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Abstract We present an abstract development of Gödel’s incompleteness theorems, per-
formed with the help of the Isabelle/HOL proof assistant. We analyze sufficient conditions
for the applicability of our theorems to a partially specified logic. In addition to the usual
benefits of generality, our abstract perspective enables a comparison between alternative ap-
proaches from the literature. These include Rosser’s variation of the first theorem, Jeroslow’s
variation of the second theorem, and the Świerczkowski–Paulson semantics-based approach.
As part of the validation of our framework, we upgrade Paulson’s Isabelle proof to produce a
mechanization of the second theorem that does not assume soundness in the standard model,
and in fact does not rely on any notion of model or semantic interpretation.
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1 Introduction

Gödel’s incompleteness theorems [14, 17] are landmark results in mathematical logic. Both
theorems refer to consistent logical theories that satisfy some assumptions, notably that of
“containing enough arithmetic.” The first incompleteness theorem (IT1) says that there are
sentences that the theory cannot decide, i.e., neither prove nor disprove; the second theorem
(IT2) says that the theory cannot prove an internal formulation of its own consistency. It is
generally accepted that IT1 and IT2 have a wide scope (and wider for IT1 than for IT2),
covering many logics and logical theories. However, when it comes to rigorous presentation,
typically these results are proved for particular, albeit paradigmatic cases, such as theories of
arithmetic or hereditarily finite (HF) sets, within classical first-order logic (FOL); and even
in these cases the constructions and proofs tend to be significantly sketchy and incomplete.
Hence, the theorems’ scope remains largely unexplored on a rigorous/formal basis.

The emergence of powerful proof assistants (also known as interactive theorem provers)
has been slowly changing the rules of the game and, we argue, the expectation. Using proof
assistants, we can reliably keep track of all the constructions and their properties. Proof
automation (sometimes achieved through the cooperation between proof assistants and au-
tomatic theorem provers [25, 41]), makes complete, entirely rigorous proofs feasible. And
indeed, researchers have successfully met the challenge of mechanizing IT1 [21,36,40,53]
and recently IT2 [40]. Besides reassurance, these verification tours de force have brought
superior technical insight into the theorems. But they have taken place within the same soli-
tary confinement of scope as the informal proofs.

This article takes steps towards a fully formal exploration of the incompleteness theo-
rems and their wide scope, by a detailed analysis of their assumptions. We use Isabelle/HOL
[34, 35] to establish general conditions under which the theorems apply to a partially speci-
fied logic. Our formalization is publicly available in the Archive of Formal Proofs [44–48],
but is not necessary for following this article, which is self-contained and does not employ
Isabelle jargon (except for the dedicated Appendix A).

After discussing related work (Section 2) and guiding principles (Section 3), we describe
our formal development. The abstract part of this development starts by setting the stage of
a partially specified logical system, some partially specified arithmetic components, and
representability (Section 4), proving the diagonalization lemmas (Section 5), and proving
several flavors of the end results in this setting: IT1 (Section 6) and IT2 (Section 7). Some
of the abstract results (summarized in Section 8) are instantiated to concrete first-order logic
theories (Section 9). We also discuss proof-engineering aspects (Appendix A) and include
an index of our abstract assumptions (Appendix B).

We start with a notion of logic whose terms and formulas are kept abstract (Section 4.1).
In particular, substitution and free variables are not defined, but axiomatized by some gen-
eral properties. Provability is also axiomatized (Section 4.2). We distinguish between a basic
provability relation, capturing minimal theories that are sufficiently expressive for represent-
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ing concepts via Gödel encodings (e.g., Peano arithmetic or weaker theories), and a (plain)
provability relation, capturing consistent or ω-consistent extensions of the minimal theo-
ries. Thus, basic provability is subsumed by provability. Yet, provability will be represented
internally and reasoned about within basic provability.

On top of this logic substratum, we consider an arithmetic substratum, consisting of a set
of closed terms called numerals and an order-like relation (Section 4.3). Our framework also
incorporates encodings of formulas and proofs into numerals, the representability of vari-
ous functions and relations as formulas (Section 4.4), the Hilbert–Bernays–Löb derivability
conditions (Section 4.5), and standard models (Section 4.6).

Overall, our assumptions capture the notion of “containing enough arithmetics” in a gen-
eral and flexible way. It is general because only few assumptions are made about the exact
nature of formulas and numerals. It is flexible because different versions of the incomplete-
ness theorems consider their own “amount of arithmetics” that makes it “enough,” as proper
subsets of these assumptions. Indeed, our formalization of the results (the diagonalization
lemma in Section 5, IT1 in Section 6, and IT2 in Section 7) proceeds in an austere-buffet
style: Every result picks just enough infrastructure needed for it to hold—ranging from
diagonalization which requires very little, to Rosser’s version of IT1 which is quite de-
manding. This approach caters for a sharp comparison between different formulations of the
theorems, highlighting their tradeoffs: Gödel’s original formulation of IT1 versus Rosser’s
improvement (Section 6.3), proof-theoretic versus semantic versions of IT1 (Section 6.4),
and Gödel’s original formulation of the IT2 versus Jeroslow’s improvement (Section 7.3).

Abstractness is our development’s main strength, but also a potential weakness: Are our
hypotheses reasonable? Are they consistent? These questions particularly concern our ax-
iomatization of free variables and substitution—a notoriously error-prone area. As a (partial)
remedy, we instantiate part of our framework to Paulson’s semantics-based IT1 and IT2 for
hereditarily finite (HF) set theory [40], also upgrading Paulson’s IT2 to a more general and
standard formulation: for consistent (not necessarily sound) theories (Section 9).

This article extends our CADE 2019 conference paper [43] with a significantly more
fine-grained and self-contained presentation of the results, which includes lemmas and de-
tailed proof sketches. Given the existence of formal proofs in Isabelle, one may question the
usefulness of paper proof sketches; however, we believe these are important for reaching out
to a wider audience—perhaps interested in following the reasoning behind our fine-grained
results discovered with the help of Isabelle, but not willing to read and understand Isabelle
scripts. Compared to the conference paper, the results are also established in a more gen-
eral setting, where we distinguish between basic provability and provability (as explained
above). This generalization had been left as future work in the conference paper.

2 Related Work

There is a vast amount of literature on the incompleteness theorems and their extensions and
ramifications. We only discuss works that are strongly related to the ideas and techniques we
tackle in this article. Gödel initially gave a proof of IT1 and the rough proof idea of IT2 [17].
Hilbert and Bernays gave a first detailed proof of IT2 [22]. Subsequently, a large amount of
work was dedicated to the (re)formulation, proof, and analysis of these results [5,50,56,57].
The now canonical line of reasoning goes through the derivability conditions devised by
Hilbert and Bernays [22] and simplified by Löb [32]. These conditions have inspired a new
branch of modal logic called provability logic [5, 58]. Jeroslow has proved that, contrary to
prior belief, one of these conditions is redundant when proving IT2 [24].
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Smullyan [59], Kreisel [28] and Jeroslow [24] were among the first to study abstract
conditions on logics under which the incompleteness theorems apply. Feferman [13] gives
an essential incompleteness account of IT2 applicable to extensions of Peano arithmetic
in classical FOL. Buldt [7] surveys the state of the art on IT1 up to 2014 with a focus
on the theorem’s scope, also sketching the applicability to non-standard logics. Our ab-
stract approach, based on generic syntax, provability and truth predicates, resembles the
style of institution-independent model theory [12, 18] and our previous work on abstract
completeness [4] and completeness of ordered resolution [51]. On distinguishing between
two notions of provability, one stronger than the other, we take inspiration from Smoryn-
ski’s account [57]. Dimensions of generality that our formalized work does not (yet) explore
include quantifier-free logics [24] and arithmetical hierarchy refinements [27]. Our syntax
axiomatization is inspired by algebraic theories of the λ-calculi syntax [15, 16, 42].

In the realm of mechanical proofs, the earliest substantial development was due to
Sieg [55], who used a prover based on TEM (Theory of Elementary Meta-Mathematics) to
formalize parts of the proofs of both IT1 and IT2. Full mechanical proofs of IT1 were sub-
sequently achieved by Shankar [52, 53] in the Boyer–Moore prover, O’Connor in Coq [36],
and Harrison in HOL Light [21]. Harrison also proved abstract versions of IT1 and IT2
in a simple LCF-style prover implemented in OCaml [19]. IT2 has only been fully proved
recently—by Paulson in Isabelle/HOL [39, 40] (who also proved IT1).

All these mechanizations target theories over a fixed language in classical FOL: vari-
ants of the language of arithmetic (Harrison and O’Connor) and variants of the language
of set theory (Sieg, Shankar, and Paulson, with Shankar also allowing the convenience of
new symbols to be defined from the existing ones). The targeted theories are usually (finite)
extensions of given standard FOL theories—so the results state the (finitary) essential in-
completeness of these theories. Sieg considers the theory Z∗, Shankar finite extensions of
the theory Z2, and Paulson finite extensions of HF set theory. Each of Z∗, Z2 and HF set
theory are variations of Zermelo–Frankel set theory without the axiom of infinity, and have
the same expressive power as Peano arithmetic [10,61]. O’Connor targets self-representable
extensions of the theory NN [23, §7.1], a modification of Robinson arithmetic obtained by
replacing the dichotomy axiom (stating that any element is either 0 or a successor) with
three axioms regulating the behavior of an additional binary relation symbol for strict or-
der. Harrison targets Robinson arithmetic, and additionally proves a variant of IT1 for an
abstract class of theories in the FOL language of Robinson arithmetic. On their way to IT1,
Shankar and O’Connor prove representability of all partial, respectively primitive recursive
functions—important standalone results. We will revisit some of these mechanized concrete
results in Section 9, with the hindsight of our abstract framework.

Outside the realm of holistic interactive proof development, there have been efforts to
fully automate parts of the proofs of Gödel’s and related theorems [8, 49, 54].

3 Formal Design Principles

Our long-term goal is a framework that makes it easy to instantiate the incompleteness
theorems and related results to different logics. This is a daunting task, especially for IT2,
where a lot of seemingly logic-specific technicalities are required to even formulate the
theorem. The challenge is to push as much as possible of the technical constructions and
lemmas to a largely logic-independent layer.

To this end, we strive to make minimal assumptions with regard to structure and prop-
erties when inferring the results—we will call this the Economy principle. For example, we
do not define, but axiomatize syntax in terms of a minimalistic infrastructure. We assume
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a generic single-point substitution, then define simultaneous substitution and infer its prop-
erties. This is laborious, but worthwhile: Any logic that provides a single-point substitution
satisfying our assumptions gets the simultaneous substitution for free.

As another instance of Economy, when faced with two different ways of formulating
a theorem’s conclusion we prefer the one that is stronger under fewer assumptions. (And
dually, we prefer weakness for a theorem’s assumptions.) For example, we discuss two vari-
ants of consistency: (1) “does not prove false” or (2) “there exists no formula such that itself
and its negation are provable” (Section 7.3). While the statements are equivalent at the meta-
level, their representations as object-logic formulas are not necessarily equivalent; in fact,
(1) implies (2) under mild assumptions but not vice versa. So in our abstract theorems we
prefer (1). Indeed, even if (2) implies (1) in all reasonable instances, why postpone for the
instantiation time any fact that we can show abstractly?

Applying the Economy principle not only stocks up generality for instantiations, but also
accurately outlines tradeoffs: How much does it cost (in terms of other added assumptions)
to improve the conclusion, or to weaken an assumption of a theorem? For example, an
Economy-based proof of Rosser’s variant of IT1 reveals how much arithmetic we must
factor in for weakening the ω-consistency assumption into consistency.

4 Abstract Assumptions

Roughly, the incompleteness theorems are considered to hold for logical theories that (1)
contain enough arithmetic and (2) can themselves be arithmetized. Our goal is to give a
general formulation of these favorable conditions. To this end, we identify some logic and
arithmetic substrata consisting of structure and axioms that express the containment of (vari-
ous degrees of) arithmetic more abstractly and flexibly than relative interpretations [63]. We
also identify abstract notions of encodings and representability that have just what it takes
for a working arithmetization.

4.1 The logical substratum: syntax

We start with some unspecified sets of variables (Var, ranged over by x, y, z), numerals
(Num, ranged over by m, n), terms (Term, ranged over by s, t) and formulas (Fmla, ranged
over by ϕ, ψ, χ). We assume that variables and numerals are particular terms, i.e., Var ⊆
Term and Num ⊆ Term, and that Var is infinite. Free-variables and substitution operators,
FVars and _ [_/_], are assumed for both terms and formulas. We think of FVars(t) as the
(finite) set of free variables of the term t, and similarly for formulas. We think of s [t/x] as
the term obtained from s by the (capture-avoiding) substitution of t for the free occurrences
of variable x; and similarly for ϕ [t/x], where ϕ is a formula.

In FOL, terms introduce no bindings, so any occurring variable is free. FOL terms fall
under our framework, and so do terms with bindings as in λ-calculi and higher-order logic
(HOL). To achieve this degree of inclusiveness while also being able to prove interesting
results, we work under some well-behavedness assumptions about FVars and _ [_/_]:

(1) Free-variables and substitution act on variable terms as expected:
– FVars(x) = {x};
– x [s/x] = s, and y [s/x] = y if x 6= y.

(2) Substitution on terms is vacuous outside the free variables:
x /∈ FVars(t) implies t [s/x] = t; and similarly for substitution on formulas.
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In addition, for the operators on formulas we assume the following:

(3) Free-variables distribute over substitution:
FVars (ϕ [s/x]) = FVars(ϕ)−{x} ∪ FVars(s) if x ∈ FVars(ϕ).

(4) Substitution of a variable for itself is vacuous: ϕ [x/x] = ϕ.
(5) Substitution is compositional (under some freshness assumptions):

– ϕ [s1/x] [s2/x] = ϕ [(s1[s2/x]) / x];
– ϕ [s1/x1] [s2/x2] = ϕ [(s1[s2/x2]) / x1] if x2 /∈ FVars(ϕ);
– ϕ [s1/x1] [s2/x2] = ϕ [s2/x2] [(s1[s2/x2]) / x1] if x1 6= x2 and x1 /∈ FVars(s2).

Of the above assumptions, (1) only applies to, and only makes sense for, substitution on
terms. By contrast, we assume (2) for both terms and formulas. The last group, (3)–(5) would
makes sense for terms too, but is only assumed for formulas; this is in line with our Economy
principle, since our results will not need these assumptions for terms. In these assumptions,
just like in the rest of this paper, “=” denotes the usual equality of two mathematical entities
(formally represented by the Isabelle/HOL equality), and not some more abstract equality.
This means that our assumptions do not hold for “raw” formulas, but for formulas quotiented
to alpha-equivalence, i.e., equivalence classes modulo alpha (of the kind provided, e.g., by
using de Bruijn indices or the Nominal Isabelle package [64]); likewise, if the terms have
bindings, they would need to be quotiented to alpha-equivalence to satisfy our assumptions.

The incompleteness theorems rely heavily on simultaneous substitution, whose prop-
erties are tricky to formalize—for example, Paulson’s formalization article dedicates them
ample space [40, 6.2]. To address this problem once and for all generically, we define simul-
taneous substitution, written ϕ [t1/x1, . . . , tn/xn], from the single-point substitution, ϕ [t/x].
Accordingly, we derive the properties of simultaneous substitution from the single-point
substitution axioms. For example, we prove that FVars (ϕ [s1/x1, . . . , sn/xn]) = FVars(ϕ) ∪⋃
{FVars(si)−{xi} | i ∈ {1, . . . , n} and xi ∈ FVars(ϕ)}. The technicalities are delicate: To

avoid undesired variable replacements, ϕ [s1/x1, . . . , sn/xn] must be defined as ϕ [y1/x1] . . .
[yn/xn] [s1/y1] . . . [sn/yn] for some fresh y1, . . . , yn, the choice of which we must show to
be immaterial. This definition’s complexity is reflected in the proofs of its properties. But
again, this one-time effort benefits any “customer” logic: In exchange for a well-behaved
single-point substitution, it gets back a well-behaved simultaneous substitution.

We call a term with no free variables closed and a formula with no free variables a sen-
tence. Sen denotes the set of sentences. We let v1, v2, . . . be fixed mutually distinct variables.
Fmlak denotes the set of formulas whose set of free variables is exactly {v1, . . . , vk}. In par-
ticular, Fmla0 = Sen. Given ϕ∈ Fmlak, we write ϕ (t1, . . . , tn) instead of ϕ [t1/v1, . . . , tn/vn].

In addition to free variables and substitution, our theorems will require formulas to be
equipped with some of the following: term equality (≡), Boolean connectives (⊥, >,→, ¬,
∧,∨), universal and existential quantifiers (∀, ∃). When we need negation, we define it taking
¬ ϕ to be ϕ→⊥. On the other hand, even in the presence of negation, we do not assume that
∨ and ∃ are definable from ∧ and ∀ or vice versa. This is because, in line with the Economy
principle, we will not assume classical logic except in results that need it. For the rest, we
will only assume intuitionistic logic, where these operators are not inter-definable.

The above are not assumed to be constructors (syntax builders), but unspecified opera-
tors on terms and formulas, e.g., ≡ : Term→ Term→ Fmla, ⊥ ∈ Fmla, ∀ : Var×Fmla→
Fmla. This caters for logics that do not have them as primitives. For example, HOL defines
all connectives and quantifiers from λ-abstraction and either equality or implication.

Free variables and substitution are assumed to be well-behaved w.r.t. these operators,
e.g., FVars (∀x. ϕ) = FVars (ϕ)−{x}. Finally, numerals are assumed to be closed terms.
Thanks to our substitution axioms, this implies that substitution on numerals is vacuous.
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4.2 Logical substratum: provability

We fix two unary relations on formulas, ` ⊆ Fmla and `b⊆ Fmla, called provability and
basic provability, respectively. We write ` ϕ instead of ϕ ∈ `, and say the formula ϕ is
provable; similarly, we write `bϕ instead of ϕ∈`b, and say the formula ϕ is basic-provable.
Henceforth, we will assume that on sentences basic provability is included in provability:
For all ϕ ∈ Sen, `b ϕ implies ` ϕ. Typical instances of these relations will be as follows:

– for `b, provability in some minimal theory, e.g., Robinson arithmetic or HF set theory
– for `, provability in some recursive extension of such a minimal theory

As we will see, `b will be assumed to be sufficiently expressive to reason about `, and
sometimes also sound w.r.t. the standard model. Whenever certain formula connectives or
quantifiers are needed in our results, we will assume that `b and ` are closed under the usual
(Hilbert-style) intuitionistic FOL axioms and rules with respect to these connectives and
quantifiers. Stronger systems, such as those of classical logic, also satisfy these assumptions.

Consistency of `, denoted Con`, is defined as the impossibility to prove false, namely
6` ⊥. Another central concept is ω-consistency—we carefully choose a formulation that
works intuitionistically, with conclusion reminiscent of Gödel’s negative translation [11]:
OCon`: For all ϕ ∈ Fmla1, if ` ¬ ϕ(n) for all n ∈ Num then 6` ¬ ¬ (∃x. ϕ(x)).

Assuming classical deduction in `, this is equivalent to the standard formulation: For all
ϕ ∈ Fmla1, it is not the case that ` ϕ(n) for all n ∈ Num and ` ¬ (∀x. ϕ(x)).

Occasionally, we will consider not only provability but also explicit proofs. We fix a set
Proof of (entities we call) proofs, ranged over by p, q, and a binary relation between proofs
p and sentences ϕ, written p  ϕ and read “p is a proof of ϕ.” We assume ` and  to be
related as expected, in that provability is the same as the existence of a proof:

Rel` : For all ϕ ∈ Sen, ` ϕ iff there exists p ∈ Proof such that p  ϕ.

Convention 1. In all shown results we will implicitly assume: (1) the generic syntax (free
variable and substitution) axioms, (2) at least→ and⊥ plus whatever connectives and quan-
tifiers appear in the statement, (3) the inclusion of `b into ` and (4) the closedness of `b and
` under intuitionistic deduction rules for the assumed connectives and quantifiers. Other as-
sumptions (e.g., order-like relation axioms, classical logic deduction, standard models, etc.)
will be indicated explicitly. The appendix contains an index with the explicit assumptions.

In our proof sketches, arguing “by logic” will mean invoking closedness of `b or `
under intuitionistic deduction rules; “by classical logic” will explicitly indicate a step that
assumes closedness under classical deduction rules. We will label local facts in proofs for
later reference by parenthesized Arabic or Roman numbers, such as (1), (2), (i), (ii). The
first occurrence of a parenthesized number will label a fact by preceding it, as in “we obtain
(ii) ` ϕ∧ψ”, while later occurrences will mean we refer to it, as in “from (ii) we obtain . . .”.

4.3 Arithmetic substratum

On one occasion, we will assume an order-like binary relation modeled by a formula ≺ ∈
Fmla2. We write t1 ≺ t2 instead of ≺ (t1, t2) and ∀x≺ n. ϕ instead of ∀x. x≺ n→ ϕ. It turns
out that at our level of abstraction it does not matter whether≺ is a strict or a non-strict order.
Indeed, we only require the following two properties, where x∈M denotes

∨
m∈M x≡m and∨

expresses the disjunction of a finite set of formulas:

Ord1: For all ϕ ∈ Fmla1 and n ∈ Num, if `b ϕ(m) for all m ∈ Num, then ` ∀x≺ n. ϕ(x).
Ord2: For all n ∈ Num, there exists a finite set M ⊆ Num such that ` ∀x. x ∈ M∨n≺ x.
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Ord1 states that if a property ϕ is basic-provable for all numerals, then its universal quan-
tification bounded by any given numeral n is provable. Having in mind the arithmetic inter-
pretation of numerals, it would also make sense to assume a stronger version of Ord1, replac-
ing “if `bϕ(m) for all m∈Num” by the weaker hypothesis “if `bϕ(m) for all m∈Num such
that `m≺ n”. But this stronger version will not be needed. Also, note that we formulate Ord1
in the weakest possible way w.r.t. the choice of provability relations: with a hypothesis about
`b and a conclusion about `. Ord2 states that, for any numeral n, any element x in the domain
of discourse is provably either greater than n or equal to one of a finite set M of numerals.

If we instantiate our syntax to that of first-order arithmetic and take `b to be intuitionistic
Robinson arithmetic (and ` any larger relation), then both Ord1 and Ord2 hold when taking
≺ as either < or ≤. In the presence of a numeral-restricted form of anti-symmetry of the
relation (which would include < but exclude ≤), the second condition is stronger:

Lemma 2. Assume ` ∀x. x≺ n→¬ n≺ x. Then Ord2 implies Ord1.

Proof. Let ϕ∈ Fmla1 and n∈Num. Assume `bϕ(m), in particular, ` ϕ(m), for all m∈Num
and let M be as in Ord2. We must prove ` ∀x≺ n. ϕ(x). Working inside the formal proof sys-
tem `, we fix x such that x≺ n. Thanks to the antisymmetry assumption, we obtain ¬ n≺ x,
which implies by Ord2 that x equals some m∈M; this means that ϕ(x) holds, as desired.

4.4 Encodings and representability

Central in the incompleteness theorems are functions that encode formulas and proofs as
numerals, 〈_〉 : Fmla→ Num and 〈_〉 : Proof → Num. For our abstract results, the encod-
ings are not required to be injective or surjective. Various concepts will be assumed to be
representable (via these encodings) inside our object logic, via the basic provability relation
`b. We will consistently employ `b, and not `, to represent concepts. On the other hand, `
and its associated proof-of relation  will be among the concepts we will want to represent.

Let A1, . . . , Am be sets, and let, for each of them, 〈_〉 : Ai → Num be an “encoding”
function to numerals. Then, an m-ary relation R⊆ A1× . . .×Am is said to be represented by
a formula R ∈ Fmlam if the following hold for all (a1, . . . , am) ∈ A1× . . .×Am:

– (a1, . . . , am) ∈ R implies `b R (〈a1〉, . . . , 〈am〉)
– (a1, . . . , am) /∈ R implies `b¬ R (〈a1〉, . . . , 〈am〉)

R is said to be weakly represented by R if, for all (a1, . . . , am) ∈ A1× . . .× Am, it holds
that (a1, . . . , am) ∈ R if and only if `b R (〈a1〉, . . . , 〈am〉). Occasionally, we will use the
alternative formulation “ R (weakly) represents R.”

Let A be another set with 〈_〉 : A→Num. An m-ary function f : A1× . . . Am→ A is said
to be represented by a formula f ∈ Fmlam+1 if for all (a1, . . . , am) ∈ A1× . . .×Am:

– `b f (〈a1〉, . . . , 〈am〉, 〈 f (a1, . . . , am)〉)
– `b ∀x, y. f (〈a1〉, . . . , 〈am〉, x)∧ f (〈a1〉, . . . , 〈am〉, y)→ x≡ y

A function f as above is term-represented by an operator f : Termm → Term if `b

f (〈a1〉, . . . , 〈am〉)≡ 〈 f (a1, . . . , am)〉 for all (a1, . . . , am) ∈ A1× . . .×Am.
When the formula by which a relation/function P is represented or term-represented is

irrelevant, we call P representable or term-representable.
The terms “representability” and “weak representability” are fairly standard [50]. We re-

fer to Raatikainen [50, §2.2] and Smith [56, §5.6] for an account of different terminologies
used in the literature for (variations of) these concepts. In contrast, “term-representability”
is a notion that we have introduced ourselves (and so is “cleanness”, defined below).
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It is immediate that, assuming `b consistent, if a relation R is weakly represented by a
formula then it is also represented by that formula. Moreover, if we assume deductive injec-
tivity of the encoding, i.e., `b 〈a1〉 ≡ 〈a2〉 implies a1 = a2 for all a1, a2 ∈ A, then the follow-
ing holds: If a function f is represented by a formula, then its graph Gr( f ) is represented (as
a relation) by the same formula, in particular, representability of f implies representability
of Gr( f ). The converse, i.e., representability of Gr( f ) implying representability of f (this
time by a modified formula), also holds under some assumptions—essentially saying that
there is an order-like relation on A that is represented by a formula ≺ as in Section 4.3. We
do not elaborate on these aspects since they are not used in our end results. Smith works
them out in detail in his monograph [56, §16]; he does it for the particular case of Robinson
arithmetic, but in such a way that the more general assumptions under which the results
hold can be depicted from his proofs. (Smith uses the following terminology: A relation or a
function being “captured” means it is represented, and a function being “weakly captured”
means its graph is represented as a relation.)

We will also need an enhancement of relation representability: Given i < m, we call the
representation of an m-ary relation R by R i-clean if `b ¬ R (n1, . . . , nm) for all numbers
n1, . . . , nm such that ni (the i’th number among them) is outside the image of 〈_〉 (i.e., there
is no a ∈ Ai with ni = 〈a〉). Cleanness would be trivially satisfied if the encodings were
surjective. However, surjectivity is not a reasonable assumption. For example, most of the
numeric encodings used in the literature are injective but not surjective.

The key property of cleanness is that it makes a representation behave well with respect
to universal quantification of negative statements. We illustrate this for the binary case:

Lemma 3. Assume R⊆ A×B is represented by R , and this representation is 1-clean. Then
the following are equivalent:

(1) (a, b) 6∈ R for all a ∈ A (2) `b¬ R (n, 〈b〉) for all n ∈ Num

Proof. By representability, (1) is equivalent to `b¬ R (〈a〉, 〈b〉) for all a ∈ A. This, in turn,
is equivalent to (2) by 1-cleanness, which lets us exclude numerals outside 〈_〉’s image.

We let S : Fmla1→ Sen be the self-substitution function, which sends any ϕ ∈ Fmla1 to
ϕ(〈ϕ〉), i.e., to the sentence obtained from ϕ by substituting the encoding of ϕ for the unique
variable of ϕ. An alternative to the above “hard” version of S is the following “soft” version,
which sends any ϕ ∈ Fmla1 to ∃v1. v1 ≡ 〈ϕ〉∧ϕ, where v1 is the single free variable of ϕ.
The soft version yields provably equivalent formulas and has the advantage that it is easier to
represent inside the logic, since it does not require formalizing the complexities of capture-
avoiding substitution. All our results involving S have been proved for both versions.

We will consider the properties Repr¬ , ReprS, and Repr , stating the representability of
the functions ¬ and S, and of the relation . In addition, Clean will state that the considered
representation of  is 1-clean, i.e., it is clean on the proof component. For the representing
formulas of the above relations and functions we will use their circled names, ¬ ,  , etc.;
for example, Repr means that (1) p  ϕ implies `b  (〈p〉, 〈ϕ〉) and (2) p 6 ϕ implies
`b¬  (〈p〉, 〈ϕ〉) for all p ∈ Proof and ϕ ∈ Sen.

4.5 Derivability conditions

For several relations R, we will assume representability by formulas R . However, the case
of the provability relation ` is special. It will have an associated formula ` ∈ Fmla1, but
we will assume for it conditions weaker than representability, and also additional conditions.
The following are known as the Hilbert–Bernays–Löb derivability conditions [22, 32]:
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HBL1: ` ϕ implies `b ` 〈ϕ〉 for all ϕ ∈ Sen.
HBL2: `b ` 〈ϕ〉∧ ` 〈ϕ→ ψ〉 → ` 〈ψ〉 for all ϕ, ψ ∈ Sen.
HBL3: `b ` 〈ϕ〉 → ` 〈 ` 〈ϕ〉〉 for all ϕ ∈ Sen.

Above and elsewhere, we omit parentheses when instantiating one-variable formulas with
encodings of formulas to lighten notation—e.g., writing ` 〈ϕ〉 instead of ` (〈ϕ〉).

HBL1 states that, if a sentence is provable, then its encoding is basic-provable inside
the representation. We would obtain a weaker version of HBL1 if we replaced `b with `
in the conclusion, namely asking that ` ϕ implies ` ` 〈ϕ〉. HBL3 is, roughly speaking, a
formulation of this weaker version of HBL1 “one level up,” inside the proof system `b.
Finally, note that the provability relation is closed under modus ponens, in that ` ϕ and `
ϕ→ψ implies `ψ for all ϕ, ψ∈ Sen. Thus, HBL2 roughly states the same property inside the
proof system. In short, the derivability conditions state that the representation of provability
acts partly similarly to the provability relation. (The above internalizations are “rough” in
that they use meta-level quantification instead of object-level quantification—we will come
back to this in Section 7.2, in the context of IT2 where these conditions are being used.)

We will also be interested in the converse of HBL1:
HBL⇐1 : `b ` 〈ϕ〉 implies ` ϕ for all ϕ ∈ Sen.

The weak representability of ` (as defined in Section 4.4) is the conjunction of HBL1 and
HBL⇐1 . Moreover, ’s representability implies HBL1 for ` (x) defined to be ∃y.  (y, x):
Lemma 4. Rel` and Repr imply HBL1.

Proof. Assume ` ϕ. Then there exists p ∈ Proof such that p  ϕ. By Repr , we have `b

 (〈p〉, 〈ϕ〉), hence `b ∃y.  (y, 〈ϕ〉), as desired. (Note that we did not need the whole
Repr ; one implication in the representability condition of  would have sufficed.)

Convention 5. Whenever we assume explicit proofs and representability of proof-of, the
formula ` will be defined from  as shown above.

4.6 Standard models

We fix a unary relation |=⊆ Sen, representing truth of a sentence in the standard model. We
write |= ϕ instead of ϕ ∈ |=, and read it as “ϕ is true.” We consider the assumptions:
LCQ|=: Logical connectives and quantifiers handle truth as expected:

(1) 6|=⊥; (2) for all ϕ, ψ ∈ Sen, |= ϕ and |= ϕ→ ψ imply |= ψ;
(3) for all ϕ ∈ Fmla1, if |= ϕ(n) for all n ∈ Num then |= ∀x. ϕ(x);
(4) for all ϕ ∈ Fmla1, if |= ∃x. ϕ(x) then |= ϕ(n) for some n ∈ Num;
(5) for all ϕ ∈ Sen, |= ϕ or |= ¬ ϕ.

Sound`b
|= (basic provability is sound w.r.t. truth): `b ϕ implies |= ϕ for all ϕ ∈ Sen.

TIP`|= (truth implies provability): |= ` 〈ϕ〉 implies ` ϕ for all ϕ ∈ Sen.

Note that Sound`b
|= refers to `b, not `. Not having to assume that ` is sound will allow

us to capture, for example, consistent or ω-consistent extensions of Robinson arithmetic that
are not sound in the standard natural numbers model.

LCQ|=(1–4) form a partial description of the connectives’ and quantifiers’ behavior w.r.t.
truth: corresponding to elimination rules for ⊥, → and ∃ and introduction rule for ∀. This
partial description suffices for our results. Note that LCQ|=(4) is a strong form of existential
elimination, saying that (the interpretations of) numerals are a complete set of witnesses
for existential formulas valid in the standard model; in particular, this holds for the case
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when the standard model is built of numerals only. LCQ|=(5) states that the standard model
decides every sentence. TIP`|= is a form of completeness: It states that ` can prove whatever
the standard model “agrees” that can be proved by `.

The above axiomatization of standard models will be used to obtain semantic versions of
IT1. At the heart of these results there will be the connection between the representability of
 and HBL⇐1 in the presence of standard models. Recall that, by Convention 5, whenever we
assume  representable, we also assume that `’s representation ` is naturally defined from
’s representation  (matching the definition of ` from ). This is crucial for IT2, where
the internal definitions must faithfully capture the external ones [1], but not for IT1, where
we only care about producing, no matter how, an undecided (and true) sentence. In fact,
for recursively enumerable extensions of the Robinson arithmetic and related FOL theories,
it is possible to produce an artificial provability formula ` that enjoys better properties
than the above natural choice: While the latter satisfies HBL1 but not necessarily HBL⇐1 , the
former is guaranteed to satisfy both HBL1 and HBL⇐1 (i.e., to weakly represent provability).
This is why, for example, in his abstract account, Buldt takes the liberty to assume not only
HBL1 but also HBL⇐1 in his most general formulation of IT1 [7, Theorem 3.1]. We will not
attempt to model such “artificial” versions of ` in our framework, but will focus on the
“natural” one, which works for both IT1 and IT2.

On his way to formalizing IT2 for extensions of HF set theory (and thus having in mind
the “natural” ` ), after proving HBL1 Paulson notes [40, p.21]: “The reverse implication
[namely HBL⇐1 ], despite its usefulness, is not always proved.” However, for the “natural”
` , HBL⇐1 does not come cheaply: It seems to require the soundness of `b w.r.t. truth in the

standard model (which Paulson assumes), or at least the ω-consistency of `. We can depict
the situation abstractly, without knowing what standard models look like:

Lemma 6. (1) Assume Rel` , Repr, Clean and OCon`. Then HBL⇐1 holds.
(2) Assume Sound`b

|= and TIP`|=. Then HBL⇐1 holds.

(3) Assume Rel` , Repr, Clean, Sound`b
|= and LCQ|=(1,2,4). Then TIP`|= holds. (In partic-

ular, HBL⇐1 holds.)

Proof. (1): Assume ` ` 〈ϕ〉.
- Hence ` ∃x.  (x, 〈ϕ〉). (Recall Convention 5.)
- By logic, we obtain ` ¬ ¬ (∃x.  (x, 〈ϕ〉)).
- With OCon`, we obtain n ∈ Num such that 6` ¬  (n, 〈ϕ〉), in particular 6`b¬  (n, 〈ϕ〉).
- With Clean , we obtain p ∈ Proof such that n = 〈p〉. Hence 6`b¬  (〈p〉, 〈ϕ〉).
- Since, by Repr , we have that p 6 ϕ implies `b¬  (〈p〉, 〈ϕ〉), we obtain p  ϕ.
- With Rel` , we obtain ` ϕ, as desired.
(2): To prove HBL⇐1 , let ϕ ∈ Sen and assume `b ` 〈ϕ〉.
- With Sound`b

|= , we obtain |= ` 〈ϕ〉.
- With TIP`|=, we obtain ` ϕ, as desired.

(3): To prove TIP`|=, assume |= ` 〈ϕ〉.
- Then |= ∃x.  (x, 〈ϕ〉).
- With LCQ|=(4), we obtain n ∈ Num such that (i) |=  (n, 〈ϕ〉).
- With Sound`b

|= and LCQ|=(1,2), we obtain 6`b¬  (n, 〈ϕ〉).
- Now the proof of ` ϕ proceeds just like at point (1): using Rel` , Repr and Clean.

Lemma 6 shows that, in the presence of standard models with reasonable properties and
the soundness of `b, clean representability of the proof-of relation implies HBL⇐1 ; and recall

11



from Lemma 4 that it also implies HBL1. Interestingly, a converse of these implications also
holds. To state it, we initially assume there is no “outer” notion of proof (i.e., no set Proof
and no relation ), but only an “inner” one, given by a formula Pf ∈ Fmla2 such that:

RelPf
`

: `b ` 〈ϕ〉 ←→ (∃x. Pf(x, 〈ϕ〉)) for all ϕ ∈ Sen.

ComplPf : |= Pf(n, 〈ϕ〉) implies `b Pf(n, 〈ϕ〉) for all n ∈ Num and ϕ ∈ Sen.
Compl¬Pf : |= ¬ Pf(n, 〈ϕ〉) implies `b¬ Pf(n, 〈ϕ〉) for all n ∈ Num and ϕ ∈ Sen.

RelPf
`

is the inner version of Rel` : It expresses that, inside the representation, proofs and
provability are connected as expected. ComplPf and Compl¬Pf state that provability is com-
plete on Pf statements about formula encodings, as well as on their negations; in traditional
settings, this is true thanks to Pf being a ∆1-formula. Now the converse result states that,
thanks to standard models, HBL1 and HBL⇐1 , we can define an outer notion of proof that is
represented by the inner notion Pf:

Lemma 7. Assume RelPf
`

, ComplPf , Compl¬Pf , Sound`b
|= , LCQ|=(4,5), HBL1, HBL⇐1 . Take

Proof = Num and define  by n  ϕ iff `b Pf (n, 〈ϕ〉). Then Rel`, Repr and Clean hold,
with  being represented by Pf (i.e.,  being Pf).

Proof. To show Rel` in this context (that is, for this particular definitions of Proof and
relation ), we must show the equivalence between (i) ` ϕ and (ii) the existence of n∈Num
such that `b Pf (n, 〈ϕ〉).
First assume (i).
- With HBL1, we obtain `b ` 〈ϕ〉.
- With RelPf

`
, we obtain `b ∃x. Pf (x, 〈ϕ〉).

- With Sound`b
|= , we obtain |= ∃x. Pf (x, 〈ϕ〉).

- With LCQ|=(4), we obtain n ∈ Num such that |= Pf (n, 〈ϕ〉).
- With ComplPf , we obtain (ii), as desired.
Now assume (ii).
- By logic, we obtain `b ∃x. Pf (x, 〈ϕ〉).
- With RelPf

`
, we obtain `b ` 〈ϕ〉.

- With HBL⇐1 , we obtain (i), as desired.
Showing half of Repr in this context is trivial, as it amounts to showing that `b Pf (n, 〈ϕ〉)
implies `b Pf (n, 〈ϕ〉). For the other half, assume 6`b Pf (n, 〈ϕ〉).
- With ComplPf , we obtain 6|= Pf (n, 〈ϕ〉).
- With LCQ|=(5), we obtain |= ¬ Pf (n, 〈ϕ〉).
- With Compl¬Pf , we obtain `b¬ Pf (n, 〈ϕ〉), as desired.
Finally Clean is trivial in this context, since the encoding of proofs is the identity.

The property TIP`|= will be pivotal in the proofs of our semantic versions of IT1. As

Lemma 6(3) shows, TIP`|= follows from the soundness of `b, reasonable properties of |=
(namely LCQ|=(1,2,4)), and the Rel` , Repr, Clean trio; and the last trio follows by
Lemma 7 from the other assumptions if we assume an additional reasonable property of |=
(namely LCQ|=(5)), together with RelPf

`
, ComplPf , Compl¬Pf , and the weak representability

of ` (i.e., HBL1 and HBL⇐1 ). One disadvantage of this indirect route for obtaining TIP`|= is
the need to have both ComplPf and Compl¬Pf—which are very tedious to prove for concrete
logics, especially Compl¬Pf . However, it turns out that we can directly prove TIP`|= from a
subset of the above assumptions, not including Compl¬Pf :
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Lemma 8. Assume RelPf
`

, ComplPf , Sound`b
|= , and LCQ|=(2,4). Define Proof and  as in

Lemma 7.
(1) Then |= ` 〈ϕ〉 implies `b ` 〈ϕ〉 for all ϕ ∈ Sen.
(2) If in addition we assume HBL⇐1 , then TIP`|= holds.

Proof. (1): Assume (i) |= ` 〈ϕ〉.
- From RelPf

`
and Sound`b

|= , we obtain |= ` 〈ϕ〉 → (∃x. Pf(x, 〈ϕ〉)).
- With (i) and LCQ|=(2), we obtain |= ∃x. Pf(x, 〈ϕ〉).
- With LCQ|=(4), we obtain n ∈ Num such that |= Pf(n, 〈ϕ〉).
- With ComplPf , we obtain `b Pf(n, 〈ϕ〉).
- By logic, from this we obtain `b ∃x. Pf(x, 〈ϕ〉).
- With RelPf

`
, by logic we obtain `b ` 〈ϕ〉, as desired.

(2): Follows immediately from point (1), given that HBL⇐1 and `b ` 〈ϕ〉 imply ` ϕ.

Note that point (1) of the above lemma states that basic provability is complete for
sentences of the form ` 〈ϕ〉. For Robinson arithmetic and related theories, this follows from
the completeness of provability for Σ1-sentences (Σ1-completeness).

5 Diagonalization

The formula diagonalization technique (due to Gödel and Carnap [9]) yields “self-referen-
tial” sentences. All we need for it to work is (logic plus) the representability of substitution.
Prop 9. Assuming ReprS, for all ψ ∈ Fmla1 there exists ϕ ∈ Sen with `b ϕ←→ ψ〈ϕ〉.

Proof. Assume ReprS, where S is the “hard” self-substitution function. Let χ ∈ Fmla1 be
∃y. S (x, y)∧ψ(y). We take ϕ to be χ〈χ〉 and must prove (1) `b ϕ←→ ψ〈ϕ〉.
- From the fact that S is represented by S we obtain (provably in the formal system `b) that
〈ϕ〉 is the unique y for which S (〈χ〉, y) holds.
- By logic, this implies `b (∃y. S (〈χ〉, y)∧ψ(y))←→ ψ〈ϕ〉.
- By the definition of χ, the above means exactly (1).

A similar argument works for soft self-substitution.

A sentence ϕ ∈ Sen is called:
– a Gödel sentence if ` ϕ←→¬ ` 〈ϕ〉,
– a basic Gödel sentence `b ϕ←→¬ ` 〈ϕ〉,
– a Rosser sentence if ` ϕ←→¬ (∃x.  (x, 〈ϕ〉)∧RosserTwist(x, 〈ϕ〉)),
– a basic Rosser sentence if `b ϕ←→¬ (∃x.  (x, 〈ϕ〉)∧RosserTwist(x, 〈ϕ〉)).

Above, the formula RosserTwist(x, y) is ∀x′. x′ ≺ x→ ∀y′. ¬ (y, y′)→ ¬  (x′, y′). Here,
y′ represents the negation of y. If negation were represented not by a formula but by a unary
function symbol ¬ , RosserTwist(x, y) would be written ∀x′. x′ ≺ x→¬  (x′, ¬ (y)).

Since `b is included in `, any basic Gödel or Rosser sentence is in particular a Gödel
or Rosser sentence, respectively. It will turn out that basic Gödel sentences will be needed
for the model-theoretic versions of IT1, whereas (not necessarily basic) Gödel or Rosser
sentences will suffice for the proof-theoretic versions.
Prop 10. Assuming ReprS, there exist basic Gödel and basic Rosser sentences.

Proof. Follows immediately from Prop. 9, taking ψ(x) to be ¬ ` (x) and ¬ (∃y.  (y, x)∧
RosserTwist(y, x)), respectively.
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Thus, any (basic) Gödel sentence is (basic-)provably equivalent to the negation of its
own provability; in Gödel’s words, it “says about itself that it is not provable” [17]. A Rosser
sentence ϕ asserts its own unprovability in a weaker fashion: Rather than saying “I am not
provable” (i.e., “it is not the case that there exists a proof p of me”), it says “it is not the
case that there exists a proof p of me such that all smaller q are not proofs of ¬ ϕ.” Here,
“smaller” refers to the order that the encoding of proofs as numerals imposes.

6 First Incompleteness Theorem

After last sections’ preparations, we are now ready to discuss different versions of the in-
completeness theorems, based on alternative assumptions. This section deals with IT1, and
the next one with IT2.

For a consistent or ω-consistent theory that is sufficiently expressive (in particular able
to express concepts about itself, such as formulas and provability), IT1 identifies sentences
that are neither provable nor disprovable, and are also true in the standard model—these are
usually the Gödel and Rosser sentences discussed in the previous section.

6.1 Informal account and roadmap

Before embarking on the formal analysis of IT1, it is worth recalling informally the line
of reasoning behind some of its variants. (More details can be found, e.g., in Boolos’s [5]
and Smith’s [56] monographs.) Gödel’s original formulation referred to a system called P, a
form of simple type theory enriched with the Dedekind–Peano axioms for natural numbers.
However, it was soon recognized that the argument works for much weaker systems, no-
tably Robinson arithmetic and a fortiori Peano arithmetic, as well as for any (ω-)consistent
recursively axiomatizable FOL theories that extend these.

When reading the informal (but quite detailed) recollection that follows, the reader
should feel free to think of any of the above systems as target systems—so the term “prov-
able” will refer to provability in one of these systems. To simplify the discussion, we will
assume the availability of classical logic reasoning, but the later formal analysis will refine
this by singling out the results that only need intuitionistic logic. Moreover, here we will not
distinguish between provability and basic provability, but leave this too for our later formal
analysis. Enclosing a statement in double quotes will mean that we refer to its internalization
as a sentence in the language of the considered system; for example, the provability of “n is
not a proof of R” can be written using our formal notations as ` ¬  (n, 〈R〉).

(1) Let us first consider a purely proof-theoretic IT1, which ignores the notion of truth and
focuses on undecidability.

(1.1) Gödel’s original argument goes as follows, for a Gödel sentence G.
(1.1.1) That G is unprovable is argued straightforwardly: The provability of G on the

one hand, by HBL1, would imply that its provability is provable, and on the other
hand, by virtue of G being a Gödel sentence, would imply that its unprovability is
provable, thus contradicting consistency.

(1.1.2) That ¬ G is unprovable needs a more subtle argument, which delves into actual
proofs and their representation: The provability of ¬G would imply, by consistency,
the unprovability of G, i.e., the nonexistence of any proof of G, i.e., by proof repre-
sentability, the provability of “n is not a proof of G” for all n, i.e., by ω-consistency,
the unprovability of “there exists a proof of G”, i.e., unprovability of “G is provable”,
i.e., by virtue of G being a Gödel sentence, the unprovability of ¬ G.
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(1.2) Rosser’s variant removes the need for ω-consistency in Gödel’s argument for ¬ G.
This is done by using Rosser sentences R instead of Gödel sentences G. (Recall form
Section 5 that Rosser sentences assert about themselves something weaker than their
unprovability, namely the nonexistence of any proof of them such that Rosser’s twist
holds, i.e., there is no smaller proof of their negation.)

(1.2.1) Arguing that ¬ R is unprovable goes the same as in Gödel’s case until the point
of establishing the provability of “n is not a proof of R” for all n, while additionally
recording a proof p of ¬ R (from the assumption that ¬ R is provable), which by
proof representability brings the provability of “〈p〉 is a proof of ¬ R”. So, taking
m = 〈p〉, we have the provability of “m is a proof of ¬ R” for a fixed m, and also of
“n is not a proof of R” for all n. Using a bit of Robinson arithmetic, this gives us the
provability of “there exists no x such that x is a proof of R and Rosser’s twist holds
for x." Hence, by virtue of R being a Rosser sentence, we obtain the provability of
R—which, given our initial assumption that ¬R is provable, contradicts consistency.

(1.2.2) On the other hand, due to the aforementioned weaker “self-assertion” in Rosser
sentences, Rosser’s argument for the unprovability of R is not as immediate as in
Gödel’s case, but itself needs to delve into proofs. First, proceeding in the same way
as for ¬ R, we obtain a dual of the situation from there: the provability of “m is a
proof of R” for a fixed m, and also of “n is not a proof of ¬R” for all n. Again using
a bit of Robinson arithmetic (a different bit than before!), we obtain the provability
of “Rosser’s twist holds for m”, hence the provability of “there exists x such that
x is a proof of R and Rosser’s twist holds for x”, hence, by virtue of R being a
Rosser sentence, the provability of ¬ R—which, given our initial assumption that R
is provable, contradicts consistency.

(2) Now we move to the argument for why the given undecided sentence is also true in the
standard model. In what follows, truth and falsity will implicitly refer to the standard model.

(2.1) For a Gödel sentence G, we know that G is not provable, hence there is no proof of
G, hence, by proof representability, it is provable that “n is not a proof of G” for all n. In
particular, since deduction is sound w.r.t. truth, it is true that “n is not a proof of G” for
all n, i.e., that “for all x, x is not a proof of G”, i.e., that “G is not provable”. Hence, by
virtue of G being a Gödel sentence and deduction being sound, we obtain that G is true.

(2.2) The truth of a Rosser sentence R follows by the same argument as above, noting that
we only used that a Gödel sentence is implied by the statement of its own unprovability,
which is also true for Rosser sentences.

(3) As we will show later during the formal discussion, if stated carefully the above ar-
guments do not need the full power of classical logic, but intuitionistic logic suffices. On
the other hand, if we assume classical logic (i.e., double negation) and additional properties
mentioned below, more direct arguments can be given for some of IT1’s components—more
precisely, the arguments for the unprovability of ¬ G and the truth of G no longer need to
delve into proofs, but can stay at the level of provability. Below we only discuss the case of
Gödel sentences; Rosser sentences can be treated in exactly the same way.

(3.1) To argue that ¬ G is unprovable, we assume that it is provable. Hence, by virtue
of G being a Gödel sentence and making essential use of classical logic, we obtain
the provability of “G is provable”. At this point, we invoke the converse of HBL1 (i.e.,
the provability of any ϕ follows from the provability of ϕ’s provability) to obtain the
provability of G, which together with our assumption contradicts consistency.

(3.2) To argue that G is true, we assume otherwise and try to reach a contradiction (thus
making essential use of classical negation). Since G is false, ¬ G must be true, hence
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by soundness and by virtue of G being a Gödel sentence, “not not G is provable” must
be true, hence “G is provable” must be true. At this point, we invoke that the truth of
provability implies provability, a property that we called TIP`|= in Section 4.6, to reach

the desired conclusion, namely that G is provable. In turn, TIP`|= can be inferred from
Σ1-completeness (which states that, for all Σ1 sentences, in particular for those asserting
provability, their truth implies their provability) and the converse of HBL1.

This concludes our informal recollection, which offers a roadmap for our formal and
more abstract development that follows: Subsections 6.2, 6.3, 6.4 and 6.5 tackle the above
points (1.1), (1.2), (2) and (3), respectively. We distill the exact assumptions needed in these
arguments. This forms a basis for generalizing them to a large variety of logical systems, and
also reveals some interesting properties required from the logic and arithmetic infrastruc-
tures and from the encodings that are not clearly visible in the concrete setting. In particular,
we identify the purely intuitionistic line of reasoning that suffices for (1) and (2), the amount
of arithmetic needed in (1.2), the tradeoffs between (1.1) and (1.2), and, in Subsection 6.6,
the limits in combining provability with basic provability to widen these arguments’ scope.

6.2 Gödel’s proof-theoretic version

We start with an analysis of Gödel’s original argument for the undecidability of Gödel sen-
tences, which requires consistency for one half and ω-consistency for the other half.

Prop 11. Assume Con` and HBL1. Then 6` G for all Gödel sentences G.

Proof. Let G be a Gödel sentence. To prove 6` G, we assume (1) ` G and aim to reach a
contradiction.
- From (1) and G being a Gödel sentence, we obtain ` ¬ ` 〈G〉.
- From (1) and HBL1, we obtain `b ` 〈G〉, hence ` ` 〈G〉.
- The last two facts contradict Con`.

For showing that the Gödel sentences are not disprovable, a standard route is to assume
explicit proofs, strengthen the consistency assumption to ω-consistency, and strengthen
HBL1 to representability of the proof-of relation.

Prop 12. Assume OCon`, Rel`, Repr, Clean . Then 6` ¬ G for all Gödel sentences G.

Proof. Let G be a Gödel sentence. To prove 6` ¬ G, we assume (1) ` ¬ G and aim to reach a
contradiction.
- From OCon`, we obtain Con`.
- With (1), we obtain 6` G.
- With Rel` , we obtain p 6 G for all p ∈ Proof.
- With Repr and Clean, by Lemma 3 we obtain `b¬  (n, 〈G〉) for all n ∈ Num.
- Since `b is included in `, we obtain ` ¬  (n, 〈G〉) for all n ∈ Num.
- With OCon`, we obtain 6` ¬ ¬ ∃x.  (x, 〈G〉), i.e., 6` ¬ ¬ ` 〈G〉.
- With G being a Gödel sentence, we obtain 6` ¬ G, which contradicts (1).

While the line of reasoning in the above proof is mostly well-known, it contains two
subtle points about which the literature is not explicit (due to the usual focus on classical
first-order arithmetic and particular choices of encodings).

First, we must assume the representation of the proof-of relation  to be 1-clean, i.e.,
clean with respect to the proof component. Indeed, the argument crucially relies on convert-
ing the statement “p 6 G for all p ∈ Proof” into “`b¬  (n, 〈G〉) for all n ∈ Num,” which
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is only possible for 1-clean encodings. This assumption is needed in many of our results. By
contrast, cleanness is never required with respect to the sentence component of proof-of or
for the provability relation (which only involves sentence encodings). In short, cleanness is
only needed for proofs, not for sentences.

Second, to reach the desired contradiction for our intuitionistic proof system `, from
“`¬  (n, 〈G〉) for all n∈Num” it is not sufficient to employ standardω-consistency, which
would only give us 6` ∃x.  (x, 〈G〉), i.e., 6` ` 〈G〉; the last together with ` G←→¬ ` 〈G〉
would be insufficient for obtaining 6` ¬ G. However, our stronger version of ω-consistency,
OCon`, does the job. IT1 now follows by putting together Props. 10–12:

Theorem 13. (IT1) Assume OCon`, Rel`, Repr , Clean , ReprS. Then the following hold:

(1) There exists a basic Gödel sentence. (2) 6` G and 6` ¬ G for all Gödel sentences G.

Proof. (1): Immediate from Prop. 10.
(2): 6` ¬ G follows by applying Prop. 12 to the assumptions, so it remains to show 6` G.
- From OCon`, we obtain Con`.
- Applying Lemma 4 to Rel` and Repr , we obtain HBL1.
- Applying Prop. 11 to the last two facts, we obtain 6` G, as desired.

6.3 Rosser’s version

Rosser’s contribution to IT1 was an ingenious trick for weakening the ω-consistency as-
sumption into plain consistency—as such, it is usually seen as a strict improvement over
Gödel’s version. While this is true for the concrete case of FOL theories extending arith-
metic, from an abstract perspective the situation is more nuanced: The improvement is
achieved at the cost of asking more from the logic. Our framework makes this tradeoff
clearly visible. The idea is to use Rosser sentences instead of Gödel sentences to “repair”
the ω-consistency assumption of Theorem 13 (inherited from Prop. 12).
Prop 14. Assume Con`, Ord2, Rel` , Repr Repr¬ and Clean. Then 6` ¬ R for all Rosser
sentences R.

Proof. To prove 6` ¬ R, we assume (1) ` ¬ R and aim to reach a contradiction.
- With Rel` , we obtain p  ¬ R for some p ∈ Proof.
- With Repr , we obtain `b  (〈p〉, 〈¬ R〉), hence (2) `  (〈p〉, 〈¬ R〉).
- From (1) and Con`, we obtain 6` R.
- With Rel` , we obtain q 6 R for all q ∈ Proof.
- With Repr , Clean and Lemma 3, we obtain, for all n∈Num, `b¬  (n, 〈R〉), hence (3)
` ¬  (n, 〈R〉).
- By Ord2, we obtain a finite M ⊆ Num such that (4) ` ∀x. (

∨
m∈M x≡ m) ∨ 〈p〉 ≺ x

- We prove (5) ` ∀x. ¬ (  (x, 〈R〉)∧RosserTwist(x, 〈R〉)). The proof is performed in the in-
tuitionistic proof system of `, but we describe it informally: We fix x, assume  (x, 〈R〉)∧
RosserTwist(x, 〈R〉), and aim to reach a contradiction. We perform a case distinction ac-
cording to (4):

– If x equals some m ∈ M, then  (m, 〈R〉), which together with (3) leads to a contradic-
tion.

– If 〈p〉 ≺ x, then from RosserTwist(x, 〈R〉) and ¬ (〈R〉, 〈¬ R〉) (which holds thanks to
Repr¬ and `b being included in `), we obtain ¬  (〈p〉, 〈¬ R〉), which together with (2)
leads to a contradiction.

– This concludes (our informal description of) the `-formal proof of (5).
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- From (5), by (intuitionistic) logic we obtain ` ¬ (∃x. ` (x, 〈R〉)∧RosserTwist(x, 〈R〉)).
- Thanks to R being a Rosser formula, we obtain ` R.
- Together with (1), this contradicts Con`.

Thus, ω-consistency (assumption OCon`) has been weakened to consistency (assump-
tion Con`), but in exchange we needed to additionally assume a special formula≺ satisfying
Ord2. This represents a quite strong commitment to the arithmetical ordering.

Even worse, this fix on the assumptions needed to show the unprovability of the negated
formula (¬ R) complicates the proof of the unprovability of the direct formula (R), which
was trivial in Gödel’s version (Prop. 11). Now we again need a cleanly representable proof-
of relation, representable negation, and well-behavedness of the order-like relation ≺:

Prop 15. Assume Con`, Ord1, Rel` , Repr Repr¬ and Clean. Then 6` R for all Rosser
sentences R.

Proof. To prove 6` R, we assume (1) ` R and aim to reach a contradiction.
- With Rel` , we obtain p  R for some p ∈ Proof.
- With Repr , we obtain `b  (〈p〉, 〈R〉), hence (2) `  (〈p〉, 〈R〉).
- From (1) and Con`, we obtain 6` ¬ R.
- With Rel` , we obtain q 6 ¬ R for all q ∈ Proof.
- With Repr , Clean and Lemma 3, we obtain `b¬  (n, 〈¬ R〉) for all n ∈ Num.
- With Ord1, we obtain (3) ` ∀y≺ 〈p〉. ¬  (y, 〈¬ R〉).
- The following reasoning is performed in the (intuitionistic) proof system of `, but we
describe it informally.

– By Repr¬ and the fact that `b is included in `, the only z such that ¬ (z, 〈¬ R〉) is 〈¬ R〉.
– With (3), we obtain ` RosserTwist(〈p〉, 〈R〉).

- From ` RosserTwist(〈p〉, 〈R〉) and (2), we obtain ` ∃x. ` (x, 〈R〉)∧RosserTwist(x, 〈R〉).
- Since R is a Rosser sentence, from (1) we obtain `¬ (∃x. ` (x,〈R〉)∧RosserTwist(x,〈R〉)).
- The last two facts contradict consistency.

Theorem 16. (IT1 à la Rosser) Assume Con` , Ord1 , Ord2 , Repr¬ , Rel` , Repr ,
Clean , ReprS. Then the following hold:
(1) There exists a basic Rosser sentence. (2) 6` R and 6` ¬ R for all Rosser sentences R.

Proof. (1): Immediate from Prop. 10.
(2): 6` R follows by applying Prop. 15 to the assumptions, and 6` ¬ R follows by applying
Prop. 14 to the assumptions.

Highlighted in the statements of Theorems 16 and 13 is the assumption tradeoff between
the two versions of IT1: Rosser’s weakening of ω-consistency into consistency is paid by
additionally assuming representability of negation and an order-like relation satisfying Ord1
and Ord2. Certainly, negation representability is not a big price, since for concrete logics
this tends to be a lemma that is anyway needed when proving HBL1. On the other hand, the
ordering assumptions seem to be a significant generality gap in favor of Gödel’s version.

6.4 Semantic versions

A semantic version of IT1 is one that establishes not only the unprovability of Gödel or
Rosser sentences and of their negations, but also the truth of these sentences. To capture this
abstractly, we leverage our concept of truth from Section 4.6, denoted |=.
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Theorem 17. (Semantic IT1) If we enrich the assumptions of Theorem 13 with LCQ|=(2,3)

and Sound`b
|= , then its conclusions can be enriched with the following:

(3) |= G for all basic Gödel sentences G.

Proof. We know from Theorem 13 that 6` G, and 6` ¬ G. It remains to show |= G.
- From 6` G and Rel` , we obtain that p 6 G for all p ∈ Proof.
- With Repr and Clean, by Lemma 3 we obtain `b¬  (n, 〈G〉) for all n ∈ Num.
- With Sound`b

|= , we obtain |= ¬  (n, 〈G〉) for all n ∈ Num.
- With LCQ|=(3), we obtain (i) |= ∀x. ¬  (x, 〈G〉).
- By logic we obtain `b (∀x. ¬  (x, 〈G〉))→¬ ` 〈G〉. (Recall Convention 5.)
- With the definition of basic Gödel sentence, by logic we obtain `b (∀x.¬  (x, 〈G〉))→G.
- With Sound`b

|= , we obtain |= (∀x. ¬  (x, 〈G〉))→ G.
- With LCQ|=(2) and (i), we obtain |= G, as desired.

The next variant of the semantic IT1 does not directly assume the existence of proofs
and their representations, but “recovers” them using HBL⇐1 as prescribed in Lemma 7:

Theorem 18. (Semantic IT1, second variant) The conclusions of Theorem 17 remain true
if we replace its assumptions Rel` , Repr, Clean with the assumptions RelPf

`
, ComplPf ,

Compl¬Pf , HBL⇐1 , LCQ|=(4,5).

Proof. Immediate by Lemma 7 and Theorem 17, noting that, by Lemma 4, HBL1 (which is
needed by Lemma 7) is implied by Rel` and Repr.

Similar semantic theorems can be obtained for Rosser-style IT1:

Theorem 19. (Semantic IT1 à la Rosser) If we enrich the assumptions of Theorem 16 with
LCQ|=(2,3) and Sound`b

|= , then its conclusions can be enriched with the following:
(3) |= R for all basic Rosser sentences R.

Proof. Exactly the same as the proof of Theorem 17, but using Rosser sentences and apply-
ing Theorem 16 (rather than using Gödel sentences and applying Theorem 13). Note that
the last part of the proof of |= G also works for R, because `b (¬ ` 〈R〉)→ R follows from
the definition of Rosser sentence (by logic).

Theorem 20. (Semantic IT1 à la Rosser, second variant) The conclusions of Theorem 19
remain true if we replace its assumptions Rel` , Repr, Clean with the assumptions RelPf

`
,

ComplPf , Compl¬Pf , HBL⇐1 , LCQ|=(4,5).

Proof. The same as Theorem 18’s proof, but using Theorem 19 rather than Theorem 17.

The assumption tradeoff between Theorems 17 and 18 on the one hand and Theorems 19
and 20 on the other hand is the same as that between their proof-theoretic counterparts (dis-
cussed in Section 6.3): OCon` on the Gödel side versus Con`, Ord1, Ord2 and Repr¬ on the
Rosser side. An interesting phenomenon arises when `b and ` are the same relation. Then
soundness implies ω-consistency under reasonable assumptions:

Lemma 21. Assume `b = `, Sound`b
|= and LCQ|=(1,2,3). Then OCon` holds.

Proof. Assume ` ¬ ϕ(n) for all n ∈ Num.
- With Sound`b

|= and `b = `, we obtain |= ¬ ϕ(n) for all n ∈ Num.
- With LCQ|=(3), we obtain |= ∀x. ¬ ϕ(x).
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- By logic and Sound`b
|= , we obtain |= (∀x. ¬ ϕ(x))→¬ (∃x. ϕ(x)).

- From the last two facts and LCQ|=(2), we obtain |= ¬ (∃x. ϕ(x)).
- With LCQ|=(1,2), we obtain 6|= ¬ ¬ (∃x. ϕ(x)).

- With Sound`b
|= and `b = `, we obtain 6` ¬ ¬ (∃x. ϕ(x)), as desired.

Thus, if `b = ` and some reasonable properties hold for |=, then ω-consistency comes
for free. Hence, in this case Gödel’s versions, Theorems 17 and 18, are strictly more general
than Rosser’s versions, Theorems 19 and 20 (if we ignore the difference in the way Gödel
and Rosser sentences are actually defined). This further illustrates the idea that Rosser’s
trick is not always an improvement.

6.5 Classical logic versions

The results so far do not require going beyond intuitionistic logic. But if we commit to clas-
sical logic for ` (i.e., assume ` ¬ ¬ ϕ→ ϕ) and also assume HBL⇐1 , there is a well-known
more direct argument for showing that Gödel sentences are not disprovable, which imme-
diately proves IT1. (This is documented, for example, as Theorem 3.1 in Buldt’s mono-
graph [7].) However, in our generalized setting with two provability relations, this argument
does not go through unless we strengthen HBL⇐1 (which currently refers to `b) to refer to `:
HBL⇐1,` : ` ` 〈ϕ〉 implies ` ϕ for all ϕ ∈ Sen.

Theorem 22. (Classical IT1) Assume classical logic for `, Con`, HBL1, HBL⇐1,` , ReprS.
Then the following hold:
(1) There exists a basic Gödel sentence. (2) 6` G and 6` ¬ G for all Gödel sentences G.

Proof. (1): Immediate from ReprS by Prop. 10.
(2): Let G be a Gödel sentence.
- From Con` and HBL1, by Prop. 11 we obtain 6` G.
- So we are left to prove 6` ¬ G. To this end, we assume (i) ` ¬ G and aim to reach a contra-
diction.
- Since G is a Gödel sentence, by logic we obtain ` ¬ ¬ ` 〈G〉.
- By classical logic, from this we obtain ` ` 〈G〉.
- With HBL⇐1,` , we obtain ` G.
- With (i), this contradicts Con`.

Point (2) of the above theorem refers to Gödel sentences (defined using `). Note that
weakening the statement to refer to basic Gödel sentences (defined using `b) would not help
with relaxing the assumption HBL⇐1,` to HBL⇐1 ; the former would still be needed to finish
the proof. Of course, HBL⇐1 and HBL⇐1,` coincide in the important case when `b = `.

Two semantic versions are possible for classical IT1. The first one additionally assumes
some reasonable properties of |=, soundness for `b, and TIP`|=:

Theorem 23. (Classical Semantic IT1) If we enrich the assumptions of Theorem 22 with
LCQ|=(1,2,5), Sound`b

|= , TIP`|=, then its conclusions can be enriched with the following:
(3) |= G for all basic Gödel sentences G.

Proof. We know from Theorem 22 that (i) 6` G, and 6` ¬ G. It remains to show |= G. To this
end, we assume (ii) 6|= G and try to reach a contradiction.
- From (ii), by LCQ|=(5) we obtain (iii) |= ¬ G.
- From the basic Gödel sentence definition we obtain `b¬ G→¬¬ ` 〈G〉.
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- With Sound`b
|= , we obtain |= ¬ G→¬¬ ` 〈G〉.

- With (iii), by LCQ|=(2) we obtain |= ¬ ¬ ` 〈G〉.
- With LCQ|=(1,2), we obtain 6|= ¬ ` 〈G〉.
- With LCQ|=(5), we obtain |= ` 〈G〉.
- With TIP`|=, we obtain ` G, which contradicts (i).

The second one replaces TIP`|= with some assumptions that, in the presence of the others,

ensure TIP`|=—hence is strictly less general than the first one:

Theorem 24. (Classical Semantic IT1, second version) The conclusions of Theorem 23
still hold if we replace TIP`|= with the assumptions RelPf

`
, ComplPf and LCQ|=(4).

Proof. It suffices to show that TIP`|= follows from its replacements and the other assump-
tions. We do this using Lemma 8(2). To apply this lemma, we need:
- RelPf

`
, ComplPf , LCQ|=(4), which are assumed above;

- LCQ|=(2), Sound`b
|= and HBL⇐1 , which are assumptions of Theorem 23.

So from the lemma we infer TIP`|=, as desired.

We used Gödel, not Rosser sentences in our classical semantic versions of IT1. Unlike
for the (intuitionistic) semantic versions in Section 6.4, here a Rosser-style improvement
would serve no purpose, since we already assume ` to be consistent, not ω-consistent.

6.6 Benefits of the two-relation take on provability

Our framework distinguishes between basic provability (`b) and provability (`). This seems
to be a rational design choice when aiming high in terms of generality for the incompleteness
theorems. For example, this choice has been made explicitly by Smorynski [57] and more
implicitly by Feferman [13] in their general accounts. Let us analyze what are the choice’s
benefits to IT1 in the context of our development. The main questions are of course whether
the scope of these theorems has to gain from the two-relation approach, as opposed to work-
ing with only one relation; and, if so, by how much.

In some cases, the gain is undeniable: Our Section 6.4’s semantic Theorems 17–20 gain
significant generality by assuming soundness for `b only, and merely consistency or ω-con-
sistency for `. This covers the case of Gödel or Rosser sentences being true for unsound the-
ories as well. And of course the above theorems are based on the proof-theoretic theorems in
Sections 6.2 and 6.3, which means that the latter’s two-relation formulations are also needed.

At the other extreme, in one case, namely the classical-logic-based Theorem 22, there
is no gain. Indeed, say we ignore `b and modify all this theorem’s assumptions to replace `
for all occurrences of `b—which is the same as assuming `b = `. Then we would lose no
generality, because the modified assumptions would be the same or weaker than the original
assumptions. In conclusion, Theorem 22 stays equally general if we identify `b and `.

The other cases, namely the classical-semantic Theorems 23 and 24, are somewhere in
between these two extremes: Their two-relation formulation is more general than a one-
relation formulation, but the gain from this is doubtful. Like in Theorems 17–20, they allow
an unsound ` as an extension of a sound `b. On the other hand, their assumptions HBL1
and HBL⇐1,` (inherited from Theorem 22) force ` to coincide with `b on all sentences of the
form ` 〈ϕ〉; and it is not clear if one can find interesting classes of unsound relations ` that
satisfy this constraint (for standard choices of `b).
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7 Second Incompleteness Theorem

For a consistent theory that is sufficiently expressive, IT2 states that this theory cannot prove
(the internal formalization of) its own consistency, which in our notations will be written as
6` ¬ ` 〈⊥〉. Here, “sufficient expressiveness” refers to something similar to the case of IT1,
namely the theory’s ability to express concepts about itself such as formulas and provability,
but is a stronger requirement than for IT1: For IT2, the theory needs to be expressive enough
to formalize and prove part of IT1. This includes Peano arithmetic and stronger theories but
excludes Robinson arithmetic.

IT2 is of course a perfectly mathematical theorem, just like IT1. However, the informal
paraphrasing of IT2’s conclusion, taking 6` ¬ ` 〈⊥〉 to mean that the theory cannot prove
its own consistency, relies on an extra-mathematical assumption of an intensional nature [1]
[13, §1]: that ` adequately expresses the provability relation `. The mathematical property
of ` (weakly) representing ` is only an extensional approximation of this assumption. By
contrast, IT1 only needs ` as an auxiliary concept used in its proof; the adequate expression
of ` is irrelevant there, and it is only (weak) representability that matters. When discussing
variants of IT2, we will always work under the adequate expression assumption.

7.1 Informal account and roadmap

Similarly to the case of IT1, we start with an informal account of the argument behind IT2,
where again we use double quotes for sentences that internalize certain statements in the
language of the considered system.

(1) Gödel realized that IT2 follows by internally formalizing the positive half of his (proof-
theoretic) IT1, henceforth referred to as IT0.5. It states the unprovability of a Gödel sentence
G, covered by Section 6.1’s point (1.1) and Prop. 11. This leads to the provability of “the
theory is consistent implies that G is not provable”. Moreover, by virtue of G being a Gödel
sentence, IT0.5 itself implies the unprovability of “G is not provable”. From the above to-
gether with consistency, we obtain the unprovability of “the theory is consistent”.

The three derivability conditions HBL1−3 recalled in Section 4.5 were perfected by
Löb [32] based on previous work by Hilbert and Bernays [22] to make the above infor-
mal argument fully rigorous without referring to internal formalization details (although
such details do need to be worked out to prove the conditions). The way these conditions
work together to achieve this goal will be discussed in Subsection 7.2. For now, we should
just note that the unqualified requirement of internally formalizing IT0.5 is in itself not suf-
ficient. The internalized concepts must exhibit certain similarities to the original concepts
from one level up; and this is what the derivability conditions express. For example, the
above informal argument had a silent shift from the provability of “the theory is consistent
implies that G is not provable” (with the whole statement inside quotes) to the provability
of “the theory is consistent” implies “G is not provable” (where the implication operator is
outside the quotes, i.e., is positioned one level up)—which is where HBL2 comes to help.

(2) An alternative line of reasoning due to Jeroslow [24] is often cited [50, 56, 57] as a
simplification of the canonical route to prove IT2: Whereas traditionally IT2 requires all
three derivability conditions, Jeroslow’s version does not make use of HBL2.

Jeroslow’s approach relies on pseudo-terms. These are formulas that satisfy existence
and uniqueness properties on one of their free variables, say, x, meaning that x denotes
a uniquely identified item depending on any items denoted by the other free variables; in
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short, pseudo-terms can essentially be treated like terms. In the informal discussion that
follows, the reader is free to think of actual terms instead of pseudo-terms.

Jeroslow proved an alternative diagonalization lemma, producing pseudo-term fixpoints
instead of formula fixpoints. In particular, one obtains a pseudo-term τ that is provably equal
to the encoding of the sentence “non-τ is provable”. If we let ϕ denote the latter sentence,
we obtain that ϕ is provably equivalent to “¬ ϕ is provable”. Let us call any sentence satisfy-
ing this fixpoint property a Jeroslow sentence. Such a sentence states about itself something
stronger-sounding than a Gödel (or Rosser) sentence: not that it is merely not provable,
but that even its negation is provable. (We write “stronger-sounding” rather than “stronger”
because it would be actually stronger only assuming the provability of consistency.)

Now, the argument for IT2 goes as follows. Assume that “the theory is consistent” is
provable. Because a Jeroslow sentence ϕ asserts the provability of something, (a slightly
stronger form of) HBL3 applies, so ϕ provably implies “ϕ is provable”. On the other hand,
by virtue of being a Jeroslow sentence, ϕ also provably implies “¬ ϕ is provable”. So ϕ
provably implies “the theory is inconsistent”, which together with our assumption gives the
provability of ¬ ϕ. With HBL1, we obtain the provability of “¬ ϕ is provable”, i.e, by virtue
of ϕ being a Jeroslow sentence, the provability of ϕ. So both ϕ and its negation are provable,
which contradicts consistency.

The above argument invokes HBL1 and HBL3 but not HBL2. It is specific to Jeroslow
sentences and cannot be achieved with Gödel or Rosser sentences. The argument has several
loose ends, which will be addressed in our formal discussion. In light of that, it will become
clear that the ¬ in “¬ ϕ” and the “non” in “non-τ” are different, but related operators: The
former is formula negation (applied to ϕ), while the latter is substitution (with τ) in a pseudo-
term that represents the operator on numerals corresponding to ¬ via formula encoding.

This concludes our informal discussion. Next, we engage in formal accounts of the
above arguments: point (1) in Subsection 7.2 and point (2) in Subsection 7.3.

7.2 Standard version

Let us slightly rephrase the statement and proof of IT0.5 (Prop. 11) in a way that will make
it convenient to highlight its internal formalization within the proof of IT2:

Prop. 11 (rephrased). Assume HBL1. Let G be a Gödel sentence. Then Con` implies 6` G.

Proof. Step 1. Since G is a Gödel sentence, ` G implies ` ¬ ` 〈G〉.
Step 2. By `b⊆ ` and HBL1, ` G implies ` ` 〈G〉.
Step 3. By modus ponens (since ¬G is G→⊥), ` ¬ ` 〈G〉 and ` ` 〈G〉 implies ` ⊥.
Step 4. From the last three facts, ` G implies ` ⊥.
Step 5. Hence Con` (i.e., 6` ⊥) implies 6` G, as desired.

The standard proof of IT2 uses all three derivability conditions in key places in order to
internalize the above proof of IT0.5:

Theorem 25. (IT2) Assume Con`, HBL1, HBL2, HBL3 and ReprS. Then 6` ¬ ` 〈⊥〉.

Proof. Let G be a Gödel sentence, which exists by Prop. 10 and ReprS.
Internalizing the proof of IT0.5:
- Step 1. Since G is a Gödel sentence, we obtain ` G→¬ ` 〈G〉.

With HBL1 and modus ponens, we obtain `b ` 〈G→¬ ` 〈G〉〉.
With HBL2, we obtain `b ` 〈G〉 → ` 〈¬ ` 〈G〉〉.
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- Step 2. From HBL3, we obtain `b ` 〈G〉 → ` 〈 ` 〈G〉〉.
- Step 3. From HBL2, we obtain `b ` 〈¬ ` 〈G〉〉∧ ` 〈 ` 〈G〉〉 → ` 〈⊥〉.
- Step 4. From the last three facts, we obtain `b ` 〈G〉 → ` 〈⊥〉.
- Step 5. This implies `b¬ ` 〈⊥〉→ ¬ ` 〈G〉, hence (1) ` ¬ ` 〈⊥〉→ ¬ ` 〈G〉.
Invoking IT0.5:
- From Con` and HBL1, by Prop. 11 we obtain 6` G.
- With the Gödel sentence definition, we obtain (2) 6` ¬ ` 〈G〉.
Putting the two together :
- From (1) and (2), we obtain 6` ¬ ` 〈⊥〉, as desired.

The above proof of IT2 starts with an internalization of aspects of the IT0.5’s proof. It
does not literally formalize the end-to-end proof, but instead proceeds by plugging in the
derivability conditions, which can be thought of as pre-formalized reasoning patterns.

– Step 2 is internalized using HBL3, which asserts the provability of some instances of
HBL1, replacing object-level quantification with meta-level quantification. To see this,
note that a full formalization of HBL1 would be a sentence of the form ∀x. Sen (x)∧
` (x)→ ` ( inst ( ` , 〈_〉 (x))), where Sen , 〈_〉 , inst and ` formalize membership

to the set of sentences Sen, the encoding operator 〈_〉, the formula-instantiation (i.e.,
substitution of a term for the first variable, v1) operator, and the inner representation of
provability ` (one further level inside), respectively. By instantiating the ∀-quantified x
with 〈ϕ〉 for any ϕ ∈ Sen, we obtain sentences that can be equivalently written in a more
palatable from, ` 〈ϕ〉 → ` 〈 ` 〈ϕ〉〉, which are exactly the sentences whose provability
is asserted by HBL3.

– Similarly, Step 3 is internalized using HBL2, which asserts the provability of some in-
stances of the modus ponens rule, again replacing object-level quantification with meta-
level quantification—whereas a full formalization of HBL1 would be a sentence of the
form ∀x, y. Sen (x)∧ Sen (y)∧ ` 〈x〉∧ ` 〈x→ y〉 → ` 〈y〉.

– The internalization of Step 1 is more interesting: To formalize the fact that ` G implies
` ¬ ` 〈G〉, one takes advantage of the availability of the stronger and “more formal”
property ` G→¬ ` 〈G〉, which is pushed inside the proof system via HBL1, and then
its implication is lifted one level up using HBL2.

– Steps 4 and 5 are internalized by mapping meta-implication and meta-negation to the
implication and negation operators,→ and ¬, using the latter’s deductive properties.

In summary, a judicious use of the derivability conditions and other ad hoc procedures are
used to prove an internalized version of IT0.5, while avoiding the need to fully formalize the
proof inside the system. (On the other hand, proving the derivability conditions does require
a substantial internal formalization effort in the first place.)

Theorem 25’s proof is concluded according to the plan sketched in Section 7.1: by com-
bining the formalized and the original IT0.5 to obtain the unprovability of consistency.

Finally, let us scrutinize IT2 with respect to the benefit of the two-relation take on prov-
ability (as was done for IT1 in Section 6.6). We see that for IT2 there is no benefit from
using two relations. The same reason as the one discussed for Theorem 22 applies: Replac-
ing `b with ` does not decrease generality. Thus, when discussing IT2, we can assume
`b = ` without loss of generality. Note also that, even if we used a formula `b correspond-
ing `b, no meaningful two-relation strengthening of IT2 would be in sight; in particular, the
consistency of the basic theory `b could well be provable in the extended theory `.

Convention 26. For the rest of Section 7, we will assume `b = ` and no longer refer to `b.
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7.3 Jeroslow’s version

Next we study Jeroslow’s approach to IT2 [24]. To analyze its features and pitfalls, we need
to recall into some notions and notations employed by Jeroslow.

A pseudo-term is a formula ϕ ∈ Fmlam+1 expressing a provably functional relation via
“exists unique”: ` ∀x1, . . . , xm. ∃!y. ϕ(x1, . . . , xm, y). Note that we have already seen exam-
ples of pseudo-terms: Section 4.4’s formulas f representing functions f .

We let PTerm, ranged over by σ, τ, be the set of pseudo-terms. While pseudo-terms are
particular formulas, they will be treated as an extension of the notion of term. Indeed, a term
t having free variables v1, . . . , vm can be regarded as the pseudo-term vm+1 ≡ t.

Let σ ∈ Fmlam+1 be a pseudo-term. Whereas FVars(σ) = {v1, . . . , vm+1}, the free vari-
ables of σ as a pseudo-term, written FVarsP(σ), will be {v1, . . . , vm}; in this case, we will
also write σ ∈ PTermm. A pseudo-term σ is closed if FVarsP(σ) = /0, i.e., σ ∈ PTerm0.

Pseudo-terms can be composed freely with terms and other pseudo-terms in a term-like
fashion, and also substituted in formulas, as indicated in the following notation.

Notation 27. Given σ ∈ PTerm1, τ ∈ PTermm, t ∈ Term, and ϕ ∈ Fmla1, we write:

(1) σ(t) instead of σ(t, v2), assuming v2 /∈ FVars(t) (note that σ(t) is closed if t is closed);
(2) τ≡ t instead of τ(v1, . . . , vm, t);
(3) ϕ(τ) instead of ∃y. τ(v1, . . . , vm, y)∧ϕ(y), which thanks to the pseudo-term property is

provably equivalent to ∀y. τ(v1, . . . , vm, y)→ ϕ(y);
(4) σ(τ) instead of ∃y. τ(v1, . . . , vm, y)∧σ(y, vm+1), which again is provably equivalent to
∀y. τ(v1, . . . , vm, y)→ σ(y, vm+1); note that σ(τ) ∈ PTermm.

Above, y is chosen to be distinct from the other occurring variables. It is possible to
introduce multi-input extensions of this notation, but we will not need them. The notation
smoothly integrates pseudo-terms with terms, as shown in the following example properties:

Example 28. (1) If ` σ ≡ t (employing point (1) of the notation) and ` ϕ(σ) (employing
point (3)) then ` ϕ(t), where ϕ(t) is the usual instance of ϕ with t.

(2) If ϕ ∈ Fmla1, σ ∈ PTerm1 and τ ∈ PTerm0, then ` ϕ(σ)(τ)←→ ϕ(σ(τ)). Indeed:
– On the left of←→, we use point (3) for ϕ and σ, which expands ϕ(σ) to ∃y. σ(v1, y).

Then, we use point (3) for ϕ(σ) and τ, which yields ∃y. τ(y)∧ϕ(σ)(y). Combining
the two, we obtain that ϕ(σ)(τ) abbreviates ∃y. τ(y)∧ (∃y′. σ(y, y′)∧ϕ(y′)).

– On the right, we use point (4) for σ and τ, which expands σ(τ) to ∃y. τ(y)∧σ(y, v1).
Then we use point (3) for ϕ and σ(τ), which yields ∃y. σ(τ)(y)∧ϕ(y). Combining
the two, we obtain that ϕ(σ(τ)) abbreviates ∃y. (∃y′. τ(y′)∧σ(y′, y))∧ϕ(y).

Jeroslow fixes an abstract class of “computable” m-ary functions, Fm ⊆Numm→Num,
for all arities m ∈ N, on which he considers the following assumptions:

ReprF : Every f ∈Fm is represented by some pseudo-term f ∈ PTermm under the identity
encoding Num→ Num.

CapN: Some N ∈ F1 correctly captures negation: N〈ϕ〉= 〈¬ ϕ〉 for all ϕ ∈ Sen.
CapSS: Some ssub : Fmla1→ F1 correctly captures substituted self-substitution:

ssub (ψ) 〈 f 〉= 〈ψ( f 〈 f 〉) 〉 for all ψ ∈ Fmla1 and f ∈ F1.1

Note that, in CapSS, we take advantage of the introduced notation for pseudo-terms: If
we spell out Notation 27(2), the highlighted text denotes ∃y. f (〈 f 〉, y)∧ψ(y). Moreover,
employing Notation 27(1), the statement of ReprF for some f ∈ F1 and n ∈ Num would

1 For the proof of IT2, we will not need this to work for arbitrary formulas ψ in Fmla1, but only for N .
However, we will not delve into such micro-optimizations; see also footnote 2.
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be written as ` f (n) ≡ f (n); and combining CapN with the instance of ReprF for N, we
obtain a fact that, using the same notation, can be written as ` N 〈ϕ〉 ≡ 〈¬ ϕ〉.

When our logical theory is a recursive extension of Robinson arithmetic and Num = N,
Fm could be any sufficiently rich the set of m-ary computable functions, ranging from the
primitive recursive functions to all total µ-recursive functions. Then, every f ∈ Fm would
indeed be represented by a formula f . Moreover, assuming a computable and injective en-
coding of formulas, 〈_〉 : Fmla1→N, we can take N :N→N to be the following computable
function: Given input n, it checks if n has the form 〈ϕ〉; if so, it returns 〈¬ ϕ〉; if not, it returns
any value (e.g., 0). And ssub (ψ) can be defined similarly, obtaining the desired property for
every ϕ ∈ Fmla2, not necessarily of the form f . In short, Jeroslow’s assumptions cover
arithmetic (but also potentially many other systems).

The heart of Jeroslow’s approach lies in his diagonalization lemma, which offers pseudo-
term fixpoints, and from them formula fixpoints as well:

Lemma 29. Assume CapSS and ReprF and let ψ ∈ Fmla1. Then there exists a closed
pseudo-term τ such that ` τ≡ 〈ψ(τ)〉. Moreover, taking ϕ= ψ(τ), we have ` ϕ←→ ψ〈ϕ〉.

Proof. Let f = ssub (ψ) and τ = f 〈 f 〉. From CapSS, we obtain f 〈 f 〉 = 〈ψ( f 〈 f 〉)〉.
With ReprF , we obtain ` f 〈 f 〉 ≡ 〈ψ( f 〈 f 〉)〉, i.e., ` τ≡ 〈ψ(τ)〉. By logic, from this we
obtain ` ψ(τ)←→ ψ(〈ψ(τ)〉), i.e., ` ϕ←→ ψ〈ϕ〉.

Lemma 29 can be used to produce Gödel and Rosser sentences, which can be used like in
Sections 6, leading to variants of IT1. However, as discussed in Section 7.1, Jeroslow’s main
innovation affects IT2: It removes from the assumptions the second derivability condition,
HBL2.

Theorem 30. (IT2 à la Jeroslow) Assume Con`, HBL1, SHBL3 , ReprF , CapN, CapSS,
SHBL3 denotes the condition: ` ` (τ)→ ` 〈 ` (τ)〉 for all closed pseudo-terms τ.

Then 6` jcon , where jcon denotes ∀x. ¬ ( ` (x)∧ ` ( N (x))).

As with Rosser’s trick, we analyze this innovation’s tradeoffs from an abstract perspec-
tive. A first tradeoff is in the employment of a stronger version of the third condition, SHBL3,
holding for all closed pseudo-terms and not only those that encode sentences.

Another tradeoff is in the way consistency is expressed in the logic. Jeroslow does
not conclude 6` ¬ ` 〈⊥〉, but something more elaborate, namely 6` jcon. While the formula
¬ ` 〈⊥〉 internalizes the statement 6` ⊥, jcon internalizes the equivalent statement “for all
ϕ, it is not the case that ` ϕ and ` ¬ ϕ.” But are the internalizations themselves equivalent,
i.e., is it the case that ` ¬ ` 〈⊥〉 iff ` jcon? This surely holds for many concrete logics, but
it is only one direction that we can infer logic-independently, under mild assumptions:

Prop 31. Assume HBL1, ReprF , CapN. Then ` jcon implies ` ¬ ` 〈⊥〉.

Proof. Assume ` jcon.
- Instantiating jcon with 〈⊥〉, we obtain ` ¬ ( ` 〈⊥〉∧ ` ( N 〈⊥〉))
- From ReprF and CapN, we obtain ` N 〈⊥〉 ≡ 〈¬ ⊥〉.
- From the last two facts, by logic we obtain ` ¬ ( ` 〈⊥〉∧ ` 〈¬ ⊥〉).
- From ` ¬ ⊥ and HBL1, we obtain ` ` 〈¬ ⊥〉.
- From the last two facts, by logic we obtain ` ¬ ( ` 〈⊥〉), as desired.

It seems impossible to infer the other direction without knowing what ` looks like more
concretely. Therefore, 6` ¬ ` 〈⊥〉, the original IT2’s conclusion, is abstractly stronger than,
hence preferable to 6` jcon. In short, Jeroslow somewhat weakens the theorem’s conclusion.

26



Let us now look at (a slight rephrasing of) Jeroslow’s proof:
Proof of Theorem 30. We assume (1) ` jcon and aim to reach a contradiction.
- Applying Lemma 29 to the formula ` ( N ), we obtain a closed pseudo-term τ such that
` τ≡ 〈ϕ〉 and (2) ` ϕ←→ ` ( N 〈ϕ〉), where ϕ denotes ` ( N (τ)).
- By SHBL3 applied to N (τ), we obtain ` ` ( N (τ))→ ` 〈 ` ( N (τ))〉, i.e.,
(3) ` ϕ→ ` 〈ϕ〉.
- From (2) and (3), we obtain ` ϕ→ ` 〈ϕ〉∧ ` ( N 〈ϕ〉).
- On the other hand, (1) instantiated with 〈ϕ〉 gives us ` ¬ ( ` 〈ϕ〉∧ ` ( N 〈ϕ〉)).
- From the last two facts, we obtain (4) ` ¬ ϕ.
- With HBL1, we obtain ` ` 〈¬ ϕ〉.
- From ReprF and CapN, we obtain ` N 〈ϕ〉 ≡ 〈¬ ϕ〉.
- From the last two facts, by logic we obtain ` ` ( N 〈ϕ〉).
- With (2), we obtain ` ϕ. Together with (4), this contradicts Con`.

The above proof has a subtle gap, which makes Theorem 30 incorrect under its stated as-
sumptions. The problem lies in the highlighted description of the formula ϕ. Strictly speak-
ing (i.e., rigorously employing our Notation 27), the correct form of fact (2) is not ` ϕ←→
` ( N 〈ϕ〉) but ` ϕ←→ ` ( N )〈ϕ〉, and the correct ϕ is not ` ( N (τ)) but ` ( N )(τ). So

let us write ϕ for the correct version, ` ( N )(τ), and ϕ′ for ` ( N (τ)). Notice the differ-
ence: ϕ is obtained by first instantiating ` with N and then instantiating the remaining
formula with τ, whereas ϕ′ is obtained by first instantiating N with τ and then instantiating
` with the result. Both sentences occur in the proof: ϕ comes from Lemma 29, while ϕ′

comes from SHBL3. For most purposes in logic, the difference is minor, since (as we note
in Example 28(2)) ϕ and ϕ′ are provably equivalent. However, as we discuss below, shifting
between ϕ and ϕ′ must be done with care, since the proof uses them under the encoding 〈_〉.

A first attempt to fill this gap would be to require 〈ϕ〉 = 〈ϕ′〉, or at least ` 〈ϕ〉 ≡ 〈ϕ′〉.
The latter would be true under the assumption that the encodings of provably equivalent sen-
tences are provably equal. But assuming this is unreasonable: Usually sentence equivalence
is undecidable, so no computable encoding can achieve that.2,3 A more feasible solution
comes from noting that the proof does not need ` 〈ϕ〉 ≡ 〈ϕ′〉, but could work with the weaker
property ` ` 〈ϕ〉 → ` 〈ϕ′〉. The latter would be true under the following assumption:
WHBL2: ` ϕ←→ ψ implies ` ` 〈ϕ〉 → ` 〈ψ〉 for all ϕ, ψ ∈ Sen.

Since the→ in WHBL2 can be replaced with←→without changing the meaning, WHBL2
can be read as: encodings of provably equivalent sentences are provably equiprovable. Also,
WHBL2 is a weakening of
` ϕ→ ψ implies ` ` 〈ϕ〉 → ` 〈ψ〉 for all ϕ, ψ ∈ Sen

which, in the presence of HBL1, is seen to be a weak form of HBL2.4 This motivates the name
“WHBL2”. We are led to the following solution:
Correction 1. Theorem 30 becomes correct if we add WHBL2 as an assumption.

2 One may argue that we don’t need ` 〈ϕ〉 ≡ 〈ϕ′〉 in general, but only for the particular sentences ϕ and
ϕ′ used in the proof. However, for concrete logics these are complex sentences, so “hacking” an encoding to
achieve that equality while preserving the other desirable properties seems difficult, if not impossible. This
kind of argument could also be made, e.g., for the derivability conditions, in that IT1 and IT2 only need them
to hold for particular sentences; and the reason why such optimizations are not helpful is similar to the above.

3 Incidentally, this problem is also the reason why we need SHBL3 instead of HBL3: In the application of
SHBL3 to obtain ` ` ( N (τ))→ ` 〈 ` ( N (τ))〉, we cannot work with 〈¬ ϕ〉 instead of N (τ). Indeed, even
though ` N (τ)≡ 〈¬ ϕ〉 and hence ` ` ( N (τ))←→ ` 〈¬ ϕ〉, we cannot conclude ` 〈 ` ( N (τ))〉 ≡ 〈 ` 〈¬ ϕ〉〉.

4 Incidentally, the latter property can replace HBL2 when formalizing Step 1, but not when formalizing
Step 3 in Gödel-style IT2 (Theorem 25).
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Proof. Indeed, using WHBL2, we can fill the gap in Theorem 30’s proof as follows:
. . . (same as before)
- Applying Lemma 29 to the formula ` ( N ), we obtain a closed pseudo-term τ such that
` τ≡ 〈ϕ〉 and ` ϕ←→ ` ( N )〈ϕ〉, where ϕ denotes ` ( N )(τ).
- Since ` ` ( N )〈ϕ〉 ←→ ` ( N 〈ϕ〉) by Example 28(2), with the above we obtain
(2) ` ϕ←→ ` ( N 〈ϕ〉).
- By SHBL3 applied to N (τ), we obtain ` ` ( N (τ))→ ` 〈 ` ( N (τ))〉, i.e.,
(3’) ` ϕ′→ ` 〈ϕ′〉, where ϕ′ denotes ` ( N (τ)).
- Since ` ϕ←→ ϕ′, by WHBL2 we obtain ` ` 〈ϕ′〉 → ` 〈ϕ〉.
- From this and (3’), we obtain (3) ` ϕ→ ` 〈ϕ〉.
. . . (same as before)

In summary, one solution to filling the gap in Jeroslow’s approach, which aimed at re-
moving HBL2, was to (re)introduce a weaker version of HBL2, namely WHBL2.

An alternative solution is to replace representation by pseudo-terms with actual term-
representation (defined in Section 4.4). To this end, we amend SHBL3 to quantify over all
closed terms t instead of all closed pseudo-terms τ; moreover, also factoring in the observa-
tion that Jeroslow’s proof does not need Fn for all n but F1 suffices, we change ReprF into:

ReprF : Every f ∈ F1 is term-represented, under the identity encoding Num→ Num, by
some f taken from a set Ops ⊆ (Term→ Term) for which an encoding as numer-
als 〈_〉 : Ops→ Num is given, and such that FVars(g(t)) = FVars(t) and (g(t))[s/x]
= g(t[s/x]) for all g ∈ Ops, s, t ∈ Term and x ∈ Var.

(In concrete logics, the elements of Ops can be constructors or derived operators on terms.)

Correction 2. Theorem 30 becomes correct if we work with terms rather than pseudo-terms
and amend SHBL3 and ReprF as indicated above.

Proof. Indeed, all the proofs of CapSS, Lemma 29 and Theorem 30 work if we switch from
pseudo-terms to terms.

In summary, our second solution requires the following amendment to Jeroslow’s ap-
proach: For representing computable functions, we must have available not just pseudo-
terms, but actual terms. This usually means that the logic has built-in Skolem symbols and
axioms.

Finally, let us see what it takes to alleviate the second tradeoff: from 6` jcon to the more
desirable 6` ¬ ` 〈⊥〉. We consider the following condition:

HBL4: ` ` 〈ϕ〉∧ ` 〈ψ〉 → ` 〈ϕ∧ψ〉 for all ϕ, ψ ∈ Sen.

HBL4 has a similar flavor as HBL2, but refers to conjunction rather than implication: It states
that conjunction introduction holds inside the proof system.

Theorem 32. If we modify Theorem 30 by applying Correction 1 (i.e., adding assumption
WHBL2) and adding assumption HBL4, then its conclusion can be upgraded to 6` ¬ ` 〈⊥〉.

Proof. The only time when ` jcon is used in the proof is via its specific instance ` ¬ ( ` 〈ϕ〉
∧ ` ( N 〈ϕ〉)), which by ReprF and CapN would follow from (1) ` ¬ ( ` 〈ϕ〉∧ ` 〈¬ ϕ〉). So
it suffices to show that the last follows from ` ¬ ` 〈⊥〉, WHBL2 and HBL4:
- From HBL4, we obtain ` ` 〈ϕ〉∧ ` 〈¬ ϕ〉 → ` 〈ϕ∧¬ ϕ〉.
- From WHBL2 and ` ϕ∧¬ ϕ←→⊥, we obtain ` ` 〈ϕ∧¬ ϕ〉 → ` 〈⊥〉.
- From the last two facts, we obtain ` ` 〈ϕ〉∧ ` 〈¬ ϕ〉 → ` 〈⊥〉.
- Hence ` ¬ ` 〈⊥〉→ ¬ ( ` 〈ϕ〉∧ ` 〈¬ ϕ〉).
- With ` ¬ ` 〈⊥〉, we obtain (1), as desired.
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Note that a version of Theorem 32 relying on Correction 2 rather than Correction 1
would be weaker than Theorem 32, since WHBL2 is necessary in the proof even if we work
with terms instead of pseudo-terms.

In summary, Theorem 32 highlights the following assumption tradeoff in Jeroslow’s
approach, provided the same strong conclusion as in the standard IT2 is desired: the removal
of HBL2 against the addition of WHBL2 and HBL4 (and the slight strengthening of HBL3
into SHBL3). Whether this is a good tradeoff will of course depend on the logic’s specificity,
in particular, on its primitive rules of inference.

Jeroslow presented his approach for an abstract logical theory over a FOL language,
which is not necessarily a FOL theory—so it found a natural fit in our generic framework.
Jeroslow’s account is extremely sketchy and notationally ambiguous. In spite of this account
having become part of the IT2 folklore, very few subsequent authors present it rigorously,
and none at its original level of generality. Smith’s monograph gives a rigorous account for
arithmetic [56, §33], silently performing Correction 2,5 but failing to detect the need for
SHBL3 instead of HBL3 (which Jeroslow had noticed). A mechanical proof assistant is of
invaluable help with detecting such nuances and pitfalls.

We conclude with an anecdote involving our Isabelle formalization and Jeroslow’s no-
tations. Given the relative simplicity of Lemma 29, we were not too surprised that Isabelle’s
Sledgehammer [41] was able to prove it automatically. But Sledgehammer went further. It
reported to have used the equality-reflexivity rule for ` in the proof. And it had found a
term (not a pseudo-term) t for which it had proved not just ` t ≡ 〈ψ(t)〉, but actual equality,
t = 〈ψ(t)〉; in particular, the term was a numeral. All this was too good to be true. It took us
some time to realize why that happened: Due to one of Jeroslow’s notations, who wrote f
instead of f (thus identifying a function with its representing pseudo-term), we had at first
misstated CapSS, writing 〈ψ( f 〈 f 〉)〉 instead of 〈ψ( f 〈 f 〉)〉; the former is still a valid
expression, since f is a function between numerals which are particular terms. Embarrass-
ingly, it took us even longer to realize why this variation discovered by chance was not an
improvement of Jeroslow’s diagonalization lemma: because the assumption CapSS becomes
unreasonable. Indeed, no concrete computable function would then be able to act like the
intended ssub (ψ): Given an input n, (1) decode it into a unique formula ϕ such that n = 〈ϕ〉,
(2) decode ϕ into a unique function f such that ϕ = f and (3) proceed to apply f as part
of producing 〈ψ( f 〈 f 〉)〉. The second step requires an injective and computable encoding of
computable functions into formulas, which is impossible.

8 Summary of the Abstract Results

Using our generic infrastructure (Section 4), we have formally proved Gödel-style and
Rosser-style diagonalization lemmas (Section 5) and several abstract incompleteness re-
sults. They include several versions of IT1:

– Gödel’s original IT1 (Theorem 13) and an IT1 based on classical logic (Theorem 22)
required the formalization of some well-known arguments without change.

– Rosser’s IT1 (Theorem 16) involved the generalization of a well-known argument: dis-
tilling two abstract conditions, Ord1 and Ord2.

– Novel semantic variants of IT1 (Theorems 17–20, 23 and 24) arose from analyzing the
interplay between standard models, HBL1’s “iff” version, and proof representability.

5 In preparation for stating Jeroslow’s variant of IT2, Smith requests that the language has a built-in func-
tion symbol for each primitive recursive function (and the theory has corresponding axioms for its behavior),
which ensures that one can use terms instead of pseudo-terms.
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They also include two versions of IT2:

– The standard IT2 based on the three derivability conditions (Theorem 25) again only
required formalizing a well-known argument.

– The alternative, Jeroslow-style IT2 (Theorem 30 with its two corrections, and Theorem
32) involved a detailed analysis and correction of an existing abstract result.

9 Concrete Instances

All the results presented so far operate abstractly, under certain assumptions—starting with
a logic as generic as possible and adding structure and hypotheses as needed, while ex-
ploring conditions that enable different formulations of the results with various tradeoffs;
concrete encodings and recursiveness are below the abstraction level of these results. By
contrast, some of the previous mechanization projects, namely those by Shankar [52, 53],
O’Connor [36], Harrison [21] and Paulson [40], focused on the impressive goal of “getting
all the work done.” They fully proved the incompleteness theorems in particular settings,
which involved defining the concrete Gödel encodings. These two types of developments
are complementary, and they both contribute to formally taming the complex ramifications
of the incompleteness theorems.

This section will discuss concrete instances of the abstract results. We start by listing our
mechanized instances (Subsection 9.1), and explain how they have been based on Paulson’s
prior Isabelle development (Subsection 9.2). When instantiating our abstract assumptions to
Paulson’s setting, not only did we recover his results, but were also able to upgrade them.
This did require modifying some concrete proofs, but even when doing that we relied on top-
down insight from the abstract results; in fact, as we are about to discuss, insight has traveled
bottom-up as well. We also revisit major developments in other provers (Subsection 9.3), and
finally briefly sketch a wider array of possible instances (Subsection 9.4).

9.1 Our mechanized instances

We first validate the assumptions about our abstract logic and arithmetic:

Prop 33. (1) Any FOL theory that extends Robinson arithmetic or HF set theory satisfies
all the axioms in our logical and arithmetic substrata (in Sections 4.1, 4.2 and 4.3).
(2) If, in addition, the theory is sound, then, together with its corresponding standard model,
it also satisfies all our model-theoretic axioms (in Section 4.6).

In particular, point (2) shows that our abstract framework for standard models applies
equally well to N and the datatype of HF sets. In the latter case, Num becomes the entire set
of closed terms, so that numerals can denote arbitrary HF sets. This illustrates the versatility
of our abstract concept of numeral.

We instantiate two of our main theorems in three ways:

Theorem 34. Let T be a FOL theory that extends HF set theory with a finite set of axioms,
and let `b and ` be the same relation, namely provability from T .
(1) If T is sound in the standard HF set model , then the hypotheses of Theorems 24 and 25
are satisfied, i.e., IT1 (classical semantic version) and IT2 hold for T .
(2) If T is consistent , then the hypotheses of Theorem 25 are satisfied, i.e., IT2 holds for T .
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9.2 Connection to Paulson’s results

The above instances are heavily based on the lemmas proved by Paulson in his Isabelle/HOL
formalization of IT1 (covering both the proof-theoretic and the semantic aspect) and IT2
[39, 40]. Paulson formalized quite faithfully Świerczkowski’s detailed account [61], but he
also strengthened and slightly corrected it. Świerczkowski’s work applies to HF set the-
ory [61, 62], a classical FOL theory axiomatizing hereditarily finite sets by means of an in-
duction principle stating that the universe is comprised of such sets only. Paulson extended
Świerczkowski’s incompleteness to essential incompleteness with respect to any finite sound
extension of HF set theory within the same FOL language.

Our Theorem 34’s point (1) is a restatement of Paulson’s formalized results: theorems
Goedel_I and Goedel_II in [40]. By contrast, point (2) is an upgrade of Paulson’s Goedel_II,
applicable to any finite consistent, though possibly unsound theory. This stronger version is
a more standard form of IT2, free from any model-theoretic dependencies. Paulson proved
both HBL1 and HBL⇐1 taking advantage of soundness, so to achieve the upgrade we had to
discard HBL⇐1 and re-prove HBL1 by replacing any semantic arguments with proofs within
the HF calculus. We also removed all invocations of the Σ1-completeness lemma, which
happened to depend on soundness due to Paulson’s choice of Σ1-sentence definition.

This instantiation process has offered us important feedback into the abstract results. A
formal development such as ours is (largely) immune to reasoning errors, but not to miss-
ing out on useful pieces of generality. We experienced this firsthand with our assumptions
about substitution. An a priori natural choice was to assume representability of the numeral
substitution Sb : Fmla1×Num→ Sen (defined as Sb(ϕ, n) = ϕ(n)), part of which means (1)
`b Sb (〈ϕ〉, n, Sb(ϕ, n)). Instead, Paulson had proved (2) `b Sb (〈ϕ〉, 〈n〉, Sb(ϕ, n)). Unlike
(1), Paulson’s (2) applies the term encoding function 〈_〉 : Term→Num to numerals as well
(which are particular terms); and since his 〈_〉 function is injective, it is far from the case
that 〈n〉 = n for all numerals n. Paulson’s version makes more sense than ours when build-
ing the results bottom-up: Representability should not discriminate numerals, but filter them
through the encodings like other terms. However, top-down our version also made sense: It
yielded the incompleteness theorems under reasonable assumptions, which do hold, by the
way, for HF set theory—even though in a bottom-up development one is unlikely to prove
them. We resolved this discrepancy through a common denominator: the representability of
self-substitution S : Fmla1→ Sen (Section 4.4), which made our results more general.

Paulson’s formalization has also inspired our abstract treatment of standard models (Sec-
tion 4.6). Since Paulson proved HBL⇐1 and used classical logic, an obvious “port of entry”
of his IT2 into our framework is Theorem 22, taking both `b and ` to be Paulson’s prov-
ability relation (which is classical provability in a finite extension of HF set theory). But this
theorem tells us nothing about the Gödel sentences’ truth. Delving deeper into Paulson’s
development, we noted that, following Świerczkowski, he (unconventionally) completely
avoided Repr , and did not even define . This raised the question of whether HBL⇐1 and
Repr are somehow interchangeable in the presence of standard models (on which Paulson
relies heavily); and we found that they indeed are, under mild assumptions about truth (as
we discuss in Section 4.6). This analysis has led to variants of our semantic IT1, Theo-
rems 18 and 20, which incidentally do not need classical logic. Although our Theorem 18
seemed like an excellent candidate to instantiate to Paulson’s semantic IT1, its instantiation
turned out to be difficult. All its assumptions were easy to fulfill based on what Paulson
had already proved, except for Compl¬Pf . Indeed, whereas Paulson proved that his proof-of
relation is a Σ1-formula (which implies ComplPf by Σ1-completeness), he did not prove the
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same for its negation (which would imply Compl¬Pf ). Instead, we recovered Paulson’s IT1
as an instance of our Theorem 24 (which requires classical logic).

There are two further improvements that we could perform to Paulson’s formalization,
leveraging our abstract results: (1) replacing the soundness assumption from Paulson’s IT1
with consistency, and (2) removing all traces of classical reasoning in the object logic to port
Paulson’s IT1 and IT2 to intuitionistic logic. For the first improvement, we must prove the
aforementioned missing link between Paulson’s IT1 and our Theorem 18, namely showing
that Compl¬Pf holds in Paulson’s setting; we are confident that this is true (any reason-
able proof-of relation is a ∆1-formula, implying that its negation is a Σ1-formula), but the
proof will be very laborious. The second improvement will have a large formal overlap with
the first: To remove the uses of the unrestricted Excluded Middle axiom, we must prove
that instances of this axiom hold intuitionistically for several formulas expressing decidable
predicates, including many predicates that participate in the definition of Paulson’s Pf, as
well as Pf itself; and, in the presence of ComplPf , we have that Compl¬Pf is equivalent to
Excluded Middle holding for Pf(n, 〈ϕ〉).

9.3 Connection to results mechanized in other provers

Shankar’s 1986 development. In pioneering work [52, 53], Shankar proved formally the
proof-theoretic version of IT1 for any finite extension of the FOL theory Z2 [10], i.e., he
proved Z2’s finitary essential incompleteness. Z2 is a variation of HF set theory, the dif-
ference between the two being that the latter postulates an induction principle for all the
HF sets, whereas the former singles out the natural numbers as those transitive HF sets that
are totally ordered by membership and postulates induction for numbers only. The underly-
ing object logic considered by Shankar was classical FOL enriched with definitions by the
Skolemization of any proved “exists unique” sentences. He worked in Thm, an early version
of the Boyer–Moore prover that eventually evolved into Nqthm [6] and then ACL2 [26].
This prover’s logic, i.e., the meta-logic of Shankar’s development, is a quantifier-free FOL
enriched with induction and recursion principles for reasoning about total functions ex-
pressed in pure Lisp. This is significantly less expressive than HOL, and in fact close to
primitive recursive arithmetic (PRA). Formally proving IT1 within the constraints of this
minimalistic meta-logic was an impressive achievement even by today’s standards.

Shankar’s development follows a similar structure to Cohen’s high-level informal pre-
sentation [10, §9] (which Shankar cites). He proved that all partial recursive functions are
representable in Z2, a result we will refer to as RR. Besides being a central result in itself,
RR is a convenient tool for proving Gödel’s theorems. Some proof developments for IT1,
including the Świerczkowski-Paulson one, do not prove RR in its generality, but prove the
representability of needed functions only. On the other hand, the RR route is usually the
one preferred in textbooks due to its elegance and generality. As Shankar observed, textbook
proofs of IT1 via RR often step from the meta-logic (where the usual informal mathemat-
ical discourse takes place) into a meta-meta-logic: The formula- and proof- manipulating
functions needed for IT1 are defined (as usual) as meta-level functions, then a meta-meta-
level argument is being made that they are recursive, in order to conclude that they are
representable. In a mechanization, however, such an argument must stay in the meta-logic.
Shankar achieves this by formalizing a pure Lisp interpreter that is able to evaluate any re-
cursive function when taking its description as an input. His formulation of RR refers to
this interpreter, stating that the interpreter’s partial-function behavior (in relational form) is
representable in Z2. Each function needed in the proof of IT1 is proved to be representable
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by first showing it to be equivalent to its interpreted version. Special care is required to have
these definitions and proofs work in the meta-logic, where all functions must terminate—to
that end, the interpreter takes an additional numeric argument representing the maximum
allowed size of the computation.

Using notations close to the ones in this paper and bypassing the indirection through
the interpreter, Shankar’s proof of IT1 can be summarized as follows. He defined a partial
function THM : Sen→{0, 1} that, upon an input ϕ, enumerates all the possible proofs and:

– terminates and returns 1 if a proof of ϕ is found;
– terminates and returns 0 if a proof of ¬ ϕ is found.

In particular, THM loops (i.e., is undefined) if neither ϕ nor ¬ ϕ is provable. Also, if both
ϕ and ¬ ϕ are provable (meaning the considered extension of Z2 is inconsistent), then the
output of THM depends on whose proof comes first in the enumeration. But regardless of
that, it holds that THM (ϕ) = 1 implies ` ϕ, and THM (ϕ) = 0 implies ` ¬ ϕ.

Let ψ ∈ Fmla1 be the formula that represents the unary relation {ϕ ∈ Sen | THM(ϕ〈ϕ〉)
= 1}; this is obtained by (i) invoking RR to produce a formula χ ∈ Fmla2 that represents
the graph of the partial function THM◦S (where S is the self-substitution operator), and (ii)
substituting 〈1〉 for χ’s second variable. Let CS be the Cohen–Shankar sentence ¬ ψ〈¬ ψ〉.

Now, assume that ` CS or ` ¬ CS, meaning that THM (CS) terminates and returns 1 or
0. We have two cases, both of which contradict consistency:

– If THM (CS) = 1 (i.e., (THM ◦ S) (¬ ψ) = 1), then we have ` ¬ ψ〈¬ ψ〉 by THM’s
definition, and also ` ψ〈¬ ψ〉 by (THM◦S)’s representability.

– If THM (CS) = 0 (hence (THM◦S) (¬ ψ) 6= 1), then we have ` ¬ ¬ ψ〈¬ ψ〉 by THM’s
definition, and also ` ¬ ψ〈¬ ψ〉 by (THM◦S)’s representability.

The above proof, which is similar to Cohen’s proof sketch,6 does not make explicit
reference to HBL1, although this is of course a consequence of RR via the representability
of the “proof of” relation. In fact, the proof makes use of the representability of THM ◦S,
which is a variation of the representability of ` (for particular sentences of the form ϕ〈ϕ〉)
featuring a positive version of the Rosser twist discussed in Section 5, but at the meta-level:
The considered relation is not just provability, but provability by a proof p such that there is
no proof q of the formula’s negation occurring earlier in the enumeration.

The above argument is based on the diagonalization, though at the meta-level not at
the object level as in Prop. 9. As Shankar remarked, the sentence CS says “my negation is
provable by a proof that comes in the enumeration before any proof of me”. This is true in
the context of the above argument by contradiction, namely under the assumption that CS
is decided (either provable or unprovable). Indeed, from the definitions of ψ and THM, we
see that CS says “it is not the case that a proof of CS comes before a proof of ¬ CS”, which,
given the assumption, is equivalent to the above.

Let us refer to such sentence CS as Cohen-Shankar sentences (without claiming his-
torical accuracy about the ideas behind them, which seem to go back at least as far as
Smullyan [59]). They can alternatively be obtained by diagonalization in the object logic,
namely using Prop. 9 and Repr¬ to find CS such that `CS ←→ (∃x.  (x, 〈¬CS〉)∧∀x′. (x′ <
x→¬  (x′, 〈CS〉))), where < is the representation of the occurrence order in the enumera-
tion of proofs used in THM’s definition. While classically a Cohen–Shankar sentence is es-
sentially the negation of a Rosser sentence, intuitionistically this is not the case. However, CS

6 A difference is that Cohen employs “self-application” of recursive functions to their (incremented) en-
coding, whereas Shankar employs self-substitution ϕ〈ϕ〉 to the same effect.
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can replace the Rosser sentence in our proof-theoretic Rosser-style IT1, covered by Props.
14, 15 and Theorem 16. Indeed, a bit of mining reveals that the proofs of these results are suf-
ficiently general to accommodate both types of sentences. Given any ϕ1 and ϕ2, let us define
the one-variable formula Twistϕ1,ϕ2(x) to be  (x, 〈ϕ1〉)∧∀x′. (x′ < x→ ¬  (x′, 〈ϕ2〉)).
Note that, in the presence of Repr¬ , we have that (i) ` R ←→ ¬ TwistR,¬ R for all Rosser
sentences R, and (ii) ` CS ←→ Twist¬ CS,CS for all Cohen–Shankar sentences CS. Based on
this observation, we can amend the proofs of Props. 14 and 15 by simply replacing ¬ R
with CS and R with ¬ CS, and using (ii) instead of (i). Let us illustrate this on the crucial
point (5) in Prop. 14’s proof, establishing that ` ∀x.¬ TwistR,¬ R(x), which is used to infer
`¬ (∃x.TwistR,¬ R(x)), hence (by (i)) `R, leading to a contradiction with the `¬R assump-
tion. After the replacement, point (5) establishes that ` ∀x.¬ Twist¬ CS,CS(x), which is used
to infer ` ¬ (∃x.Twist¬ CS,CS(x)), hence (by (ii)) ` ¬ CS, leading to a contradiction with the
` CS assumption; and similarly for Prop. 15. Moreover, the proof of our semantic Rosser-
style IT1 (Theorems 19 and 20) can be straightforwardly adapted to show, under our abstract
assumptions, that CS is false (i.e., ¬ CS is true) in the standard model—a fact also proved
by Cohen in his concrete setting. In conclusion, our abstract results can be migrated from
Rosser to Cohen–Shankar sentences without requiring classical reasoning in the object logic.

O’Connor’s 2005 development. O’Connor proved formally the proof-theoretic version of
IT1 [36, 37] for any self-representable extension of a classical FOL theory called NN [23,
§7.1], i.e., he proved the essential incompleteness of NN with respect to self-representable
extensions. Self-representability of a FOL theory means that its set of axioms is represented
by a one-variable formula in that theory. NN is a modification of Robinson arithmetic ob-
tained by replacing the dichotomy axiom (any element is either 0 or a successor) with
three axioms regulating the behavior of an additional binary relation symbol for strict or-
der, namely stating that (i) no element is smaller than 0, (ii) being smaller than the successor
of an element implies being smaller than or equal to that element, and (iii) the order is total.
NN has a similar (though not comparable) expressiveness to Robinson arithmetic. Like the
latter, it is significantly less expressive than Peano arithmetic yet sufficient for IT1 (but not
for IT2). O’Connor worked in the Coq prover [3], so his meta-logic is Coq’s underlying
Calculus of Inductive Constructions [38], an intuitionistic logic based on intensional type
theory. Working out IT1’s theorem intuitionistically (though for a classical object logic)7

was original, and revealed some interesting phenomena.
O’Connor’s development followed the informal presentation from Hodel’s textbook

[23], with some notable modifications discussed below. Following Hodel, and similarly to
Shankar, he combined a representability theorem for a class of computable functions with
proofs that all functions needed for IT1 are in this class, hence are representable. However,
unlike Hodel and Shankar, O’Connor did not prove representability for all recursive func-
tions (a result we denoted by RR), but stopped at the representability of primitive recursive
functions—we will refer to this latter result as PR. This restriction made the proofs that
certain functions are in the considered class more difficult—notably, he reported on the dif-
ficulty of establishing that substitution is primitive recursive. On the other hand, O’Connor’s
formalized representability result is stronger than Shankar’s on the theory expressiveness di-
mension, since it is proved for the minimalistic theory NN.

O’Connor proved a version of IT1 that would classically read as follows: For any con-
sistent self-representable extension of NN, there exists a sentence ϕ such that neither ϕ nor

7 By contrast, most of our results have been established for intuitionistic object logics, while working in a
classical meta-logic (the Isabelle/HOL variant of HOL [29]).
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¬ ϕ is provable. Due to the intuitionistic meta-logic, O’Connor preferred the intuitionisti-
cally stronger (and classically equivalent) formulation: For any self-representable extension
of NN, there exists a sentence ϕ such that, if ϕ or ¬ ϕ are provable, then that extension proves
everything (i.e., is inconsistent). Another consequence of the intuitionistic meta-logic is the
need for an additional assumption: that the given extension’s set of axioms is decidable,
i.e., its (meta-level) membership predicate satisfies Excluded Middle. The above universally
quantified ϕ is witnessed by a Rosser sentence constructed via diagonalizaton, so the result
essentially falls under Props. 9,10 and Theorem 16, where both `b and ` are taken to be de-
duction in a self-representable extension of NN. (Note that all the FOL theories of interest for
IT1 can already be represented in NN, not only in an extension of NN; and the correspond-
ing (slightly weaker) version of O’Connor’s result assuming NN-representability instead of
self-representability is obtained by taking `b to be deduction in NN and ` to be deduction
in the considered extension.) Since here the FOL infrastructure is fixed, self-representability
is equivalent to representability of the “proof of” relation (which O’Connor proved), hence
it implies HBL1 (which he did not mention explicitly but inlined in his proof). Incidentally,
O’Connor’s formalization improves on Hodel’s account, who unnecessarily added an axiom
to NN for coping with Rosser’s trick [37, §6.4].

O’Connor’s self-representability assumption in IT1 is more general than the standard
recursive axiomatizability assumption. In informal accounts of essential incompleteness in-
cluding Hodel’s, this more general result is usually inlined in the proof and only the end
result is stated, which assumes not self-representability but recursive axiomatizability; an ex-
ception is the account of Feferman, who assumes a generalized form of self-representability
(namely representability in a sub-theory) in his statements of IT0.5 and IT2 (Theorems
5.3 and 5.6 in [13]). In a formal account, such more general results are valuable for easier
reusability across different instances. O’Connor did not prove that all recursively axiom-
atizable extensions of NN are self-representable (which would have followed from RR).
However, he used his PR together with a proof that Peano arithmetic has its axioms prim-
itively recursive to instantiate IT1 to Peano arithmetic. He also proved the consistency of
this theory (by showing that the natural numbers form a model, via a semantic interpre-
tation function wrapped up in a negative translation to ensure classical validity within the
intuitionistic meta-logic). Thus, he obtained the theory’s unconditional incompleteness.

Harrison’s 2009-2010 development. Harrison [21] proved formally versions of IT1 for the-
ories in the language of Robinson arithmetic with ≤ and < included as primitive predicate
symbols. In what follows, we will refer to this language as LA, and by “Robinson arith-
metic” we will mean the definitional extension of Robinson arithmetic as a theory in LA
(with added axioms that define ≤ and <). Harrison worked in HOL Light [20], a proof
assistant belonging to the HOL family together with Isabelle/HOL and HOL4.

In his development towards IT1, Harrison followed a semantic approach, based on ideas
that go back to Gödel’s introduction of his original paper [17]. The approach was promoted
by Smullyan [60] for its simplicity and elegance, and Harrison himself further elaborated
and improved on it in his textbook [19, §7]. The focus is no longer on the concept of a
relation’s representability (for a given theory), but on that of a relation’s definability in the
standard model (for a given language). In our notations, definability is obtained by replac-
ing `b with |= in either the representability or the weak representabilty condition.8 (Harrison
formalized an equivalent definition of definability using valuations in the model.) The ad-

8 These give the same result under the reasonable assumption that truth satisfies Excluded Middle—our
Section 4.6’s LCQ|=(5).
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vantage of definability over representability is that the former is typically much easier to
prove for concrete relations, without having to work inside a formal proof system.

LA is sufficient to achieve the definability (in the standard model of natural numbers)
of the relevant syntactic concepts. These include (soft) self-substitution, which gives a se-
mantic version of diagonalization: Prop. 9 with `b replaced by |=. In turn, this leads to the
semantic version of Tarski’s theorem on the undefinability of truth, which concludes the non-
existence of a one-variable formula T such that |= ϕ←→ T〈ϕ〉 for all ϕ. And after showing
that provability in Robinson arithmetic is definable, one obtains that provability is distinct
from truth; in particular, for sound theories this implies the incompleteness of provability, a
first version of the proof-theoretic IT1. In fact, Harrison proved something more general: If
a theory T in LA is definable (in that its set of axioms is definable), then its set of provable
sentences is definable, hence different from the set of true sentences. This leads to a form of
essential incompleteness: Any sound definable theory in LA, in particular, any extension of
Robinson arithmetic with a sound definable set of axioms, is incomplete.

Harrison also pursued an alternative semantic route to IT1, which does not go through
Tarski’s theorem, but instead: (1) assumes (for starters) the soundness of the theory, (2) ob-
tains a semantic version of Gödel sentences G using the semantic diagonal lemma, and (3)
performs (what can be regarded as) a modification of the Gödel’s original argument (the
proofs of Props. 11 and 12), appealing to soundness whenever needed for shifting from
provability to truth. The advantage of this last line of reasoning is that it can be sharpened:
Noting that soundness is only needed for G, ¬ G and ⊥, and using the fact that G is a Π1-
sentence (making ¬ G a Σ1-sentence) if the theory is Σ1-definable (i.e., definable by a Σ1-
formula), Harrison obtained the following stronger, symmetric version of proof-theoretic
IT1: If a theory in LA is Σ1-definable, then (i) if it also Π1-sound then 6` G and (ii) if it
also Σ1-sound then 6` ¬ G (where ` denotes deduction from this theory, and X-soundness
or X-completeness means soundness or completeness for all X-sentences). And from repre-
sentability and the semantic Gödel-sentence property, under the assumptions of (i), it follows
that |= G. So he obtained both the proof-theoretic and the semantic component of IT1.

In the above statement of IT1, the Π1-soundness assumption can be replaced by con-
sistency plus Σ1-completeness, since the latter two imply the former. Finally, using the Σ1-
completeness for Robinson arithmetic (and hence for any extension), Harrison formalized an
essential incompleteness generalization and strengthening of the original Gödel-style IT1:
For any consistent Σ1-definable extension of Robinson arithmetic, we have 6` G and |= G;
and if the extension is also Σ1-sound, then 6` ¬ G. In the presence of Σ1-completeness, the
Σ1-soundness property (also called 1-consistency) is weaker than theω-consistency property
used originally by Gödel, which we assume in our Prop. 12 and Theorem 13.

Currently, refinements of IT1 based on arithmetical hierarchy considerations are below
the level of abstraction of our general framework. On the other hand, the high-level aspects
of the Smullyan–Harrison semantic line of reasoning could be incorporated in this frame-
work, which has infrastructure for both provability and truth. Our Archive of Formal Proofs
entry [44] already contains proof-theoretic and semantic versions of Tarski’s theorem.

9.4 Other potential instances

Many other logics and logical theories satisfy our theorems’ assumptions. We do not require
the logic to be reducible to a single syntactic category of formulas, Fmla, a single pair of
judgments, `b and `, etc.; but only that such (well-behaved) formulas, provability relations,
etc. are identifiable as part of that logic, e.g., localized to a given type and/or relativised by
a given predicate. This allows our framework to capture most variants of higher-order logic
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and type theory (including the variant underlying Isabelle/HOL itself [29, 30]), and also,
we believe, many of the logics surveyed by Buldt [7], including non-classical and fuzzy.
But enabling “mass instantiation” that is both formal and painless requires more progress
on the agenda we started here: recognizing reusable construction and proof patterns and
formalizing them as abstract results.
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A More Details on the Isabelle Formalization

While in this article the focus is on the abstract formulation of Gödel’s incompleteness theorems, our for-
malization’s total 28 000 lines of Isabelle definitions and proofs split almost evenly between the abstract and
the concrete results. More specifically, we organize our development in five entries in the Archive of For-
mal Proofs (AFP) [44–48]—a centralized repository for Isabelle proofs, which ensures the proofs’ longevity
despite the continuous, often not-backwards-compatible development of Isabelle.

Two of the five AFP entries cover the formalization’s abstract parts. Our development of syntax-indepen-
dent logic infrastructure as described in this article’s Sections 4.1–4.3 spans 9 200 lines [48]. The abstract def-
initions more specifically related to Gödel’s incompleteness theorems described in Sections 4.4–7 is at 4 000
lines more concise. We observe that line numbers are not necessarily a good measure for a proof’s ingenuity.
Logic infrastructure proofs revolve around setting up parallel substitution and a deduction calculus for further
use—a tedious but routine task. In contrast, the abstract Gödel development involves subtle diagonalization
arguments and requires careful symbolic manipulation of represented objects.

The remaining three AFP entries formalize the concrete instances of the abstract results detailed in Sec-
tion 9. Prop. 33 instantiates our syntax-independent logic infrastructure with Robinson arithmetic. Our 1 600
lines long formalization of Robinson arithmetic [47] follows the style and structure of Paulson’s formalization
of HF set theory. In particular, we also use Nominal Isabelle [64] to represent binders. Our formalization of
Theorem 34(1) [45] reproduces Paulson’s formulation of Gödel incompleteness theorems for finite, sound ex-
tensions of HF set theory. This merely required us to discharge the abstract assumptions of Theorems 24 and
25 by instantiating them with results from Paulson’s formalization—a simple exercise spanning 400 lines (not
counting the 12 300 lines of Paulson’s formalization). Formalizing the strengthened Theorem 34(2) [46] was
significantly more difficult, because we could not simply reuse Paulson’s formalization. Instead, we had to re-
place all of Paulson’s semantic arguments with proofs within the HF calculus. In terms of proof-engineering,
we started by copying Paulson’s formalization (12 300 lines) and by removing from it every argument and def-
inition that referred to standard models, which saved about 5 000 lines. After that, we reintroduced the argu-
ments needed for Gödel’s second incompleteness theorem and proved them within the HF calculus. The new
proofs span about as much as we had removed, such that overall we obtain the stronger result in 12 800 lines.

Our formalization relies heavily on locales [2], Isabelle’s mechanism for maintaining contexts with pa-
rameters and assumptions. The two abstract AFP entries [44, 48] declare 65 interdependent locales. These
locales allow us to flexibly select just the needed assumptions for each theorem’s variant. On the downside,
complex locale hierarchies like ours tend to cause the formalizers to write seemingly redundant boilerplate
code. In particular, every locale which extends another locale has to repeat the parameters (but fortunately
not the assumptions) of the extended locale to ensure that correct type variables are used in the new locale.

In our locales, we fix explicit sets as universes of variables, numerals, terms, and formulas. Thus, any
quantification over these entities must be expressed as bounded quantification over the fixed sets. This compli-
cates the reasoning inside of the locales, because every step that uses a theorem with bounded quantification
must discharge these additional universe-membership assumptions. We have even developed an ad hoc col-
lection of specialized Eisbach proof methods [33] to deal with such assumptions. A natural alternative that
would avoid these complications is to use types as universes. We opted for the set-based formulation instead
of the type-based one, because set-based result can be instantiated more flexibly. For example, numerals are
a subset of terms in Paulson’s HF set theory and we instantiate our locales’ universe of numerals with this
subset. A type-based formulation would require introducing a separate type for numerals and lifting all results
involving numerals to this type. Another alternative, the types-to-sets approach [31], combines the strengths
of type-based and set-based theorems, at the expense of extending the logic, which we wanted to avoid.

The abstract parts of our formalization use declarative Isar proofs. This makes the proofs readable and
ensures that they closely resemble the pen-and-paper arguments presented in this paper. In fact, the informa-
tion flow for this algorithm went in the opposite direction: the pen-and-paper arguments constitute a (some-
times compressed) transcript of the formal Isar proofs. The concrete parts use a mixture of declarative and
procedural (apply-style) proofs. Especially proofs in the HF calculus tend to follow the procedural style.

All our concrete theorems use Nominal Isabelle [64] to represent formulas with binders. This, however,
is attributed to the fact that in all cases we took Paulson’s formalization, which uses Nominal, as a blueprint.
Our abstract development does not prescribe the usage of Nominal—it can similarly well accommodate de
Bruijn indices, locally nameless terms, or other representations that equate alpha-equivalent terms.
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B Main Property Index

Con`: 6` ⊥.
OCon`: For all ϕ ∈ Fmla1, if ` ¬ ϕ(n) for all n ∈Num then 6` ¬ ¬ (∃x. ϕ(x)).
Rel` : For all ϕ ∈ Sen, ` ϕ iff there exists p ∈ Proof such that p  ϕ.
Ord1: For all ϕ ∈ Fmla1 and n ∈Num, if `b ϕ(m) for all m ∈Num, then ` ∀x≺ n. ϕ(x).
Ord2: For all n ∈Num, there exists a finite set M ⊆Num such that ` ∀x. x ∈ M∨n≺ x.
Repr¬ :

(1) ` ¬ (〈ϕ〉, 〈¬ ϕ〉) for all ϕ ∈ Sen.
(2) `b ∀x, y. ¬ (〈ϕ〉, x)∧ ¬ (〈ϕ〉, y)→ x≡ y for all ϕ ∈ Sen.

ReprS:
(1) ` S (〈ϕ〉, 〈ϕ〈ϕ〉〉) for all ϕ ∈ Fmla1.
(2) `b ∀x, y. S (〈ϕ〉, x)∧ S (〈ϕ〉, y)→ x≡ y for all ϕ ∈ Fmla1.

Repr :
(1) p  ϕ implies `b  (〈p〉, 〈ϕ〉) for all p ∈ Proof and ϕ ∈ Sen.
(2) p 6 ϕ implies `b¬  (〈p〉, 〈ϕ〉) for all p ∈ Proof and ϕ ∈ Sen.

Clean : `b¬  (n, 〈ϕ〉) for all ϕ ∈ Sen and n ∈Num such that n 6= 〈p〉 for all p ∈ Proof .
HBL1: ` ϕ implies `b ` 〈ϕ〉 for all ϕ ∈ Sen.
HBL2: `b ` 〈ϕ〉∧ ` 〈ϕ→ ψ〉 → ` 〈ψ〉 for all ϕ, ψ ∈ Sen.
HBL3: `b ` 〈ϕ〉 → ` 〈 ` 〈ϕ〉〉 for all ϕ ∈ Sen.
HBL4: `b ` 〈ϕ〉∧ ` 〈ψ〉 → ` 〈ϕ∧ψ〉 for all ϕ, ψ ∈ Sen.
HBL⇐1 : `b ` 〈ϕ〉 implies ` ϕ for all ϕ ∈ Sen.
HBL⇐1,` : ` ` 〈ϕ〉 implies ` ϕ for all ϕ ∈ Sen.
SHBL3 (Jeroslow’s formulation): ` ` (τ)→ ` 〈 ` (τ)〉 for all closed pseudo-terms τ.
SHBL3 (our simplified formulation): ` ` (t)→ ` 〈 ` (t)〉 for all closed terms t.
WHBL2: `b ϕ←→ ψ implies `b ` 〈ϕ〉 → ` 〈ψ〉 for all ϕ, ψ ∈ Sen.
RelPf

`
: `b ` 〈ϕ〉 ←→ ∃x. Pf(x, 〈ϕ〉) for all ϕ ∈ Sen.

ComplPf : |= Pf(n, 〈ϕ〉) implies `b Pf(n, 〈ϕ〉) for all n ∈Num and ϕ ∈ Sen.
Compl¬Pf : |= ¬ Pf(n, 〈ϕ〉) implies `b¬ Pf(n, 〈ϕ〉) for all n ∈Num and ϕ ∈ Sen.
LCQ|=:

(1) 6|=⊥; (2) for all ϕ, ψ ∈ Sen, |= ϕ and |= ϕ→ ψ imply |= ψ;
(3) for all ϕ ∈ Fmla1, if |= ϕ(n) for all n ∈Num then |= ∀x. ϕ(x);
(4) for all ϕ ∈ Fmla1, if |= ∃x. ϕ(x) then |= ϕ(n) for some n ∈Num;
(5) for all ϕ ∈ Sen, |= ϕ or |= ¬ ϕ.

Sound`b
|= : `b ϕ implies |= ϕ for all ϕ ∈ Sen.

TIP`|=: |= ` 〈ϕ〉 implies ` ϕ for all ϕ ∈ Sen.
ReprF (Jeroslow’s formulation): For all f ∈Fm, there exists f ∈ PTermm such that
` f (n1, . . . , nm)≡ f (n1, . . . , nm).
Note that, since f is a pseudo-term, the above condition is equivalent to the conjunction of the following
two conditions (which express representability, as defined in Section 4.4):

(1) ` f (n1, . . . , nm, f (n1, . . . , nm)) for all n1, . . . , nm ∈Num.
(2) ` ∀x, y. f (n1, . . . , nm, x)∧ f (n1, . . . , nm, y)→ x≡ y for all n1, . . . , nm ∈Num.

Indeed, (1) is exactly ` f (n1, . . . , nm) ≡ f (n1, . . . , nm) after expanding our introduced notation for
pseudo-terms, and (2) follows from the uniqueness part of the pseudo-term condition.

ReprF (our corrected and simplified formulation):
(1) For all f ∈F1, there exists f ∈Ops such that ` f (n)≡ f (n) for all n ∈Num.
(2) FVars(g(t)) = FVars(t) and (g(t))[s/x] = g(t[s/x]) for all g ∈Ops, s, t ∈ Term and x ∈ Var.

CapN: N ∈F1 and N〈ϕ〉= 〈¬ ϕ〉 for all ϕ ∈ Sen.
CapSS: ssub ψ ∈F1 and ssub ψ 〈 f 〉= 〈ψ( f 〈 f 〉)〉 for all ψ ∈ Fmla1 and f ∈F1.
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