Supernominal Datatypes and Codatatypes

Andrei Popescu
University of Sheffield, UK

LFMTP
June 30, 2020

Those Were the Days...

LFMTP 2009, Montreal, Canada. Theory support for weak higher order abstract syntax in Isabelle/HOL. Elsa Gunter, Chris Osborn and Andrei Popescu.

Those Were the Days...

LFMTP 2009, Montreal, Canada. Theory support for weak higher order abstract syntax in Isabelle/HOL. Elsa Gunter, Chris Osborn and Andrei Popescu.

Supernominal

Joint work with...

Jasmin Blanchette, Lorenzo Gheri, Dmitriy Traytel, Isabelle/HOL

Ideology

How do most mathematicians, logicians and computer scientists view syntax with bindings?

How do most mathematicians, logicians and computer scientists view syntax with bindings?

Syntax with Bindings
Bureaucracy

Domain-Specific Results

$$
=
$$

Interesting Bits

How do most mathematicians, logicians and computer scientists view syntax with bindings?

Syntax with Bindings
Bureaucracy

Domain-Specific Results

$$
=
$$

Interesting Bits

Keep buraucracy low, offer high-level definition and proof principles.

Different Schools of Thought / Paradigms / Dogmas

De Bruijn
HOAS (Higher-Order Abstract Syntax)
Nominal/Nameful

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers
HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings
Nominal/Nameful explicit bound names, α-quotienting

They define terms with bindings in different ways.

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers
HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings
Nominal/Nameful explicit bound names, α-quotienting

They define terms with bindings in different ways.

They talk about the same datatype

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers
HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings
Nominal/Nameful explicit bound names, α-quotienting

They define terms with bindings in different ways.

They talk about the same datatype
... but offer different ways to manipulate it

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers
HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings
Nominal/Nameful explicit bound names, α-quotienting

They define terms with bindings in different ways.

They talk about the same datatype
... but offer different ways to manipulate it What's important: How to manipulate this datatype.

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers
$\lambda:$ Term \rightarrow Term $\quad \lambda_{n}:$ Term $_{n+1} \rightarrow$ Term $_{n}$ (well-scoped) HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings $\lambda:($ Term \rightarrow Term) \rightarrow Term (strong) $\lambda:($ Var \rightarrow Term) \rightarrow Term (weak)
Nominal/Nameful explicit bound names, α-quotienting
$\lambda:$ Var \rightarrow Term \rightarrow Term

They define terms with bindings in different ways.

They talk about the same datatype
... but offer different ways to manipulate it What's important: How to manipulate this datatype.

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers
$\lambda:$ Term \rightarrow Term $\quad \lambda_{n}:$ Term $_{n+1} \rightarrow$ Term $_{n}$ (well-scoped) HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings $\lambda:($ Term \rightarrow Term) \rightarrow Term (strong) $\lambda:($ Var \rightarrow Term) \rightarrow Term (weak) Nominal/Nameful explicit bound names, α-quotienting $\lambda:$ Var \rightarrow Term \rightarrow Term

They define terms with bindings in different ways.

They talk about the same datatype
... but offer different ways to manipulate it What's important: How to manipulate this datatype.

Different schools have different insights and can learn from each other.

Combining and Sharing Knowledge across Paradigms

Johan van der
Brunomhoas
1471-1530

Combining and Sharing Knowledge across Paradigms

Gordon \& Melham, 5 Axioms of Alpha-Conversion, 1996
Discovers a weak HOAS recursor
Norrish, Recursion for Types with Binders, 2004
Adjusts the above into a Nominal-style recursor
Hofmann, Semantical Analysis of HOAS, 1999
Topos where well-scoped De Bruijn = weak HOAS
Felty \& Momigliano, Hybrid, 2008
HOAS on a De Bruijn substratum
Popescu et al., HOAS on top of FOAS, 2010 HOAS on a Nominal substratum
Berghofer \& Urban, De Bruijn \& Names head-to-head, 2007 Compares Nominal and "raw" De Bruijn
Abel et al., POPLMark reloaded, 2019
Compares strong HOAS with well-scoped De Bruijn

Combining and Sharing Knowledge across Paradigms

Gordon \& Melham, 5 Axioms of Alpha-Conversion, 1996
Discovers a weak HOAS recursor
Norrish, Recursion for Types with Binders, 2004
Adjusts the above into a Nominal-style recursor
Hofmann, Semantical Analysis of HOAS, 1999
Topos where well-scoped De Bruijn = weak HOAS
Felty \& Momigliano, Hybrid, 2008
HOAS on a De Bruijn substratum
Popescu et al., HOAS on top of FOAS, 2010
HOAS on a Nominal substratum
Berghofer \& Urban, De Bruijn \& Names head-to-head, 2007 Compares Nominal and "raw" De Bruijn
Abel et al., POPLMark reloaded, 2019
Compares strong HOAS with well-scoped De Bruijn

Next: Paradigm-agnostic description of general binders
Nominal-style reasoning infrastructure for them
Could employ De Bruijn or HOAS views of the same datatypes!

Supernominal

Theory of binding-aware datatypes and codatatypes
Supports modular specification of complex binding mechanisms
(Co)datatypes come with definition and reasoning principles
Generalizes Nominal techniques: no finite support restriction

Has been formalized in Isabelle (implementation under way)

Supernominal

Theory of binding-aware datatypes and codatatypes
Supports modular specification of complex binding mechanisms
(Co)datatypes come with definition and reasoning principles
Generalizes Nominal techniques: no finite support restriction

Has been formalized in Isabelle (implementation under way)

Let's talk bindings without commiting to any syntax

Supernominal

Theory of binding-aware datatypes and codatatypes
Supports modular specification of complex binding mechanisms
(Co)datatypes come with definition and reasoning principles
Generalizes Nominal techniques: no finite support restriction

Has been formalized in Isabelle (implementation under way)

Let's talk bindings without commiting to any syntax Then can have any syntax with any bindings we want

Supernominal

Theory of binding-aware datatypes and codatatypes
Supports modular specification of complex binding mechanisms
(Co)datatypes come with definition and reasoning principles
Generalizes Nominal techniques: no finite support restriction

Has been formalized in Isabelle (implementation under way)

Let's talk bindings without commiting to any syntax Then can have any syntax with any bindings we want

Bounded Natural Functors (BNFs)

Container Intuition: Shape Filled In With Content

F: Set \rightarrow Set

F (A)
U

Container Intuition: Shape Filled In With Content

F: Set \rightarrow Set

F (A)
*

Container Intuition: Shape Filled In With Content

F: Set \rightarrow Set

$$
F(A)
$$

U

where $x \in A$

Container Intuition: Shape Filled In With Content

Example
$\mathrm{F}(A)=\mathbb{N} \times A$

$$
\begin{gathered}
\mathrm{F}(A) \\
\Psi
\end{gathered}
$$

F (A)
\cup

Container Intuition: Shape Filled In With Content

where $x \in A$

Container Intuition: Shape Filled In With Content

where $x \in A$

Container Intuition: Shape Filled In With Content

where $x \in A$

Container Intuition: Shape Filled In With Content

where $x \in A$

Container Intuition: Shape Filled In With Content

where $x \in A$

3 Pillars: Boundedness, Naturality, Functoriality (BNF)

$$
\begin{aligned}
\mathrm{F} & : \text { Set } \rightarrow \text { Set } \\
\operatorname{map}_{\mathrm{F}} & : \prod_{A, B \in \operatorname{Set}}(A \rightarrow B) \rightarrow \mathrm{F}(A) \rightarrow \mathrm{F}(B)
\end{aligned}
$$

$$
A \longrightarrow B
$$

$$
\mathrm{F}(A) \xrightarrow{\operatorname{map}_{\mathrm{F}}(g)} \mathrm{F}(B)
$$

$$
\Psi \quad U
$$

3 Pillars: Boundedness, Naturality, Functoriality (BNF)

$$
\begin{aligned}
\mathrm{F} & : \text { Set } \rightarrow \text { Set } \\
\operatorname{supp}_{\mathrm{F}} & : \prod_{A \in \text { Set }} \mathrm{F}(A) \rightarrow \mathcal{P}(A)
\end{aligned}
$$

$$
\mathrm{F}(A) \xrightarrow{\text { supp }_{\mathrm{F}}} \mathcal{P}(A)
$$

$$
\{x, \ldots\}
$$

3 Pillars: Boundedness, Naturality, Functoriality (BNF)

$$
\begin{aligned}
& \text { F : Set } \rightarrow \text { Set } \\
& \operatorname{supp}_{\mathrm{F}}: \quad \prod_{A \in \text { Set } \mathrm{F}(A) \rightarrow \mathcal{P}(A), ~(A)} \\
& \mathrm{bd}_{\mathrm{F}} \quad \text { cardinal number } \\
& \mathrm{F}(A) \xrightarrow{\text { supp }_{\mathrm{F}}} \mathcal{P}(A) \\
& \Psi \\
& \operatorname{card}\{x, \ldots\}<\operatorname{bd}_{F}
\end{aligned}
$$

4th Pillar: Relator Structure

| | $\mathrm{F}:$ | Set \rightarrow Set |
| :--- | ---: | :--- | :--- |
| Functor | $\operatorname{map}_{\mathrm{F}}:$ | $\prod_{A, B \in \text { Set }(A \rightarrow B) \rightarrow \mathrm{F}(A) \rightarrow \mathrm{F}(B)} \mathcal{P}(A \times B) \rightarrow \mathcal{P}(\mathrm{F}(A) \times \mathrm{F}(B))$ |
| Relator | $\operatorname{rel}_{\mathrm{F}}:$ | $\prod_{A, B \in \mathrm{Set}^{2}}(A \times B)$ |

$\operatorname{map}_{F}(g)$
(slot-wise application of g)

$\operatorname{rel}_{\mathrm{F}}(R)$
(slot-wise lifting of R)

Example BNF: Lists

List : Set \rightarrow Set

$$
\begin{aligned}
& \operatorname{map}_{\text {List }} g\left[x_{0}, \ldots, x_{n-1}\right]=\left[g\left(x_{0}\right), \ldots, g\left(x_{n-1}\right)\right] \\
& \operatorname{supp}_{\text {List }}\left[x_{0}, \ldots, x_{n-1}\right]=\left\{x_{1}, \ldots, x_{n-1}\right\} \\
& \operatorname{bd}_{\text {List }}=\aleph_{0} \\
& \left(\left[x_{0}, \ldots, x_{m-1}\right],\left[y_{0}, \ldots, y_{n-1}\right]\right) \in \operatorname{rel}_{\text {List }} R \text { iff } \\
& \quad m=n \text { and } \forall i<m .\left(x_{i}, y_{i}\right) \in R
\end{aligned}
$$

Example BNF: Streams

$$
\text { Stream : Set } \rightarrow \text { Set }
$$

mapstream $g\left[x_{0}, x_{1}, \ldots\right]=\left[g\left(x_{0}\right), g\left(x_{1}\right), \ldots\right]$
$\operatorname{supp}_{\text {List }}\left[x_{0}, x_{1}, \ldots\right]=\left\{x_{0}, x_{1}, \ldots\right\}$
bd List $=\aleph_{1}$
$\left(\left[x_{0}, x_{1}, \ldots\right],\left[y_{0}, y_{1}, \ldots\right]\right) \in \operatorname{rel}_{\text {List }} R$ iff
$\forall i \in \mathbb{N} .\left(x_{i}, y_{i}\right) \in R$

Other Examples of BNFs

Trees - finitely/infinitely branching, finite/infinite depth
Finite sets, countable sets, k-bounded sets
Multisets
Fuzzy sets
Probability distributions

Bounded Natural Functors (BNFs) in Isabelle

BNFs

Include many useful container types
Closed under composition
Closed under least fixpoints (initial algebras)
Closed under greatest fixpoints (final coalgebra)

Bounded Natural Functors (BNFs) in Isabelle

BNFs
Include many useful container types
Closed under composition
Closed under least fixpoints (initial algebras)
Closed under greatest fixpoints (final coalgebra)

$$
\Downarrow
$$

Isabelle/HOL's (co)datatype package
"One of the greatest engineering projects since Stonehenge!"

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making queries in B and acting upon responses in C.

$$
\begin{aligned}
& \text { datatype } \operatorname{Proc}(A, B, C)= \\
& \quad \operatorname{Step}(A+B \times(C \rightarrow \operatorname{Proc}(A, B, C)))
\end{aligned}
$$

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making queries in B and acting upon responses in C.
codatatype $\operatorname{Proc}(A, B, C)=$ Step $(A+B \times(C \rightarrow \operatorname{Proc}(A, B, C)))$

Possibly nonterminating.

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making queries in B and acting upon responses in C.
codatatype $\operatorname{Proc}(A, B, C)=$ Step $(A+B \times(C \rightarrow \operatorname{Proc}(A, B, C)))$

Possibly nonterminating.
Finitely nondeterministic?

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making queries in B and acting upon responses in C.
codatatype $\operatorname{Proc}(A, B, C)=$ Step $(\operatorname{FPow}(A+B \times(C \rightarrow \operatorname{Proc}(A, B, C))))$

Possibly nonterminating.
Finitely nondeterministic? Plug in the finite powerset BNF.

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making queries in B and acting upon responses in C.
codatatype $\operatorname{Proc}(A, B, C)=$ Step $(\operatorname{CPow}(A+B \times(C \rightarrow \operatorname{Proc}(A, B, C))))$

Possibly nonterminating.
Finitely nondeterministic? Plug in the finite powerset BNF.
Countably nondeterministic? Plug in the countable powerset BNF.

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making queries in B and acting upon responses in C.
codatatype $\operatorname{Proc}(A, B, C)=$ Step $(\operatorname{PDist}(A+B \times(C \rightarrow \operatorname{Proc}(A, B, C))))$

Possibly nonterminating.
Finitely nondeterministic? Plug in the finite powerset BNF.
Countably nondeterministic? Plug in the countable powerset BNF.
Probabilistic? Plug in the probability distributions BNF.

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making queries in B and acting upon responses in C.
codatatype $\operatorname{Proc}(A, B, C)=$ Step $(\operatorname{CPow}(\operatorname{PDist}(A+B \times(C \rightarrow \operatorname{Proc}(A, B, C)))))$

Possibly nonterminating.
Finitely nondeterministic? Plug in the finite powerset BNF.
Countably nondeterministic? Plug in the countable powerset BNF.
Probabilistic? Plug in the probability distributions BNF.
Nondeterminism plus probability? Plug in both BNFs.

Datatypes and Codatatypes Based on BNFs

For each defined (co)datatype, Isabelle provides

- operators: constructor, map, relator, support, etc.
- lemmas about these operators: injectiveness, functoriality, naturality ("free" theorems), etc.
- (co)recursion definition principles
- (co)induction proof principles

Datatypes and Codatatypes Based on BNFs

For each defined (co)datatype, Isabelle provides

- operators: constructor, map, relator, support, etc.
- lemmas about these operators: injectiveness, functoriality, naturality ("free" theorems), etc.
- (co)recursion definition principles
- (co)induction proof principles
... typically not provided automatically by proof assistants

Datatypes and Codatatypes Based on BNFs

For each defined (co)datatype, Isabelle provides

- operators: constructor, map, relator, support, etc.
- lemmas about these operators: injectiveness, functoriality, naturality ("free" theorems), etc.
- (co)recursion definition principles
- (co)induction proof principles
... typically not provided automatically by proof assistants

BNFs lurking in the background without the users knowing of them

A Foundation for Binders

What is a Binder?

Several sophisticated syntactic formats:
$\mathrm{C} \alpha \mathrm{Ml}$ [Pottier 2006], Ott [Sewell et al. 2010], Unbound [Weirich et al. 2011], Isabelle Nominal2 [Urban and Kaliszyk 2012], Needle \& Knot [Keuchel et al. 2016]

What is a Binder?

Several sophisticated syntactic formats:
$\mathrm{C} \alpha \mathrm{Ml}$ [Pottier 2006], Ott [Sewell et al. 2010], Unbound [Weirich et al. 2011], Isabelle Nominal2 [Urban and Kaliszyk 2012], Needle \& Knot [Keuchel et al. 2016]

Capture essence without committing to a particular syntax?

What is a Binder?

Binder $=$ Mechanism for combining any variables with any terms.

What is a Binder?

Binder $=$ Mechanism for combining any variables with any terms.

$$
\lambda v . t
$$

$$
\text { let } v=t_{1} \text { in } t_{2}
$$

let rec $v_{1}=t_{1}$ and \ldots and $v_{k}=t_{k}$ in t

What is a Binder?

Binder $=$ Mechanism for combining any variables with any terms.
Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Think: $F\left(V_{1}, \ldots, V_{m}, T_{1}, \ldots, T_{n}\right)$ combines variables $v_{i} \in V_{i}$ and terms $t_{j} \in T_{j}$ such that $v_{i} \in V_{i}$ binds in $t_{j} \in T_{j}$ if $(i, j) \in \theta$.

$$
\lambda v . t
$$

$$
\text { let } v=t_{1} \text { in } t_{2}
$$

let rec $v_{1}=t_{1}$ and \ldots and $v_{k}=t_{k}$ in t

What is a Binder?

Binder $=$ Mechanism for combining any variables with any terms.
Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Think: $F\left(V_{1}, \ldots, V_{m}, T_{1}, \ldots, T_{n}\right)$ combines variables $v_{i} \in V_{i}$ and terms $t_{j} \in T_{j}$ such that $v_{i} \in V_{i}$ binds in $t_{j} \in T_{j}$ if $(i, j) \in \theta$.

$$
\begin{aligned}
& m=n=1 \\
& \mathrm{~F}(V, T)=V \times T \\
& \theta=\{(1,1)\}
\end{aligned}
$$

$$
\text { let } v=t_{1} \text { in } t_{2}
$$

let rec $v_{1}=t_{1}$ and \ldots and $v_{k}=t_{k}$ in t

What is a Binder?

Binder $=$ Mechanism for combining any variables with any terms.
Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Think: $F\left(V_{1}, \ldots, V_{m}, T_{1}, \ldots, T_{n}\right)$ combines variables $v_{i} \in V_{i}$ and terms $t_{j} \in T_{j}$ such that $v_{i} \in V_{i}$ binds in $t_{j} \in T_{j}$ if $(i, j) \in \theta$.

$$
\lambda v . t
$$

$$
\text { let } v=t_{1} \text { in } t_{2}
$$

$$
\begin{aligned}
& m=n=1 \\
& \mathrm{~F}(V, T)=V \times T \\
& \theta=\{(1,1)\} \\
& m=1, n=2 \\
& \mathrm{~F}\left(V, T_{1}, T_{2}\right)=V \times T_{1} \times T_{2} \\
& \theta=\{(1,2)\}
\end{aligned}
$$

let rec $v_{1}=t_{1}$ and \ldots and $v_{k}=t_{k}$ in t

What is a Binder?

Binder $=$ Mechanism for combining any variables with any terms.
Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Think: $F\left(V_{1}, \ldots, V_{m}, T_{1}, \ldots, T_{n}\right)$ combines variables $v_{i} \in V_{i}$ and terms $t_{j} \in T_{j}$ such that $v_{i} \in V_{i}$ binds in $t_{j} \in T_{j}$ if $(i, j) \in \theta$.

$$
m=n=1
$$

$\lambda v . t$
$F(V, T)=V \times T$

$$
\theta=\{(1,1)\}
$$

$$
m=1, n=2
$$

$$
\text { let } v=t_{1} \text { in } t_{2}
$$

$$
\mathrm{F}\left(V, T_{1}, T_{2}\right)=V \times T_{1} \times T_{2}
$$

$$
\theta=\{(1,2)\}
$$

$$
m=n=1
$$

let rec $v_{1}=t_{1}$ and \ldots and $v_{k}=t_{k}$ in t
$\mathrm{F}(V, T)=\operatorname{List}(V \times T) \times T$
$\theta=\{(1,1)\}$

Structure of Binders

Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Structure of Binders

Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

F "Natural" (Container-like)

$$
p \in F(\bar{V}, \bar{T})
$$

Structure of Binders

Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Finitary?
F "Natural" (Container-like)

$$
p \in F(\bar{V}, \bar{T})
$$

Structure of Binders

Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Bounded
F "Natural" (Container-like)

$$
p \in F(\bar{V}, \bar{T})
$$

Structure of Binders

Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Bounded
F "Natural" (Container-like)
Functor?

$$
p \in F(\bar{V}, \bar{T})
$$

Structure of Binders

Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Bounded
F "Natural" (Container-like)
Functor?

$$
\begin{array}{lll}
& \mathrm{F}(V, T)= & \text { let rec } v=t_{1} \text { and } v=t_{2} \text { in } t \\
\text { let rec }(v=t)^{*} \text { in } t & \operatorname{List}(V \times T) \times T & \\
& \theta=\{(1,1)\} & {\left[\left(v, t_{1}\right),\left(v, t_{2}\right)\right] \in \operatorname{List}(V \times T)}
\end{array}
$$

$$
p \in F(\bar{V}, \bar{T})
$$

Structure of Binders

Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Bounded
F "Natural" (Container-like)
Functor?

$$
\begin{array}{lll}
& \mathrm{F}(V, T)= & \text { let rec } v=t_{1} \text { and } v=t_{2} \text { in } t \\
\text { let rec }(v=t)^{*} \text { in } t & \operatorname{List}(V \times T)^{@ V} \times T
\end{array} \quad \begin{aligned}
& \\
& \\
& \theta=\{(1,1)\}
\end{aligned}
$$

$$
p \in F(\bar{V}, \bar{T})
$$

Structure of Binders

Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Bounded
F "Natural" (Container-like)
Functor on (binding) variable arguments only w.r.t. injections

$$
\begin{array}{lll}
& \mathrm{F}(V, T)= & \text { let rec } v=t_{1} \text { and } v=t_{2} \text { in } t \\
\text { let rec }(v=t)^{*} \text { in } t & \operatorname{List}(V \times T)^{@ v} \times T
\end{array} \quad \begin{aligned}
& \\
& \\
& \theta=\{(1,1)\}
\end{aligned}
$$

$$
p \in F(\bar{V}, \bar{T})
$$

Structure of Binders

Proposal: Binder $=$ Operator on sets $F:$ Set $^{m} \times$ Set $^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Bounded
F "Natural" (Container-like)
Functor on (binding) variable arguments only w.r.t. injections

$$
w(v) \cdot p
$$

$$
p \in F(\bar{V}, \bar{T})
$$

$$
\frac{\downarrow}{\{v, \ldots\}}
$$

Structure of Binders

Proposal: Binder $=$ Operator on sets $F: \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \rightarrow$ Set plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Bounded
F "Natural" (Container-like)
Functor on (binding) variable arguments only w.r.t. injections

$$
\begin{array}{ll}
& p=m=n=1 \\
w(v) \cdot p & \mathrm{~F}(W, V, T)=W \times V \times T \\
& \theta=\{(1,1)\}
\end{array}
$$

$$
p \in F(\bar{V}, \bar{T})
$$

$$
\begin{gathered}
\downarrow \\
\{v, \ldots\}
\end{gathered}
$$

Parenthesis: Linearization Modifier ${ }^{\complement}$

$$
\operatorname{List}(A)^{@ A}=\left\{x s \in \operatorname{List}(A) \mid \forall i, j . i \neq j \longrightarrow x s_{i} \neq x s_{j}\right\}
$$

Parenthesis: Linearization Modifier ${ }^{\complement}$

$$
\operatorname{List}(A)^{@ A}=\left\{x s \in \operatorname{List}(A) \mid \forall i, j . i \neq j \longrightarrow x s_{i} \neq x s_{j}\right\}
$$

Linearity for an arbitrary BNF, F: Set \rightarrow Set?

Parenthesis: Linearization Modifier ${ }^{\complement}$

$$
\operatorname{List}(A)^{@ A}=\left\{x s \in \operatorname{List}(A) \mid \forall i, j . i \neq j \longrightarrow x s_{i} \neq x s_{j}\right\}
$$

Linearity for an arbitrary BNF, F: Set \rightarrow Set?

How about: $p \in F(A)$ linear
\ldots if $\forall q$. $\operatorname{shape}(q)=\operatorname{shape}(p) \longrightarrow\left|\operatorname{supp}_{\mathrm{F}}(q)\right| \leq\left|\operatorname{supp}_{\mathrm{F}}(p)\right|$

Parenthesis: Linearization Modifier ${ }^{\complement}$

$\operatorname{List}(A)^{@ A}=\left\{x s \in \operatorname{List}(A) \mid \forall i, j . i \neq j \longrightarrow x s_{i} \neq x s_{j}\right\}$
Linearity for an arbitrary BNF, F: Set \rightarrow Set?

$$
\begin{array}{rll}
!_{A} & : A \rightarrow \text { Unit }=\{*\} \\
\text { shape }=\operatorname{map}_{F}!_{A} & : & \mathrm{F}(A) \rightarrow \mathrm{F}(\text { Unit })
\end{array}
$$

How about: $p \in F(A)$ linear
\ldots if $\forall q$. $\operatorname{shape}(q)=\operatorname{shape}(p) \longrightarrow\left|\operatorname{supp}_{\mathrm{F}}(q)\right| \leq\left|\operatorname{supp}_{\mathrm{F}}(p)\right|$

Parenthesis: Linearization Modifier ${ }^{\complement}$

$\operatorname{List}(A)^{@ A}=\left\{x s \in \operatorname{List}(A) \mid \forall i, j . i \neq j \longrightarrow x s_{i} \neq x s_{j}\right\}$
Linearity for an arbitrary BNF, F: Set \rightarrow Set?

$$
\begin{aligned}
!_{A} & : A \rightarrow \text { Unit }=\{*\} \\
\text { shape }=\operatorname{map}_{F}!_{A} & : \mathrm{F}(A) \rightarrow \mathrm{F}(\text { Unit })
\end{aligned}
$$

How about: $p \in F(A)$ linear
\ldots if $\forall q$. shape $(q)=\operatorname{shape}(p) \longrightarrow\left|\operatorname{supp}_{\mathrm{F}}(q)\right| \leq\left|\operatorname{supp}_{\mathrm{F}}(p)\right|$

Works for finitary functors.

Fails in general: For $F=$ Stream, $[0,0,1,2,3, \ldots] \in F(\mathbb{N})$ linear.

Parenthesis: Linearization Modifier ${ }^{\complement}$

$\operatorname{List}(A)^{@ A}=\left\{x s \in \operatorname{List}(A) \mid \forall i, j . i \neq j \longrightarrow x s_{i} \neq x s_{j}\right\}$
Linearity for an arbitrary BNF, F: Set \rightarrow Set?

$$
\begin{aligned}
&!_{A}: A \rightarrow \text { Unit }=\{*\} \\
& \text { shape }=\operatorname{map}_{F}!_{A}: \\
& \mathrm{F}(A) \rightarrow \mathrm{F}(\text { Unit })
\end{aligned}
$$

Better: $p \in F(A)$ linear
\ldots if $\forall q$. shape $(q)=\operatorname{shape}(p) \longrightarrow \exists f: A \rightarrow A . \operatorname{map}_{\mathrm{F}}(f)(p)=q$

Works in general.

Gives us back a sub-functor, F^{\complement}, of F^{\prime} s restriction to bijections.

Structure of Binders (Summary)

Proposal: Binder $=$ Operator on sets $F: \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \rightarrow$ Set that is a Map-Restricted Bounded Natural Functor (MRBNF): w.r.t. arbitrary functions on the p free-variable arguments w.r.t. injections on the m binding-variable arguments w.r.t. arbitrary functions on the n "term" arguments plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

Structure of Binders (Summary)

Proposal: Binder $=$ Operator on sets $F:$ Set $^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \rightarrow$ Set that is a Map-Restricted Bounded Natural Functor (MRBNF): w.r.t. arbitrary functions on the p free-variable arguments w.r.t. injections on the m binding-variable arguments w.r.t. arbitrary functions on the n "term" arguments plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

So far, term-agnostic: can bind in any hypothetical terms.

Structure of Binders (Summary)

Proposal: Binder $=$ Operator on sets $F:$ Set $^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \rightarrow$ Set that is a Map-Restricted Bounded Natural Functor (MRBNF): w.r.t. arbitrary functions on the p free-variable arguments w.r.t. injections on the m binding-variable arguments w.r.t. arbitrary functions on the n "term" arguments plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

So far, term-agnostic: can bind in any hypothetical terms.

Actual terms?

Structure of Binders (Summary)

Proposal: Binder $=$ Operator on sets $F: \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \rightarrow$ Set that is a Map-Restricted Bounded Natural Functor (MRBNF): w.r.t. arbitrary functions on the p free-variable arguments w.r.t. injections on the m binding-variable arguments
w.r.t. arbitrary functions on the n "term" arguments plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

So far, term-agnostic: can bind in any hypothetical terms.
Actual terms? Built by composing and iterating binders.

Structure of Binders (Summary)

Proposal: Binder $=$ Operator on sets $F:$ Set $^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \rightarrow$ Set that is a Map-Restricted Bounded Natural Functor (MRBNF): w.r.t. small-support functions on the p free-variable arguments w.r.t. small-support bijections on the m binding-vars. arguments w.r.t. arbitrary functions on the n "term" arguments plus binding dispatcher relation $\theta \subseteq\{1, \ldots, m\} \times\{1, \ldots, n\}$.

So far, term-agnostic: can bind in any hypothetical terms.
Actual terms? Built by composing and iterating binders.

Example: POPLmark Syntax Fragment

Type-variable α, term-variables x, labels /

$$
\begin{array}{lcl}
\text { Types } & \sigma & ::=\alpha \mid \ldots \\
\text { Patterns } & p & ::=x: \sigma \mid\left\{I_{i}=p_{i} i \in 1 \ldots n\right\} \\
\text { Terms } & t & ::=x|\Lambda \alpha . t| \text { let } p=t_{1} \text { in } t_{2}
\end{array}
$$

Assumptions: Term-variables are pairwise distinct in any pattern. In terms, term-variables coming from patterns and type-variables near Λ 's are binding.

Example: POPLmark Syntax Fragment

Type-variable α, term-variables x, labels /

Types	σ	$::=\alpha \mid \ldots$
Patterns	p	$::=x: \sigma \mid\left\{I_{i}=p_{i}\right.$
Terms	t	$::=x \mid \Lambda \alpha\}$
Te $t \mid$ let $p=t_{1}$ in t_{2}		

Assumptions: Term-variables are pairwise distinct in any pattern. In terms, term-variables coming from patterns and type-variables near Λ 's are binding.

Type $(A)=\ldots$
$\operatorname{Pattern}(A, X)=(\mu P . X \times \operatorname{Type}(A)+\operatorname{FinPFunc}(\text { Label }, P))^{@ X}$

Example: POPLmark Syntax Fragment

Type-variable α, term-variables x, labels /

Types	σ	$::=\alpha \mid \ldots$
Patterns	p	$::=x: \sigma \mid\left\{I_{i}=p_{i}\right.$
Terms	t	$::=x \mid \Lambda \alpha\}$
Ter $t \mid$ let $p=t_{1}$ in t_{2}		

Assumptions: Term-variables are pairwise distinct in any pattern. In terms, term-variables coming from patterns and type-variables near Λ 's are binding.

Type $(A)=\ldots$
$\operatorname{Pattern}(A, X)=(\mu P . X \times \operatorname{Type}(A)+\operatorname{FinPFunc}(\text { Label }, P))^{@ X}$
$\operatorname{Term}(A, X)=\mu_{\theta} T . X+A \times T+\operatorname{Pattern}(A, X) \times T^{2}$

Example: POPLmark Syntax Fragment

Type-variable α, term-variables x, labels /

Types	σ	$::=\alpha \mid \ldots$
Patterns	p	$::=x: \sigma \mid\left\{I_{i}=p_{i}\right.$
i	$\ldots n\}$	
Terms	t	$::=x\|\Lambda \alpha . t\|$ let $p=t_{1}$ in t_{2}

Assumptions: Term-variables are pairwise distinct in any pattern. In terms, term-variables coming from patterns and type-variables near Λ 's are binding.

$$
\text { Type }(A)=\ldots
$$

$\operatorname{Pattern}(A, X)=(\mu P . X \times \operatorname{Type}(A)+\operatorname{FinPFunc}(\text { Label }, P))^{@ X}$
$\operatorname{Term}(A, X)=\mu_{\theta} T . X+A \times T+\operatorname{Pattern}(A, X) \times T^{2}$

$$
=\mu_{\theta} T . F(A, X, A, X, T)
$$

where:

$$
\begin{aligned}
& F\left(A^{\prime}, X^{\prime}, A, X, T\right)=X^{\prime}+A \times T+\operatorname{Pattern}\left(A^{\prime}, X\right) \times T^{2} \\
& \theta=\{(1,1),(2,1)\}
\end{aligned}
$$

Example: POPLmark Syntax Fragment

Type-variable α, term-variables x, labels /

Types	σ	$::=\alpha \mid \ldots$
Patterns	p	$::=x: \sigma \mid\left\{I_{i}=p_{i}\right.$
i	$\ldots n\}$	
Terms	t	$::=x\|\Lambda \alpha . t\|$ let $p=t_{1}$ in t_{2}

Assumptions: Term-variables are pairwise distinct in any pattern. In terms, term-variables coming from patterns and type-variables near Λ 's are binding.

$$
\text { Type }(A)=\ldots
$$

$\operatorname{Pattern}(A, X)=(\mu P . X \times \operatorname{Type}(A)+\operatorname{FinPFunc}(\text { Label }, P))^{@ X}$
$\operatorname{Term}(A, X)=\mu_{\theta} T . X+A \times T+\operatorname{Pattern}(A, X) \times T^{2}$

$$
=\mu_{\theta} T . F(A, X, A, X, T)
$$

where:

$$
\begin{aligned}
& F\left(A^{\prime}, X^{\prime}, A, X, T\right)=X^{\prime}+A \times T+\operatorname{Pattern}\left(A^{\prime}, X\right) \times T^{2} \\
& \theta=\{(1,1),(2,1)\}
\end{aligned}
$$

From Binders to Terms with Bindings

Constructing Terms from Binders

$$
F: \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \rightarrow \text { Set }
$$

Assume $p=m$.
$T(\bar{V})=\mu \bar{A} . \mathrm{F}(\bar{V}, \bar{V}, \bar{A})$

Constructing Terms from Binders

$$
F: \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \rightarrow \text { Set }
$$

Assume $p=m$.
Raw terms: $\quad \mathrm{T}(\bar{V})=\mu \bar{A} . \mathrm{F}(\bar{V}, \bar{V}, \bar{A})$

Constructing Terms from Binders

$$
F: \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \rightarrow \text { Set }
$$

Assume $p=m$.
Raw terms: $\quad \mathrm{T}(\bar{V})=\mu \bar{A} . \mathrm{F}(\bar{V}, \bar{V}, \bar{A})$

Alpha-quotiented terms: $\overline{\mathbf{T}(\bar{V})}=\overline{\mathrm{T}(\bar{V}) / \equiv_{\theta}}$

Inductive Definition of Alpha-Equivalence

Equality on the top free variables
Possible bijective renamings of top binding variables
Recursive call factoring in the renamings

Inductive Definition of Alpha-Equivalence

Renaming via f_{i} of v_{i} in t_{j} only if $(i, j) \in \theta$
Equality on the top free variables
Possible bijective renamings of top binding variables
Recursive call factoring in the renamings

Inductive Definition of Alpha-Equivalence

F being a relator is crucial:
Equality on the top free variables
Possible bijective renamings of top binding variables
Recursive call factoring in the renamings

Inductive Definition of Alpha-Equivalence

F being a relator is crucial:
$\frac{\left(\operatorname{unf}(t), \operatorname{unf}\left(t^{\prime}\right)\right) \in \operatorname{rel}_{\mathrm{F}}(=)\{(\bar{v}, \overline{f v}) \mid \ldots\}\left\{\left(\bar{t}, \overline{t^{\prime}}\right) \mid \operatorname{map} \bar{f} \overline{\mathrm{f}}^{\theta} \overline{\bar{\Xi}_{\theta}} \overline{t^{\prime}}\right\}}{t \bar{\equiv}_{\theta} t^{\prime}}$

Abstract Characterization of Alpha-Quotinented Terms?

$$
\begin{array}{llll}
\mathrm{T}(\bar{V}) & =\mu A \cdot \mathrm{~F}(\bar{V}, \bar{V}, A) & & \text { OK } \\
\mathrm{T}(\bar{V}) & =\mathrm{T}(\bar{V}) / \equiv_{\theta} & & \text { too low-level }
\end{array}
$$

Abstract Characterization of Alpha-Quotinented Terms?

$$
\begin{array}{ll}
\mathrm{T}(\overline{\bar{V}})=\mu A . \mathrm{F}(\bar{V}, \bar{V}, A) & \text { OK } \\
\mathrm{T}(\bar{V})=\mathrm{T}(\bar{V}) / \equiv_{\theta} & \\
\text { too low-level }
\end{array}
$$

Operators on T :

- ctor: $\mathrm{F}(\bar{V}, \bar{V}, \mathbf{T}(\bar{V})) \rightarrow \mathbf{T}(\bar{V})$ non-injective constructor
- $\mathrm{FVars}_{i}: \mathbf{T}(\bar{V}) \rightarrow V_{i}$
- map munctorial action on T w.r.t. bijections

Theorem: $\left(\mathbf{T}, \overline{\mathrm{FVars}}, \operatorname{map}_{\mathbf{T}}\right.$, ctor $)$ is the initial object in a category of models $\mathcal{U}=(U, \overline{U F V a r s}, ~ U m a p, ~ U c t o r)$ satisfying:

- Umap functorial on bijections
- Umap and UFVars; distribute over Uctor
- Umap satisfies congruence w.r.t. UFVars ${ }_{i}$

Abstract Characterization of Alpha-Quotinented Terms?

$$
\begin{aligned}
\mathrm{T}(\bar{V}) & =\mu A \cdot \mathrm{~F}(\bar{V}, \bar{V}, A) & & \text { OK } \\
\mathrm{T}(\bar{V}) & =\mathrm{T}(\bar{V}) / \equiv_{\theta} & & \text { too low-level }
\end{aligned}
$$

Operators on T :

- ctor: $\mathrm{F}(\bar{V}, \bar{V}, \mathbf{T}(\bar{V})) \rightarrow \mathbf{T}(\bar{V})$ non-injective constructor
- $\mathrm{FVars}_{i}: \mathbf{T}(\bar{V}) \rightarrow V_{i}$
- map munctorial action on T w.r.t. bijections

Theorem: ($\mathbf{T}, \overline{\mathrm{FVars}}, \operatorname{map}_{\mathbf{T}}$, ctor) is the initial object in a category of models $\mathcal{U}=(\mathrm{U}, \overline{\mathrm{UFVars}}$, Umap, Uctor) satisfying:

- Umap functorial on bijections
- Umap and UFVars; distribute over Uctor
- Umap satisfies congruence w.r.t. UFVarsi
\Downarrow
Recursor generalizing the state-of-the-art nominal recursors (Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Abstract Characterization of Alpha-Quotinented Terms?

$$
\text { Notation: } \mathbf{T}(\bar{V})=\mu_{\theta} A . \mathrm{F}(\bar{V}, \bar{V}, A)
$$

Operators on T :

- ctor: $\mathrm{F}(\bar{V}, \bar{V}, \mathbf{T}(\bar{V})) \rightarrow \mathbf{T}(\bar{V})$ non-injective constructor
- $\mathrm{FVars}_{i}: \mathbf{T}(\bar{V}) \rightarrow V_{i}$
- map $\mathbf{T}_{\mathbf{T}}$ functorial action on \mathbf{T} w.r.t. bijections

> Theorem: $\left(\mathbf{T}, \overline{\mathrm{FVars}}, \operatorname{map}_{\mathbf{T}}\right.$, ctor) is the initial object in a category of models $\mathcal{U}=(U, \overline{U F V a r s}$, Umap, Uctor) satisfying:
> - Umap functorial on bijections
> - Umap and UFVars; distribute over Uctor
> - Umap satisfies congruence w.r.t. UFVarsi
> \Downarrow

Recursor generalizing the state-of-the-art nominal recursors (Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Parenthesis: How the Recursors Work

Parenthesis: How the Recursors Work

Example - HOAS encoding

\#: Term ${ }_{\lambda} \rightarrow$ Term $_{\lambda}($ app, lam $)$
(1) $x^{\#}=x$
(2) $(s t)^{\#}=\operatorname{app} s^{\#} t^{\#}$
(3) $(\lambda x \cdot t)^{\#}=\operatorname{lam}\left(\lambda x \cdot t^{\#}\right)$

Why is this a correct recursive definition?

Parenthesis: How the Recursors Work

Example - HOAS encoding \# : Term $_{\lambda} \rightarrow$ Term $_{\lambda}(\mathrm{app}, \operatorname{lam})$
(1) $x^{\#}=x$
(2) $(s t)^{\#}=\operatorname{app} s^{\#} t^{\#}$
(3) $(\lambda x \cdot t)^{\#}=\operatorname{lam}\left(\lambda x \cdot t^{\#}\right)$

Why is this a correct recursive definition?
To answer this, we must also ask:
How should \# behave w.r.t. free variables?

Parenthesis: How the Recursors Work

Example - HOAS encoding \# : Term $_{\lambda} \rightarrow$ Term $_{\lambda}(\mathrm{app}, \operatorname{lam})$
(1) $x^{\#}=x$
(2) $(s t)^{\#}=\operatorname{app} s^{\#} t^{\#}$
(3) $(\lambda x \cdot t)^{\#}=\operatorname{lam}\left(\lambda x \cdot t^{\#}\right)$

Why is this a correct recursive definition?
To answer this, we must also ask:
How should \# behave w.r.t. free variables?
(4) $\mathrm{FV}\left(t^{\#}\right) \subseteq \mathrm{FV}(t)$

Parenthesis: How the Recursors Work

Example - HOAS encoding \#: Term ${ }_{\lambda} \rightarrow \operatorname{Term}_{\lambda}(\mathrm{app}$, lam $)$
(1) $x^{\#}=x$
(2) $(s t)^{\#}=\operatorname{app} s^{\#} t^{\#}$
(3) $(\lambda x \cdot t)^{\#}=\operatorname{lam}\left(\lambda x \cdot t^{\#}\right)$

Why is this a correct recursive definition?
To answer this, we must also ask:
How should \# behave w.r.t. free variables?
(4) $\mathrm{FV}\left(t^{\#}\right) \subseteq \mathrm{FV}(t)$

How should \# behave w.r.t. swapping?

Parenthesis: How the Recursors Work

Example - HOAS encoding \#: Term ${ }_{\lambda} \rightarrow \operatorname{Term}_{\lambda}(\mathrm{app}$, lam $)$
(1) $x^{\#}=x$
(2) $(s t)^{\#}=\operatorname{app} s^{\#} t^{\#}$
(3) $(\lambda x \cdot t)^{\#}=\operatorname{lam}\left(\lambda x \cdot t^{\#}\right)$

Why is this a correct recursive definition?
To answer this, we must also ask:
How should \# behave w.r.t. free variables?
(4) $\mathrm{FV}\left(t^{\#}\right) \subseteq \mathrm{FV}(t)$

How should \# behave w.r.t. swapping?
(5) $t[x \leftrightarrow y]^{\#}=t^{\#}[x \leftrightarrow y]$

Parenthesis: How the Recursors Work

Example - HOAS encoding \# : Term $_{\lambda} \rightarrow$ Term $_{\lambda}(\mathrm{app}, \operatorname{lam})$
(1) $x^{\#}=x$
(2) $(s t)^{\#}=\operatorname{app} s^{\#} t^{\#}$
(3) $(\lambda x \cdot t)^{\#}=\operatorname{lam}\left(\lambda x \cdot t^{\#}\right)$

Why is this a correct recursive definition?
To answer this, we must also ask:
How should \# behave w.r.t. free variables?
(4) $\mathrm{FV}\left(t^{\#}\right) \subseteq \mathrm{FV}(t)$

How should \# behave w.r.t. swapping?
(5) $t[x \leftrightarrow y]^{\#}=t^{\#}[x \leftrightarrow y]$

Alternatively: How should \# behave w.r.t. substitution?
(5') $t[s / x]^{\#}=t^{\#}\left[s^{\#} / x\right]$ (btw, this part of adequacy)

Parenthesis: How the Recursors Work

Example - HOAS encoding \# : Term $_{\lambda} \rightarrow \operatorname{Term}_{\lambda}($ app, lam $)$
(1) $x^{\#}=x$
(2) $(s t)^{\#}=\operatorname{app} s^{\#} t^{\#}$
(3) $(\lambda x \cdot t)^{\#}=\operatorname{lam}\left(\lambda x \cdot t^{\#}\right)$

Why is this a correct recursive definition?
To answer this, we must also ask:
How should \# behave w.r.t. free variables?
(4) $\mathrm{FV}\left(t^{\#}\right) \subseteq \mathrm{FV}(t)$

How should \# behave w.r.t. swapping?
(5) $t[x \leftrightarrow y]^{\#}=t^{\#}[x \leftrightarrow y]$

Alternatively: How should \# behave w.r.t. substitution?
(5') $t[s / x]^{\#}=t^{\#}\left[s^{\#} / x\right]$ (btw, this part of adequacy)
Must check some conditions - here, easy, as in Isabelle's "by auto".

Parenthesis: How the Recursors Work

Example - HOAS encoding \# : Term $_{\lambda} \rightarrow \operatorname{Term}_{\lambda}($ app, lam $)$
(1) $x^{\#}=x$
(2) $(s t)^{\#}=\operatorname{app} s^{\#} t^{\#}$
(3) $(\lambda x \cdot t)^{\#}=\operatorname{lam}\left(\lambda x \cdot t^{\#}\right)$

Why is this a correct recursive definition?
To answer this, we must also ask:
How should \# behave w.r.t. free variables?
(4) $\mathrm{FV}\left(t^{\#}\right) \subseteq \mathrm{FV}(t)$

How should \# behave w.r.t. swapping?
(5) $t[x \leftrightarrow y]^{\#}=t^{\#}[x \leftrightarrow y]$

Alternatively: How should \# behave w.r.t. substitution?
(5') $t[s / x]^{\#}=t^{\#}\left[s^{\#} / x\right]$ (btw, this part of adequacy)
Must check some conditions - here, easy, as in Isabelle's "by auto".
End product: \exists ! \# satisfying (1-4), and (5) or (5') or both.

Parenthesis: How the Recursors Work

Example: Interpretation of FOL formulas sem : Fmla $\rightarrow(\operatorname{Var} \rightarrow \mathrm{M}) \rightarrow$ Bool sem $(\forall x . \varphi)(\xi)$ defined as
$\operatorname{sem}(\varphi)(\xi[a \leftarrow x])$ for all $a \in M$

Parenthesis: How the Recursors Work

Example: Interpretation of FOL formulas
sem : Fmla $\rightarrow($ Var $\rightarrow \mathrm{M}) \rightarrow$ Bool
sem $(\forall x . \varphi)(\xi)$ defined as
sem $(\varphi)(\xi[a \leftarrow x])$ for all $a \in M$
To "convince" the recursor this is correct, we declare:

$$
\begin{aligned}
& \text { If } x \notin \mathrm{FV}(\varphi) \text { and } \xi={ }_{-x} \xi^{\prime} \text {, then } \operatorname{sem}(\varphi)(\xi)=\operatorname{sem}(\varphi)\left(\xi^{\prime}\right) \\
& \operatorname{sem}(\varphi[t / x]) \xi=\operatorname{sem}(\varphi)(\xi[x \leftarrow \operatorname{sem}(t)])
\end{aligned}
$$

Again, the necessary checks are trivial.

Parenthesis: How the Recursors Work

Example: Interpretation of FOL formulas

```
sem : Fmla }->\mathrm{ (Var }->\textrm{M})->\mathrm{ Bool
    sem (\forallx.\varphi)(\xi) defined as
    sem (\varphi) (\xi[a\leftarrowx]) for all a 
```

To "convince" the recursor this is correct, we declare:

$$
\begin{aligned}
& \text { If } x \notin \mathrm{FV}(\varphi) \text { and } \xi=-x \xi^{\prime} \text {, then } \operatorname{sem}(\varphi)(\xi)=\operatorname{sem}(\varphi)\left(\xi^{\prime}\right) \\
& \operatorname{sem}(\varphi[t / x]) \xi=\operatorname{sem}(\varphi)(\xi[x \leftarrow \operatorname{sem}(t)])
\end{aligned}
$$

Again, the necessary checks are trivial.

"That was not too hard: I have my (α-preserving) semantic interpretation defined, its dependence on free vars proved, and its substitution lemma proved, all in one go. Now I can move on and do interesting things."

Infinitary Terms with Bindings?

Occasionally useful
Infinitely branching process sums in Milner's CSS: $\sum_{i \in I} P_{i}$
Infinitary logics
Böhm trees: λ-terms with possibly infinite depth
Fully abstract π-calculus trees (via "unfolding" process terms)

Infinitary Terms with Bindings?

Occasionally useful
Infinitely branching process sums in Milner's CSS: $\sum_{i \in I} P_{i}$
Infinitary logics
Böhm trees: λ-terms with possibly infinite depth
Fully abstract π-calculus trees (via "unfolding" process terms)

Already in the scope of what I've shown

Infinitary Terms with Bindings?

Occasionally useful
Infinitely branching process sums in Milner's CSS: $\sum_{i \in I} P_{i}$
Infinitary logics
Böhm trees: λ-terms with possibly infinite depth
Fully abstract π-calculus trees (via "unfolding" process terms)

Already in the scope of what I've shown
Covered by binding-aware greatest fixpoints

Binding-Aware Greatest Fixpoints?

Recall the Binding-Aware Least Fixpoints

$$
F: \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \text { Set } \rightarrow \text { Set }
$$

Assume $p=m$.
Raw terms: $\overline{\mathrm{T}(\bar{V})}=\mu \bar{A} \cdot \mathrm{~F}(\bar{V}, \bar{V}, \bar{A})$

Alpha-quotiented terms: $\quad \overline{\mathrm{T}}(\overline{\mathrm{V}})=\overline{\mathrm{T}(\bar{V}) / \equiv_{\theta}}$

Binding-Aware Greatest Fixpoints?

$$
F: \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \text { Set } \rightarrow \text { Set }
$$

Assume $p=m$.
Raw terms: $\overline{\mathrm{T}(\bar{V})}=\nu \bar{A} \cdot \mathrm{~F}(\bar{V}, \bar{V}, \bar{A})$

Alpha-quotiented terms: $\mathbf{T}(\bar{V})=\mathrm{T}(\bar{V}) / \equiv_{\theta}$

Inductive Definition of Alpha-Equivalence

Equality on the top free variables
Possible bijective renamings of top binding variables
Recursive call factoring in the renamings

Coinductive Definition of Alpha-Equivalence

Same characteristic clause, same intuition,
... but GFP instead of LFP in Knaster-Tarski

Equality on the top free variables
Possible bijective renamings of top binding variables
Recursive call factoring in the renamings

MRBNFs $=$ BNFs with Binding Awareness

BNFs
Include many useful container types
Closed under composition
Closed under least fixpoints
Closed under greatest fixpoints

Compositional (co)datatypes
Implemented in Isabelle: user-friendly, hides category theory

MRBNFs $=$ BNFs with Binding Awareness

MRBNFs
Include many useful container types
Closed under composition
Closed under least fixpoints
Closed under greatest fixpoints
Closed under binding-aware least fixpoints
Closed under binding-aware greatest fixpoints
Closed under linearization

$$
\Downarrow
$$

Compositional binding-aware (co)datatypes Isabelle: worked out category theory, not yet user-friendly

References

Expressive datatypes and codatatypes:

- Foundational, Compositional (Co)datatypes for HOL. LICS'12
- Truly Modular (Co)datatypes for Isabelle/HOL. ITP'14
- Foundational nonuniform (Co)datatypes for HOL. LICS'17
- Relational Parametricity and Quotient Preservation for Modular (Co)datatypes. ITP'18
- Quotients of Bounded Natural Functors. IJCAR'20
(TBP tomorrow)
Ensuring non-emptiness of types:
- Witnessing (Co)datatypes. ESOP'15

Expressive function definition mechanisms:

- Foundational extensible corecursion. ICFP'15
- Corecursion in Foundational Proof Assistants. ESOP'17

Overview of entire line of work

- Foundational (Co)datatypes and (Co)recursion for HOL. FroCoS'17
Supernominal (MRBNF extension of BNF)
- Bindings as Bounded Natural Functors. POPL'19

Related Work

Nominal: Logic, Techniques, Datatypes

Murdoch J. Gabbay'

Michael
Norrish

Andrew
Pitts

Christian
Urban

The Super in Supernominal

	Nominal Datatypes	MRBNFs (Binders as Functors)
BA-Induction	0	
BA-Recursion	\ddots	
Infinite Branching		
Coinductive Types		
BA-Coinduction		
BA-Corecursion		
Complex Binders		
Modularity		

$B A=$ binding-aware

The Super in Supernominal

Also, Transnominal: Beyond Finite Support

	Nominal Datatypes	MRBNFs (Binders as Functors)
BA-Induction		
BA-Recursion		
Infinite Branching		
Coinductive Types		
BA-Coinduction		
BA-Corecursion		

$B A=$ binding-aware

Binding-Aware Induction and Recursion

Supernominal Recursors
Urban'08
Pitts'05

Norrish'04
Gordon\&Melham'96

Gheri\&Popescu'17
Popescu\&Gunter'11

Prior work on nominal corecursion: Kurz et al. 2013
Supernominal lifts their restriction to finite support

Syntax with Bindings in Isabelle

Isabelle Nominal2 [Urban and Kaliszyk 2012]

- Good user support
- Complex binders via syntactic format

Supernominal (not yet fully implemented)

- Will boost expressiveness and compositionality
- Will stay backwards-compatiblish with Nominal/Nominal2

1999: The Year the Earth Stood Still

Much category theory on De Bruijn style, starting with
Fiore et al. (LICS'99)
Hofmann (LICS'99)
Bird and Paterson (J. Func. Prog. '99)
Altenkirch and Reus (CSL'99)

The same year: Nominal Logic - Gabbay and Pitts (LICS'99)

Precursors of BNFs

BNFs $=$ subclass of k-accessible functors
Container types [Hoogendijk and de Moor 2000]
Containers [Abbott et al. 2005]

Relevant Classes of Functors

Dependent Polynomial
$\underset{\text { Indexed Container }}{ }$

Relevant Classes of Functors

Dependent Polynomial
Indexed Container

Relevant Classes of Functors

Dependent Polynomial
Indexed Container

Polynomial

$$
=
$$

Container

Main Insight Behind Supernominal

Bindings Are Functors

Main Insight Behind Supernominal

Bindings Are Functors

Andrei Popescu
University of Sheffield, UK
LFMTP
June 30, 2020

Joint work with
Jasmin Blanchette, Lorenzo Gheri, Dmitriy Traytel, Isabelle/HOL

