cr2 ≡ cr5 ≥ cr6 ≥ cr3 ≡ cr1 ≥ cr8 and cr5 ≥ cr9 ≥ cr7, cr8.

Let us discuss this hierarchy in connection with the recursor hierarchy from Thm. 12:
Permutation versus swapping. Recall that, in the recursor hierarchy, choosing between permuta-

tion and swapping was consequential to expressiveness as soon as we no longer assumed the tight
coupling between freeness/freshness and swapping/permutation; namely, for the tight-coupling
recursors A1 and A3 we had A1 ≡ A3, but for the for loose-coupling recursors A2 and A4 we only had
A4 ≥ A2. But on corecursors this nuance disappears: Swapping is now as expressive as permutation
in both the tight-coupling (cr1 ≡ cr3) and loose-coupling (cr2 ≡ cr5) cases. This is because for
swapping-based corecursors we cannot dispense with the algebraic axioms SwId, SwIv and SwCp,
which are sufficient to ensure the extension of swapping to a (well-behaved) permutation operator.

Congruence versus bound-variable renaming. Recall that, for recursors, the congruence axiom
SwCg led to higher expressiveness than the bound-variable renaming axiom SwBvr, yielding A6 ≥ A5.
And this was because (in the presence of other mild axioms) SwBvr implies SwCg. The same is true
here for corecursors, in that SwBvr∞ implies SwCg∞. However, in the presence of the other cr5
axioms, SwBvr∞ is sufficient for proving a corecursion principle; whereas SwCg∞ is not, unless we
add the additional axiom FrSw (which is not needed by cr5). And if we assume FrSw then SwCg∞ also
implies SwBvr∞. In short, congruence-based corecursion requires FrSw, and as such is less expressive
than bound-variable renaming-based corecursion, meaning that the hierarchy gets shifted, with
cr5 ≥ cr6.
Symmetric versus asymmetric operators, second round. Recall that, in the strict “head-to-head”

comparison relation, recursors based on symmetric operators (swapping and permutation) were
incomparable to those based on asymmetric ones (renaming and substitution), but only a laxer
comparison deemed the symmetric ones more expressive. But in the case of corecursors, the
symmetric ones emerge as more expressive already in a head-to-head comparison. This is not
too surprising if we recall the reason why symmetric-operator recursors eventually emerged as
more expressive: because, if the model has finite support (which in the laxer criterion was possible
by taking the minimal submodel), then swapping becomes definable from renaming. Here, our
asymmetric-operator based models already have countable support (which, as discussed, seems
necessary for corecursion), hence can also define swapping from renaming similarly to how this is
done in the finite-support case.

Summary. Nominal corecursors can be construed and compared as epi-corecursors, following a
similar methodology to that for nominal recursors. A corecursor axiomatization corresponds to one
or two recursor axiomatizations via identical and quasi-dual axioms. The corecursor axiomatizations
are heavier. We have a corecursor hierarchy that partly matches the strict-relation (≥) recursor
hierarchy but is more fine-grained, in particular it already subsumes asymmetric-operator principles
to the symmetric-operator ones without the need for a laxer comparison relation (in the style of ≳).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:28 Andrei Popescu

6 MECHANIZED RESULTS

We have mechanized in Isabelle/HOL the recursion theorem (Thm. 9), the two recursor comparison
theorems (Thms. 12 and 15), the two negative (strictness) results on recursor comparison (Prop. 16),
the corecursion theorem (Thm. 18), and the corecursor comparison theorem (Thm. 19).Whatwe have
not mechanized are the abstract criteria for comparing epi-recursors, namely Props. 11 and 14. In our
mechanized results, rather than invoking these criteria, we have inlined their content on a need basis.
The mechanization is available as an archive [Popescu 2023a], and is extensively documented

in Popescu [2023b, App. J]. It uses Isabelle’s structuring mechanisms called locales [Ballarin 2014;
Kammüller et al. 1999] to represent the model axiomatizations, and uses sublocale relationships for
the transformations between these axiomatizations that underlie the expressiveness comparisons.
We have also provided a top-level, locale-free reformulation of the mechanized results, which

match closely the statements from the paper, and whose inspection does not require knowledge of
locales. The end results about recursors, Thms. 9, 12 and 15 and Prop. 16, are mechanized in homony-
mous Isabelle theories, located in the archive’s directory Stripped_Down/LocaleFree_versions:

• Thm. 9 is mechanized in the Isabelle theory Theorem9. That theory contains the definitions
of the epi-recursor structure for each of the nine recursors A8 , and proofs that these structures
indeed form epi-recursors, e.g., their components are categories, functors etc. The initiality
theorems are named init_I8 where 8 is a number between 1 and 9.

• Thm. 12 is mechanized in the Isabelle theory Theorem12, where the main formal theorems
are named r8_ge_r 9 (formalizing A8 ≥ A 9) for the relevant choices of 8 and 9 .

• Thm. 15 is mechanized in the Isabelle theory Theorem15, where the main formal theorems
are named r8_quasi_ge_r 9 (formalizing A8 ≳ A 9), again for the relevant choices of 8 and 9 .

• Prop. 16 is mechanized in the Isabelle theory Prop16, where the main formal theorems are
named not_r1_ge_r2 and not_r2_ge_r4 (formalizing A1 ≱ A2 and A2 ≱ A4).

And similarly for corecursors, in directory Corecursors/LocaleFree_versions:

• Thm. 18 is mechanized in the Isabelle theory Theorem18, which contains the definitions and
proofs for the epi-corecursor structure, including the finality theorems named final_J8 .

• Thm. 19 is mechanized in the Isabelle theory Theorem19, where the main formal theorems
are named cr8_ge_cr 9 (formalizing cr8 ≥ cr 9) for the relevant choices of 8 and 9 .

Popescu [2023b, App. J.4] gives more details about the locale-free statements of the results.

7 MORE RELATED WORK

Definitional packages for syntax with bindings. A direct application of our results would be on
informing the design of binding-aware definitional packages in proof assistants, in the style of Nom-
inal Isabelle [Urban and Kaliszyk 2012]. In addition to our theoretical results on expressiveness, one
should also consider the pragmatic aspects of how lightweight the required structure (operations
and relations on the target domain) is and how easy the conditions are to solve. Ideally, in a def-
initional package implementation one should provide the maximally expressive (co)recursor as the
core, but also infer from it (via "borrowing") and make available other (co)recursors which may have
pragmatic advantages. For example, the recursors A3 and A8 are minimalistic in terms of structure.

(Co)recursors in different paradigms. Binding-aware recursors have also been developed in the
other two major paradigms. Scope-safe versions of nameless recursion based on category theory
have been studied extensively, e.g., Allais et al. [2017]; Altenkirch and Reus [1999]; Bird and Pa-
terson [1999]; Fiore et al. [1999]; Hofmann [1999]; Kaiser et al. [2018]. A nameless recursor is in
principle easier to deploy because the constructors are free; the price is additional index-shifting

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

Nominal Recursors as Epi-Recursors 15:29

overhead [Berghofer and Urban 2007]. Nameless corecursion has been studied by Matthes and
Uustalu [2004], building on previous work by Aczel et al. [2003]; Ghani et al. [2003]; Moss [2001].
Hybrid nameless/nominal solutions have also been proposed, notably the locally named [McK-

inna and Pollack 1999; Pollack et al. 2012] and locally nameless [Aydemir et al. 2008; Charguéraud
2012] representations. Pitts [2023] introduced locally nameless sets, an algebraic axiomatization of
syntax under the locally nameless representation, and characterizes the locally nameless recursor
[Charguéraud 2012] using initiality in a functor category (similarly to recursors in the nameless
setting [Fiore et al. 1999; Hofmann 1999]). He also proved that the category of locally nameless sets
is isomorphic to that of finitely supported rensets [Popescu 2023c] and to categories given by other
axiomatizations of renaming from the literature [Gabbay and Hofmann 2008; Staton 2007]; this
suggests that the expressive power of the locally nameless recursor might be located in the vicinity
of A8 (which is based on rensets). On the way to his results, Pitts gave an alternative axiomatization
of finitely supported rensets, using instead of RnCh a simpler (unconditional) axiom, let us call it
RnCh’: C [G2/G1] [G3/G2] = C [G3/G2] [G3/G1]. Replacing RnCh with RnCh’ would yield a recursor A ′

8

such that A8 ≥ A ′8 (since RnCh’ implies RnCh in the presence of RnIm) and A8 � A ′8 (since the converse
implication is true for finitely supported rensets, hence for a suitable minimal submodel).

In strong HOAS, as implemented in dedicated logical frameworks [Baelde et al. 2014; Pfenning and
Schürmann 1999; Pientka 2010], the _-constructor has type (Tr → Tr) → Tr. Here, the difficulty
with recursion is not the non-freeness of the constructors, but the fact that binding constructors are
not recursable in the typical well-foundedness manner. Solutions to this have been designed using
modality operators [Schürmann et al. 2001] and contextual types [Ferreira and Pientka 2017]. Recur-
sion mechanisms have also been designed within weak HOAS [Despeyroux et al. 1995], where the
_-constructor, having type (Var → Tr) → Tr, is standardly recursable—yielding a free datatype that
contains all terms but also additional entities referred to as “exotic terms”. Partly due to the exotic
terms, this free datatype is not very helpful for recursively defining useful functions on terms. But
the situation is significantly improved in a variant called parametric HOAS (PHOAS) [Chlipala 2008],
which accommodates recursive definitions in the style of the semantic-interpretation pattern (§4.2).

A nominal/HOAS hybrid can be found in Gordon and Melham’s characterization of the _-
term datatype [Gordon and Melham 1996], which employs the nameful constructors but features
weak-HOAS style recursion over Lm. Norrish [2004] inferred his swap/free recursor A4 from the
Gordon-Melham one. Weak-HOAS recursion also has interesting connections with nameless re-
cursion: In presheaf toposes as in Fiore et al. [1999], Hofmann [1999] and Ambler et al. [2003], the
function space Var ⇒) is isomorphic to the De Bruijn level-shifting transformation applied to
) ; this effectively equates the weak-HOAS and nameless recursors.

Recursion over non-free datatypes. Some of the discussed nominal recursors operate by character-
izing terms as the non-free datatype determined as initial model of an equational theory [Burris and
Sankappanavar 1981] or more generally of a Horn theory [Makowsky 1987], employing an infinite
number of axioms. In such cases, and ignoring the Barendregt enhancement, nominal recursion
becomes a particular case of Horn recursion. (This is not true for the nominal-logic recursor A1,
since FvDPm is not a Horn formula.) Our concept of epi-recursor applies to general Horn recursion
as well—provided one identifies a constructor-like subsignature of the given signature, i.e., such
that the initial model of the Horn theory has its carrier generated by its operations. In algebraic
specifications, this property is called sufficient completeness [Guttag and Horning 1978].

The non-free datatypes of sets and bags are degenerate cases of the above, where the constructors
form the entire signature. Tannen and Subrahmanyam [1991] and Buneman et al. [1995] study
Horn recursors for these datatypes when designing database languages. They prove connections
between their axiomatizations that could be captured using our ≥ relation between epi-recursors.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

15:30 Andrei Popescu

DATA AVAILABILITY STATEMENT

The artifact associated with this paper, consisting of the Isabelle mechanization described in §6
(and also more extensively in Popescu [2023b, App. J]) is available as a Zenodo entry [Popescu
2023a].

ACKNOWLEDGMENTS

We thank the paper reviewers and the artifact reviewers for the careful reading of our paper, and for
their insightful comments and suggestions, which have led to improvements both in the text and
in the documentation of what has been mechanized. We gratefully acknowledge support from the
EPSRC grant EP/X015114/1 “Safe and secure COncurrent programming for adVancEd aRchiTectures
(COVERT)”.

REFERENCES

Andreas Abel, Alberto Momigliano, and Brigitte Pientka. 2017. POPLMark Reloaded. In Logical Frameworks and Meta-

Languages: Theory and Practice (LFMTP) 2017, Marino Miculan and Florian Rabe (Eds.). https://lfmtp.org/workshops/
2017/inc/papers/paper_8_abel.pdf

Peter Aczel, Jirí Adámek, Stefan Milius, and Jiri Velebil. 2003. Infinite trees and completely iterative theories: a coalgebraic
view. Theor. Comput. Sci. 300, 1-3 (2003), 1–45. https://doi.org/10.1016/S0304-3975(02)00728-4

Guillaume Allais, James Chapman, Conor McBride, and James McKinna. 2017. Type-and-scope safe programs and their
proofs. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France,

January 16-17, 2017, Yves Bertot and Viktor Vafeiadis (Eds.). ACM, 195–207. https://doi.org/10.1145/3018610.3018613
Thorsten Altenkirch and Bernhard Reus. 1999. Monadic Presentations of Lambda Terms using Generalized Inductive Types.

In Computer Science Logic (CSL) 1999, Jörg Flum and Mario Rodríguez-Artalejo (Eds.). LNCS, Vol. 1683. Springer, 453–468.
https://doi.org/10.1007/3-540-48168-0_32

S. J. Ambler, Roy L. Crole, and Alberto Momigliano. 2003. A definitional approach to primitive recursion over higher
order abstract syntax. In Eighth ACM SIGPLAN International Conference on Functional Programming, Workshop on

Mechanized reasoning about languages with variable binding, MERLIN 2003, Uppsala, Sweden, August 2003. ACM. https:
//doi.org/10.1145/976571.976572

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios
Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic. 2005. Mechanized Metatheory for the Masses:
The PoplMark Challenge. In Theorem Proving in Higher Order Logics (TPHOLs) 2005, Joe Hurd and Thomas F. Melham
(Eds.). LNCS, Vol. 3603. Springer, 50–65. https://doi.org/10.1007/11541868_4

Brian E. Aydemir, Aaron Bohannon, and Stephanie Weirich. 2007. Nominal Reasoning Techniques in Coq (Extended
Abstract). Electr. Notes Theor. Comput. Sci. 174, 5 (2007), 69–77. https://doi.org/10.1016/j.entcs.2007.01.028

Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich. 2008. Engineering
Formal Metatheory. In Principles of Programming Languages (POPL) 2008, George C. Necula and Philip Wadler (Eds.).
ACM, 3–15. https://doi.org/10.1145/1328438.1328443

David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen Tiu, and Yuting Wang. 2014.
Abella: A System for Reasoning about Relational Specifications. J. Formalized Reasoning 7, 2 (2014), 1–89. https:
//doi.org/10.6092/issn.1972-5787/4650

Clemens Ballarin. 2014. Locales: A Module System for Mathematical Theories. J. Autom. Reason. 52, 2 (2014), 123–153.
https://doi.org/10.1007/s10817-013-9284-7

Hendrik Pieter Barendregt. 1985. The lambda calculus - its syntax and semantics. Studies in logic and the foundations of
mathematics, Vol. 103. North-Holland.

Stefan Berghofer and Christian Urban. 2007. A Head-to-Head Comparison of de Bruijn Indices and Names. Electr. Notes
Theor. Comput. Sci. 174, 5 (2007), 53–67. https://doi.org/10.1016/j.entcs.2007.01.018

Richard S. Bird and Ross Paterson. 1999. De Bruijn Notation as a Nested Datatype. J. Funct. Program. 9, 1 (1999), 77–91.
https://doi.org/10.1017/S0956796899003366

Jasmin Christian Blanchette, Lorenzo Gheri, Andrei Popescu, and Dmitriy Traytel. 2019. Bindings as bounded natural
functors. Proc. ACM Program. Lang. 3, POPL (2019), 22:1–22:34. https://doi.org/10.1145/3290335

Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong. 1995. Principles of Programming with Complex Objects
and Collection Types. Theor. Comput. Sci. 149, 1 (1995), 3–48. https://doi.org/10.1016/0304-3975(95)00024-Q

Stanley Burris and Hanamantagouda P. Sankappanavar. 1981. A course in universal algebra. Graduate texts in mathematics,
Vol. 78. Springer.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

https://lfmtp.org/workshops/2017/inc/papers/paper_8_abel.pdf
https://lfmtp.org/workshops/2017/inc/papers/paper_8_abel.pdf
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1145/976571.976572
https://doi.org/10.1145/976571.976572
https://doi.org/10.1007/11541868_4
https://doi.org/10.1016/j.entcs.2007.01.028
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1016/j.entcs.2007.01.018
https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1145/3290335
https://doi.org/10.1016/0304-3975(95)00024-Q

Nominal Recursors as Epi-Recursors 15:31

Arthur Charguéraud. 2012. The Locally Nameless Representation. J. Autom. Reasoning 49, 3 (2012), 363–408. https:
//doi.org/10.1007/s10817-011-9225-2

Adam Chlipala. 2008. Parametric Higher-Order Abstract Syntax for Mechanized Semantics. In International Conference on

Functional Programming (ICFP) 2008, James Hook and Peter Thiemann (Eds.). ACM, 143–156. https://doi.org/10.1145/
1411204.1411226

Ernesto Copello, Nora Szasz, and Álvaro Tasistro. 2018. Formalisation in Constructive Type Theory of Barendregt’s Variable
Convention for Generic Structures with Binders. In Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP)

2018, Frédéric Blanqui and Giselle Reis (Eds.). EPTCS, Vol. 274. 11–26. https://doi.org/10.4204/EPTCS.274.2
Joëlle Despeyroux, Amy P. Felty, and André Hirschowitz. 1995. Higher-Order Abstract Syntax in Coq. In Typed Lambda

Calculi and Applications (TLCA) 1995, Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin (Eds.). LNCS, Vol. 902.
Springer, 124–138. https://doi.org/10.1007/BFb0014049

Amy P. Felty and Alberto Momigliano. 2012. Hybrid: A Definitional Two-Level Approach to Reasoning with Higher-Order
Abstract Syntax. J. Autom. Reasoning 48, 1 (2012), 43–105. https://doi.org/10.1007/s10817-010-9194-x

Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. 2018. Benchmarks for reasoning with syntax trees containing binders
and contexts of assumptions.Math. Struct. Comput. Sci. 28, 9 (2018), 1507–1540. https://doi.org/10.1017/S0960129517000093

Francisco Ferreira and Brigitte Pientka. 2017. Programs Using Syntax with First-Class Binders. In Programming Languages

and Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes in Computer

Science), Hongseok Yang (Ed.), Vol. 10201. Springer, 504–529. https://doi.org/10.1007/978-3-662-54434-1_19
Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. 1999. Abstract Syntax and Variable Binding. In Logic in Computer

Science (LICS) 1999. IEEE Computer Society, 193–202. https://doi.org/10.1109/LICS.1999.782615
Murdoch Gabbay and Andrew M. Pitts. 1999. A New Approach to Abstract Syntax Involving Binders. In Logic in Computer

Science (LICS) 1999. IEEE Computer Society, 214–224. https://doi.org/10.1109/LICS.1999.782617
Murdoch James Gabbay and Martin Hofmann. 2008. Nominal Renaming Sets. In Logic for Programming, Artificial Intelligence,

and Reasoning, 15th International Conference, LPAR 2008, Doha, Qatar, November 22-27, 2008. Proceedings (Lecture Notes in

Computer Science), Iliano Cervesato, Helmut Veith, and Andrei Voronkov (Eds.), Vol. 5330. Springer, 158–173. https:
//doi.org/10.1007/978-3-540-89439-1_11

Neil Ghani, Christoph Lüth, Federico De Marchi, and John Power. 2003. Dualising Initial Algebras. Math. Struct. Comput.

Sci. 13, 2 (2003), 349–370. https://doi.org/10.1017/S0960129502003912
Lorenzo Gheri and Andrei Popescu. 2020. A Formalized General Theory of Syntax with Bindings: Extended Version. J.

Autom. Reason. 64, 4 (2020), 641–675. https://doi.org/10.1007/s10817-019-09522-2
Andrew D. Gordon and Thomas F. Melham. 1996. Five Axioms of Alpha-Conversion. In Theorem Proving in Higher

Order Logics, 9th International Conference, TPHOLs’96, Turku, Finland, August 26-30, 1996, Proceedings (Lecture Notes

in Computer Science), Joakim von Wright, Jim Grundy, and John Harrison (Eds.), Vol. 1125. Springer, 173–190. https:
//doi.org/10.1007/BFb0105404

John V. Guttag and James J. Horning. 1978. The Algebraic Specification of Abstract Data Types. Acta Informatica 10 (1978),
27–52. https://doi.org/10.1007/BF00260922

Martin Hofmann. 1999. Semantical Analysis of Higher-Order Abstract Syntax. In Logic in Computer Science (LICS) 1999.
IEEE Computer Society, 204–213. https://doi.org/10.1109/LICS.1999.782616

Jonas Kaiser, Steven Schäfer, and Kathrin Stark. 2018. Binder aware recursion over well-scoped de Bruijn syntax. In
Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA,

USA, January 8-9, 2018, June Andronick and Amy P. Felty (Eds.). ACM, 293–306. https://doi.org/10.1145/3167098
Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. 1999. Locales - A Sectioning Concept for Isabelle. In Theorem

Proving in Higher Order Logics, 12th International Conference, TPHOLs’99, Nice, France, September, 1999, Proceedings (Lecture

Notes in Computer Science), Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin-Mohring, and Laurent Théry
(Eds.), Vol. 1690. Springer, 149–166. https://doi.org/10.1007/3-540-48256-3_11

Alexander Kurz, Daniela Petrişan, Paula Severi, and Fer-Jan de Vries. 2012. An Alpha-Corecursion Principle for the Infinitary
Lambda Calculus. In Coalgebraic Methods in Computer Science (CMCS) 2012, Dirk Pattinson and Lutz Schröder (Eds.).
LNCS, Vol. 7399. Springer, 130–149. https://doi.org/10.1007/978-3-642-32784-1_8

Alexander Kurz, Daniela Petrişan, Paula Severi, and Fer-Jan de Vries. 2013. Nominal Coalgebraic Data Typeswith Applications
to Lambda Calculus. Logical Methods in Computer Science 9, 4 (2013). https://doi.org/10.2168/LMCS-9(4:20)2013

Johann A. Makowsky. 1987. Why Horn Formulas Matter in Computer Science: Initial Structures and Generic Examples. J.
Comput. Syst. Sci. 34, 2/3 (1987), 266–292. https://doi.org/10.1016/0022-0000(87)90027-4

Ralph Matthes and Tarmo Uustalu. 2004. Substitution in non-wellfounded syntax with variable binding. Theor. Comput. Sci.

327, 1-2 (2004), 155–174. https://doi.org/10.1016/j.tcs.2004.07.025
James McKinna and Robert Pollack. 1999. Some Lambda Calculus and Type Theory Formalized. J. Autom. Reason. 23, 3-4

(1999), 373–409. https://doi.org/10.1023/A:1006294005493

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.4204/EPTCS.274.2
https://doi.org/10.1007/BFb0014049
https://doi.org/10.1007/s10817-010-9194-x
https://doi.org/10.1017/S0960129517000093
https://doi.org/10.1007/978-3-662-54434-1_19
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.1999.782617
https://doi.org/10.1007/978-3-540-89439-1_11
https://doi.org/10.1007/978-3-540-89439-1_11
https://doi.org/10.1017/S0960129502003912
https://doi.org/10.1007/s10817-019-09522-2
https://doi.org/10.1007/BFb0105404
https://doi.org/10.1007/BFb0105404
https://doi.org/10.1007/BF00260922
https://doi.org/10.1109/LICS.1999.782616
https://doi.org/10.1145/3167098
https://doi.org/10.1007/3-540-48256-3_11
https://doi.org/10.1007/978-3-642-32784-1_8
https://doi.org/10.2168/LMCS-9(4:20)2013
https://doi.org/10.1016/0022-0000(87)90027-4
https://doi.org/10.1016/j.tcs.2004.07.025
https://doi.org/10.1023/A:1006294005493

15:32 Andrei Popescu

Lawrence S. Moss. 2001. Parametric corecursion. Theor. Comput. Sci. 260, 1-2 (2001), 139–163. https://doi.org/10.1016/S0304-
3975(00)00126-2

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL - A Proof Assistant for Higher-Order Logic.
Lecture Notes in Computer Science, Vol. 2283. Springer. https://doi.org/10.1007/3-540-45949-9

Michael Norrish. 2004. Recursive Function Definition for Types with Binders. In Theorem Proving in Higher Order Logics

(TPHOLs) 2004, Konrad Slind, Annette Bunker, and Ganesh Gopalakrishnan (Eds.). LNCS, Vol. 3223. Springer, 241–256.
https://doi.org/10.1007/978-3-540-30142-4_18

Michael Norrish and René Vestergaard. 2007. Proof Pearl: De Bruijn Terms Really Do Work. In Theorem Proving in Higher

Order Logics, 20th International Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Proceedings

(Lecture Notes in Computer Science), Klaus Schneider and Jens Brandt (Eds.), Vol. 4732. Springer, 207–222. https:
//doi.org/10.1007/978-3-540-74591-4_16

Frank Pfenning and Carsten Schürmann. 1999. System Description: Twelf—A Meta-Logical Framework for Deductive
Systems. In Conference on Automated Deduction (CADE) 1999, Harald Ganzinger (Ed.). LNCS, Vol. 1632. Springer, 202–206.
https://doi.org/10.1007/3-540-48660-7_14

Brigitte Pientka. 2010. Beluga: Programming with Dependent Types, Contextual Data, and Contexts. In Functional and

Logic Programming (FLOPS) 2010, Matthias Blume, Naoki Kobayashi, and Germán Vidal (Eds.). LNCS, Vol. 6009. Springer,
1–12. https://doi.org/10.1007/978-3-642-12251-4_1

Andrew M. Pitts. 2006. Alpha-Structural Recursion and Induction. J. ACM 53, 3 (2006), 459–506. https://doi.org/10.1145/
1147954.1147961

Andrew M. Pitts. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge University Press. https:
//doi.org/10.1017/CBO9781139084673

Andrew M. Pitts. 2023. Locally Nameless Sets. Proc. ACM Program. Lang. 7, POPL (2023), 488–514. https://doi.org/10.1145/
3571210

Randy Pollack, Masahiko Sato, and Wilmer Ricciotti. 2012. A Canonical Locally Named Representation of Binding. J. Autom.

Reason. 49, 2 (2012), 185–207. https://doi.org/10.1007/S10817-011-9229-Y
Andrei Popescu. 2023a. Nominal Recursors as Epi-Recurors (Mechanized Proofs Artifact). Zenodo, 2023. https://doi.org/10.

5281/zenodo.10116628
Andrei Popescu. 2023b. Nominal Recursors as Epi-Recursors: Extended Technical Report. arXiv:2301.00894 [cs.LO]

https://arxiv.org/abs/2301.00894.
Andrei Popescu. 2023c. Rensets and Renaming-Based Recursion for Syntax with Bindings: Extended Version. J. Autom.

Reason. 67, 3 (2023), 23. https://doi.org/10.1007/S10817-023-09672-4
Andrei Popescu and Elsa L. Gunter. 2011. Recursion principles for syntax with bindings and substitution. In Proceeding of the

16th ACM SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011,
Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy (Eds.). ACM, 346–358. https://doi.org/10.1145/2034773.
2034819

Carsten Schürmann, Joëlle Despeyroux, and Frank Pfenning. 2001. Primitive recursion for higher-order abstract syntax.
Theor. Comput. Sci. 266, 1-2 (2001), 1–57. https://doi.org/10.1016/S0304-3975(00)00418-7

Sam Staton. 2007. Name-Passing Process Calculi: Operational Models and Structural Operational Semantics. Technical Report
UCAM-CL-TR-688. University of Cambridge, Computer Laboratory. https://www.cl.cam.ac.uk/techreports/UCAM-CL-
TR-688.pdf

Val Tannen and Ramesh Subrahmanyam. 1991. Logical and Computational Aspects of Programming with Sets/Bags/Lists.
In Automata, Languages and Programming, 18th International Colloquium, ICALP91, Madrid, Spain, July 8-12, 1991,

Proceedings (Lecture Notes in Computer Science), Javier Leach Albert, Burkhard Monien, and Mario Rodríguez-Artalejo
(Eds.), Vol. 510. Springer, 60–75. https://doi.org/10.1007/3-540-54233-7_125

Christian Urban and Stefan Berghofer. 2006. A Recursion Combinator for Nominal Datatypes Implemented in Isabelle/HOL.
In International Joint Conference on Automated Reasoning (IJCAR) 2006, Ulrich Furbach and Natarajan Shankar (Eds.).
LNCS, Vol. 4130. Springer, 498–512. https://doi.org/10.1007/11814771_41

Christian Urban, Stefan Berghofer, and Michael Norrish. 2007. Barendregt’s Variable Convention in Rule Inductions.
In Conference on Automated Deduction (CADE) 2007, Frank Pfenning (Ed.). LNCS, Vol. 4603. Springer, 35–50. https:
//doi.org/10.1007/978-3-540-73595-3_4

Christian Urban and Cezary Kaliszyk. 2012. General Bindings and Alpha-Equivalence in Nominal Isabelle. Logical Methods

in Computer Science 8, 2 (2012). https://doi.org/10.2168/LMCS-8(2:14)2012
Christian Urban and Christine Tasson. 2005. Nominal Techniques in Isabelle/HOL. In Conference on Automated Deduction

(CADE) 2005, Robert Nieuwenhuis (Ed.). LNCS, Vol. 3632. Springer, 38–53. https://doi.org/10.1007/11532231_4

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 15. Publication date: January 2024.

https://doi.org/10.1016/S0304-3975(00)00126-2
https://doi.org/10.1016/S0304-3975(00)00126-2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-30142-4_18
https://doi.org/10.1007/978-3-540-74591-4_16
https://doi.org/10.1007/978-3-540-74591-4_16
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/978-3-642-12251-4_1
https://doi.org/10.1145/1147954.1147961
https://doi.org/10.1145/1147954.1147961
https://doi.org/10.1017/CBO9781139084673
https://doi.org/10.1017/CBO9781139084673
https://doi.org/10.1145/3571210
https://doi.org/10.1145/3571210
https://doi.org/10.1007/S10817-011-9229-Y
https://doi.org/10.5281/zenodo.10116628
https://doi.org/10.5281/zenodo.10116628
https://arxiv.org/abs/2301.00894
https://arxiv.org/abs/2301.00894
https://doi.org/10.1007/S10817-023-09672-4
https://doi.org/10.1145/2034773.2034819
https://doi.org/10.1145/2034773.2034819
https://doi.org/10.1016/S0304-3975(00)00418-7
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf
https://doi.org/10.1007/3-540-54233-7_125
https://doi.org/10.1007/11814771_41
https://doi.org/10.1007/978-3-540-73595-3_4
https://doi.org/10.1007/978-3-540-73595-3_4
https://doi.org/10.2168/LMCS-8(2:14)2012
https://doi.org/10.1007/11532231_4

	Abstract
	1 Introduction
	2 Background
	2.1 Terms with Bindings
	2.2 Nominal Recursors

	3 Nominal recursors as epi-recursors
	3.1 The Purpose of Nominal Recursors
	3.2 Signatures and Models
	3.3 Epi-Recursors
	3.4 Nominal Recursors as Epi-Recursors, Formally

	4 Comparing recursors
	4.1 A Head-to-Head Comparison
	4.2 Semantic-Interpretation Example
	4.3 A Gentler Comparison
	4.4 Negative Results

	5 The coinductive spectrum
	5.1 Infinitary Terms with Bindings
	5.2 Epi-Corecursors
	5.3 A Hierarchy of Nominal Corecursors

	6 Mechanized Results
	7 More Related Work
	Acknowledgments
	References

