
Supernominal Datatypes and Codatatypes

Andrei Popescu
University of Sheffield, UK

LFMTP
June 30, 2020

Those Were the Days...

LFMTP 2009, Montreal, Canada. Theory support for weak higher
order abstract syntax in Isabelle/HOL. Elsa Gunter, Chris Osborn
and Andrei Popescu.

Those Were the Days...

LFMTP 2009, Montreal, Canada. Theory support for weak higher
order abstract syntax in Isabelle/HOL. Elsa Gunter, Chris Osborn
and Andrei Popescu.

Supernominal

Joint work with...

Jasmin Blanchette, Lorenzo Gheri, Dmitriy Traytel, Isabelle/HOL

λ
→

∀
=Is

ab
el
le

β

α

Ideology

How do most mathematicians, logicians and computer
scientists view syntax with bindings?

Syntax with Bindings Domain-Specific Results
= =

Bureaucracy Interesting Bits

Keep buraucracy low, offer high-level definition and proof principles.

How do most mathematicians, logicians and computer
scientists view syntax with bindings?

Syntax with Bindings Domain-Specific Results
= =

Bureaucracy Interesting Bits

Keep buraucracy low, offer high-level definition and proof principles.

How do most mathematicians, logicians and computer
scientists view syntax with bindings?

Syntax with Bindings Domain-Specific Results
= =

Bureaucracy Interesting Bits

Keep buraucracy low, offer high-level definition and proof principles.

Different Schools of Thought / Paradigms / Dogmas

De Bruijn

nameless pointers
λ : Term→ Term λn : Termn+1 → Termn (well-scoped)

HOAS (Higher-Order Abstract Syntax)

(meta-level) functional bindings
λ : (Term→ Term)→ Term (strong) λ : (Var→ Term)→ Term (weak)

Nominal/Nameful

explicit bound names, α-quotienting
λ : Var→ Term→ Term

They define terms
with bindings in
different ways.

They talk about the same datatype
... but offer different ways to manipulate it
(leveraging facilities of underlying framework)

What’s important: How to manipulate this datatype.

Different schools have different insights and can learn from each other.

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers

λ : Term→ Term λn : Termn+1 → Termn (well-scoped)

HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings

λ : (Term→ Term)→ Term (strong) λ : (Var→ Term)→ Term (weak)

Nominal/Nameful explicit bound names, α-quotienting

λ : Var→ Term→ Term

They define terms
with bindings in
different ways.

They talk about the same datatype
... but offer different ways to manipulate it
(leveraging facilities of underlying framework)

What’s important: How to manipulate this datatype.

Different schools have different insights and can learn from each other.

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers

λ : Term→ Term λn : Termn+1 → Termn (well-scoped)

HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings

λ : (Term→ Term)→ Term (strong) λ : (Var→ Term)→ Term (weak)

Nominal/Nameful explicit bound names, α-quotienting

λ : Var→ Term→ Term

They define terms
with bindings in
different ways.

They talk about the same datatype

... but offer different ways to manipulate it
(leveraging facilities of underlying framework)

What’s important: How to manipulate this datatype.

Different schools have different insights and can learn from each other.

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers

λ : Term→ Term λn : Termn+1 → Termn (well-scoped)

HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings

λ : (Term→ Term)→ Term (strong) λ : (Var→ Term)→ Term (weak)

Nominal/Nameful explicit bound names, α-quotienting

λ : Var→ Term→ Term

They define terms
with bindings in
different ways.

They talk about the same datatype
... but offer different ways to manipulate it
(leveraging facilities of underlying framework)

What’s important: How to manipulate this datatype.

Different schools have different insights and can learn from each other.

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers

λ : Term→ Term λn : Termn+1 → Termn (well-scoped)

HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings

λ : (Term→ Term)→ Term (strong) λ : (Var→ Term)→ Term (weak)

Nominal/Nameful explicit bound names, α-quotienting

λ : Var→ Term→ Term

They define terms
with bindings in
different ways.

They talk about the same datatype
... but offer different ways to manipulate it
(leveraging facilities of underlying framework)

What’s important: How to manipulate this datatype.

Different schools have different insights and can learn from each other.

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers
λ : Term→ Term λn : Termn+1 → Termn (well-scoped)
HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings
λ : (Term→ Term)→ Term (strong) λ : (Var→ Term)→ Term (weak)
Nominal/Nameful explicit bound names, α-quotienting

λ : Var→ Term→ Term

They define terms
with bindings in
different ways.

They talk about the same datatype
... but offer different ways to manipulate it
(leveraging facilities of underlying framework)

What’s important: How to manipulate this datatype.

Different schools have different insights and can learn from each other.

Different Schools of Thought / Paradigms / Dogmas

De Bruijn nameless pointers
λ : Term→ Term λn : Termn+1 → Termn (well-scoped)
HOAS (Higher-Order Abstract Syntax) (meta-level) functional bindings
λ : (Term→ Term)→ Term (strong) λ : (Var→ Term)→ Term (weak)
Nominal/Nameful explicit bound names, α-quotienting

λ : Var→ Term→ Term

They define terms
with bindings in
different ways.

They talk about the same datatype
... but offer different ways to manipulate it
(leveraging facilities of underlying framework)

What’s important: How to manipulate this datatype.

Different schools have different insights and can learn from each other.

Combining and Sharing Knowledge across Paradigms

Johan van der
Brunomhoas
1471–1530

Gordon & Melham, 5 Axioms of Alpha-Conversion, 1996
Discovers a weak HOAS recursor

Norrish, Recursion for Types with Binders, 2004
Adjusts the above into a Nominal-style recursor

Hofmann, Semantical Analysis of HOAS, 1999
Topos where well-scoped De Bruijn = weak HOAS

Felty & Momigliano, Hybrid, 2008
HOAS on a De Bruijn substratum

Popescu et al., HOAS on top of FOAS, 2010
HOAS on a Nominal substratum

Berghofer & Urban, De Bruijn & Names head-to-head, 2007
Compares Nominal and “raw” De Bruijn

Abel et al., POPLMark reloaded, 2019
Compares strong HOAS with well-scoped De Bruijn

Next: Paradigm-agnostic description of general binders
Next: Nominal-style reasoning infrastructure for them
Next: Could employ De Bruijn or HOAS views of the same datatypes!

Combining and Sharing Knowledge across Paradigms

Johan van der
Brunomhoas
1471–1530

Gordon & Melham, 5 Axioms of Alpha-Conversion, 1996
Discovers a weak HOAS recursor

Norrish, Recursion for Types with Binders, 2004
Adjusts the above into a Nominal-style recursor

Hofmann, Semantical Analysis of HOAS, 1999
Topos where well-scoped De Bruijn = weak HOAS

Felty & Momigliano, Hybrid, 2008
HOAS on a De Bruijn substratum

Popescu et al., HOAS on top of FOAS, 2010
HOAS on a Nominal substratum

Berghofer & Urban, De Bruijn & Names head-to-head, 2007
Compares Nominal and “raw” De Bruijn

Abel et al., POPLMark reloaded, 2019
Compares strong HOAS with well-scoped De Bruijn

Next: Paradigm-agnostic description of general binders
Next: Nominal-style reasoning infrastructure for them
Next: Could employ De Bruijn or HOAS views of the same datatypes!

Combining and Sharing Knowledge across Paradigms

Johan van der
Brunomhoas
1471–1530

Gordon & Melham, 5 Axioms of Alpha-Conversion, 1996
Discovers a weak HOAS recursor

Norrish, Recursion for Types with Binders, 2004
Adjusts the above into a Nominal-style recursor

Hofmann, Semantical Analysis of HOAS, 1999
Topos where well-scoped De Bruijn = weak HOAS

Felty & Momigliano, Hybrid, 2008
HOAS on a De Bruijn substratum

Popescu et al., HOAS on top of FOAS, 2010
HOAS on a Nominal substratum

Berghofer & Urban, De Bruijn & Names head-to-head, 2007
Compares Nominal and “raw” De Bruijn

Abel et al., POPLMark reloaded, 2019
Compares strong HOAS with well-scoped De Bruijn

Next: Paradigm-agnostic description of general binders
Next: Nominal-style reasoning infrastructure for them
Next: Could employ De Bruijn or HOAS views of the same datatypes!

Supernominal

Theory of binding-aware datatypes and codatatypes

Supports modular specification of complex binding mechanisms

(Co)datatypes come with definition and reasoning principles

Generalizes Nominal techniques: no finite support restriction

Has been formalized in Isabelle (implementation under way)

Let’s talk bindings without commiting to any syntax
Then can have any syntax with any bindings we want

... which does not mean we lose any visual intuition

Supernominal

Theory of binding-aware datatypes and codatatypes

Supports modular specification of complex binding mechanisms

(Co)datatypes come with definition and reasoning principles

Generalizes Nominal techniques: no finite support restriction

Has been formalized in Isabelle (implementation under way)

Let’s talk bindings without commiting to any syntax

Then can have any syntax with any bindings we want

... which does not mean we lose any visual intuition

Supernominal

Theory of binding-aware datatypes and codatatypes

Supports modular specification of complex binding mechanisms

(Co)datatypes come with definition and reasoning principles

Generalizes Nominal techniques: no finite support restriction

Has been formalized in Isabelle (implementation under way)

Let’s talk bindings without commiting to any syntax
Then can have any syntax with any bindings we want

... which does not mean we lose any visual intuition

Supernominal

Theory of binding-aware datatypes and codatatypes

Supports modular specification of complex binding mechanisms

(Co)datatypes come with definition and reasoning principles

Generalizes Nominal techniques: no finite support restriction

Has been formalized in Isabelle (implementation under way)

Let’s talk bindings without commiting to any syntax
Then can have any syntax with any bindings we want

... which does not mean we lose any visual intuition

Bounded Natural Functors (BNFs)

Container Intuition: Shape Filled In With Content

F : Set→ Set Example

F : Set→ Set

F (A) = IN× A

F (A)

F (A)

∈

∈

F

x

(n,_)

where x ∈ A

Container Intuition: Shape Filled In With Content

F : Set→ Set Example

F : Set→ Set

F (A) = IN× A

F (A)

F (A)

∈

∈

F

x

(n,_)

where x ∈ A

Container Intuition: Shape Filled In With Content

F : Set→ Set Example

F : Set→ Set

F (A) = IN× A

F (A)

F (A)

∈

∈

F

x

(n,_)

where x ∈ A

Container Intuition: Shape Filled In With Content

F : Set→ Set Example
F : Set→ Set F (A) = IN× A

F (A) F (A)

∈ ∈

F

x

(n,_)

where x ∈ A

Container Intuition: Shape Filled In With Content

F : Set→ Set Example
F : Set→ Set F (A) = IN× A

F (A) F (A)

∈ ∈

F

x

(n,_)

where x ∈ A

Container Intuition: Shape Filled In With Content

F : Set→ Set Example
F : Set→ Set F (A) = IN× A

F (A) F (A)

∈ ∈

F

x

(n, x)

where x ∈ A

Container Intuition: Shape Filled In With Content

F : Set→ Set Example
F : Set→ Set F (A) = List (A)

F (A) F (A)

∈ ∈

F

x

where x ∈ A

Container Intuition: Shape Filled In With Content

F : Set→ Set Example
F : Set→ Set F (A) = List (A)

F (A) F (A)

∈ ∈

F

x

[_,_,_]

where x ∈ A

Container Intuition: Shape Filled In With Content

F : Set→ Set Example
F : Set→ Set F (A) = List (A)

F (A) F (A)

∈ ∈

F

x

[x1, x2, x3]

where x ∈ A

3 Pillars: Boundedness, Naturality, Functoriality (BNF)

F : Set→ Set
mapF :

∏
A,B∈Set (A→ B)→ F (A)→ F (B)

A
g // B

F (A)
mapF (g)

// F (B)
∈ ∈

F F

x
,,
g (x)

3 Pillars: Boundedness, Naturality, Functoriality (BNF)

F : Set→ Set
suppF :

∏
A∈Set F (A)→ P (A)

bdF cardinal number

F (A) suppF // P (A)

∈ ∈

F

x

{x , . . .}

3 Pillars: Boundedness, Naturality, Functoriality (BNF)

F : Set→ Set
suppF :

∏
A∈Set F (A)→ P (A)

bdF cardinal number

F (A) suppF // P (A)

∈ ∈

F

x

card {x , . . .} < bdF

4th Pillar: Relator Structure

F : Set→ Set
Functor mapF :

∏
A,B∈Set(A→ B)→ F (A)→ F (B)

Relator relF :
∏

A,B∈Set P (A× B)→ P(F (A)× F (B))

F F

x
++
g(x)

F F

x
R

x ′

mapF (g) relF (R)
(slot-wise application of g) (slot-wise lifting of R)

Example BNF: Lists

List : Set→ Set

mapList g [x0, . . . , xn−1] = [g(x0), . . . , g(xn−1)]

suppList [x0, . . . , xn−1] = {x1, . . . , xn−1}
bdList = ℵ0

([x0, . . . , xm−1], [y0, . . . , yn−1]) ∈ relList R iff
m = n and ∀i < m. (xi , yi) ∈ R

Example BNF: Streams

Stream : Set→ Set

mapStream g [x0, x1, . . .] = [g(x0), g(x1), . . .]

suppList [x0, x1, . . .] = {x0, x1, . . .}
bdList = ℵ1

([x0, x1, . . .], [y0, y1, . . .]) ∈ relList R iff
∀i ∈ IN. (xi , yi) ∈ R

Other Examples of BNFs

Trees – finitely/infinitely branching, finite/infinite depth
Finite sets, countable sets, k-bounded sets
Multisets
Fuzzy sets
Probability distributions
. . .

Bounded Natural Functors (BNFs) in Isabelle

BNFs
Include many useful container types
Closed under composition
Closed under least fixpoints (initial algebras)
Closed under greatest fixpoints (final coalgebra)

⇓
Isabelle/HOL’s (co)datatype package

“One of the greatest engineering projects since Stonehenge!”

Jasmin
Blanchette

Dmitriy
Traytel

Bounded Natural Functors (BNFs) in Isabelle

BNFs
Include many useful container types
Closed under composition
Closed under least fixpoints (initial algebras)
Closed under greatest fixpoints (final coalgebra)

⇓
Isabelle/HOL’s (co)datatype package

“One of the greatest engineering projects since Stonehenge!”

Jasmin
Blanchette

Dmitriy
Traytel

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making
queries in B and acting upon responses in C .

co

datatype Proc(A,B,C) =
Step (A + B × (C → Proc(A,B,C)))

Possibly nonterminating.
Finitely nondeterministic? Plug in the finite powerset BNF.
Countably nondeterministic? Plug in the countable powerset BNF.
Probabilistic? Plug in the probability distributions BNF.
Nondeterminism plus probability? Plug in both BNFs.

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making
queries in B and acting upon responses in C .

codatatype Proc(A,B,C) =
Step (A + B × (C → Proc(A,B,C)))

Possibly nonterminating.

Finitely nondeterministic? Plug in the finite powerset BNF.
Countably nondeterministic? Plug in the countable powerset BNF.
Probabilistic? Plug in the probability distributions BNF.
Nondeterminism plus probability? Plug in both BNFs.

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making
queries in B and acting upon responses in C .

codatatype Proc(A,B,C) =
Step (A + B × (C → Proc(A,B,C)))

Possibly nonterminating.
Finitely nondeterministic?

Plug in the finite powerset BNF.
Countably nondeterministic? Plug in the countable powerset BNF.
Probabilistic? Plug in the probability distributions BNF.
Nondeterminism plus probability? Plug in both BNFs.

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making
queries in B and acting upon responses in C .

codatatype Proc(A,B,C) =
Step (FPow (A + B × (C → Proc(A,B,C))))

Possibly nonterminating.
Finitely nondeterministic? Plug in the finite powerset BNF.

Countably nondeterministic? Plug in the countable powerset BNF.
Probabilistic? Plug in the probability distributions BNF.
Nondeterminism plus probability? Plug in both BNFs.

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making
queries in B and acting upon responses in C .

codatatype Proc(A,B,C) =
Step (CPow (A + B × (C → Proc(A,B,C))))

Possibly nonterminating.
Finitely nondeterministic? Plug in the finite powerset BNF.
Countably nondeterministic? Plug in the countable powerset BNF.

Probabilistic? Plug in the probability distributions BNF.
Nondeterminism plus probability? Plug in both BNFs.

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making
queries in B and acting upon responses in C .

codatatype Proc(A,B,C) =
Step (PDist (A + B × (C → Proc(A,B,C))))

Possibly nonterminating.
Finitely nondeterministic? Plug in the finite powerset BNF.
Countably nondeterministic? Plug in the countable powerset BNF.
Probabilistic? Plug in the probability distributions BNF.

Nondeterminism plus probability? Plug in both BNFs.

Datatypes and Codatatypes Based on BNFs

Example: Interactive processes with final states in A, making
queries in B and acting upon responses in C .

codatatype Proc(A,B,C) =
Step (CPow (PDist (A + B × (C → Proc(A,B,C)))))

Possibly nonterminating.
Finitely nondeterministic? Plug in the finite powerset BNF.
Countably nondeterministic? Plug in the countable powerset BNF.
Probabilistic? Plug in the probability distributions BNF.
Nondeterminism plus probability? Plug in both BNFs.

Datatypes and Codatatypes Based on BNFs

For each defined (co)datatype, Isabelle provides
- operators: constructor, map, relator, support, etc.
- lemmas about these operators: injectiveness, functoriality,
naturality (“free” theorems), etc.

- (co)recursion definition principles
- (co)induction proof principles

... typically not provided automatically by proof assistants

λ
→

∀
=Is

ab
el
le

β

α

BNFs lurking in the background
without the users knowing of them

Datatypes and Codatatypes Based on BNFs

For each defined (co)datatype, Isabelle provides
- operators: constructor, map, relator, support, etc.
- lemmas about these operators: injectiveness, functoriality,
naturality (“free” theorems), etc.

- (co)recursion definition principles
- (co)induction proof principles

... typically not provided automatically by proof assistants

λ
→

∀
=Is

ab
el
le

β

α

BNFs lurking in the background
without the users knowing of them

Datatypes and Codatatypes Based on BNFs

For each defined (co)datatype, Isabelle provides
- operators: constructor, map, relator, support, etc.
- lemmas about these operators: injectiveness, functoriality,
naturality (“free” theorems), etc.

- (co)recursion definition principles
- (co)induction proof principles

... typically not provided automatically by proof assistants

λ
→

∀
=Is

ab
el
le

β

α

BNFs lurking in the background
without the users knowing of them

A Foundation for Binders

What is a Binder?

Several sophisticated syntactic formats:
CαMl [Pottier 2006], Ott [Sewell et al. 2010], Unbound
[Weirich et al. 2011], Isabelle Nominal2 [Urban and
Kaliszyk 2012], Needle&Knot [Keuchel et al. 2016]

Capture essence without committing to a particular syntax?

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t

m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

What is a Binder?

Several sophisticated syntactic formats:
CαMl [Pottier 2006], Ott [Sewell et al. 2010], Unbound
[Weirich et al. 2011], Isabelle Nominal2 [Urban and
Kaliszyk 2012], Needle&Knot [Keuchel et al. 2016]

Capture essence without committing to a particular syntax?

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t

m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

What is a Binder?

Binder = Mechanism for combining any variables with any terms.

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t

m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

What is a Binder?

Binder = Mechanism for combining any variables with any terms.

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t

m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

What is a Binder?

Binder = Mechanism for combining any variables with any terms.

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t

m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

What is a Binder?

Binder = Mechanism for combining any variables with any terms.

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t
m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

What is a Binder?

Binder = Mechanism for combining any variables with any terms.

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t
m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

What is a Binder?

Binder = Mechanism for combining any variables with any terms.

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t
m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t
m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

Structure of Binders

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Finitary?

F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl

θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→{t, . . .}

←
−−

{v , . . .}

Structure of Binders

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Finitary?

F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl

θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→{t, . . .}
←
−−

{v , . . .}

Structure of Binders

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Finitary?
F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl

θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→{t, . . .}
←
−−

{v , . . .}

Structure of Binders

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl

θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→{t, . . .}
←
−−

{v , . . .}

Structure of Binders

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl

θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→{t, . . .}
←
−−

{v , . . .}

Structure of Binders

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl

θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→{t, . . .}
←
−−

{v , . . .}

Structure of Binders

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)@V × T

θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→{t, . . .}
←
−−

{v , . . .}

Structure of Binders

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor on (binding) variable arguments only w.r.t. injections

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)@V × T

θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→{t, . . .}
←
−−

{v , . . .}

Structure of Binders

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor on (binding) variable arguments only w.r.t. injections

w (v). p

p = m = n = 1
F (W ,V ,T) = W × V × T
θ = {(1, 1)}

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→{t, . . .}
←
−−

{v , . . .}

Structure of Binders

Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor on (binding) variable arguments only w.r.t. injections

w (v). p
p = m = n = 1
F (W ,V ,T) = W × V × T
θ = {(1, 1)}

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w v t

−−−−−−→{t, . . .}
←
−−

{v , . . .}

Parenthesis: Linearization Modifier @

List (A)@A = {xs ∈ List (A) | ∀i , j . i 6= j −→ xs i 6= xs j}

Linearity for an arbitrary BNF, F : Set→ Set?

!A : A→ Unit = {∗}
shape = mapF !A : F (A)→ F (Unit)

F F

x ** ∗

How about: p ∈ F (A) linear
... if ∀q. shape (q) = shape (p) −→ |suppF (q)| ≤ |suppF (p)|

Works for finitary functors.

Fails in general: For F = Stream, [0, 0, 1, 2, 3, . . .] ∈ F (IN) linear.

Parenthesis: Linearization Modifier @

List (A)@A = {xs ∈ List (A) | ∀i , j . i 6= j −→ xs i 6= xs j}

Linearity for an arbitrary BNF, F : Set→ Set?

!A : A→ Unit = {∗}
shape = mapF !A : F (A)→ F (Unit)

F F

x ** ∗

How about: p ∈ F (A) linear
... if ∀q. shape (q) = shape (p) −→ |suppF (q)| ≤ |suppF (p)|

Works for finitary functors.

Fails in general: For F = Stream, [0, 0, 1, 2, 3, . . .] ∈ F (IN) linear.

Parenthesis: Linearization Modifier @

List (A)@A = {xs ∈ List (A) | ∀i , j . i 6= j −→ xs i 6= xs j}

Linearity for an arbitrary BNF, F : Set→ Set?

!A : A→ Unit = {∗}
shape = mapF !A : F (A)→ F (Unit)

F F

x ** ∗

How about: p ∈ F (A) linear
... if ∀q. shape (q) = shape (p) −→ |suppF (q)| ≤ |suppF (p)|

Works for finitary functors.

Fails in general: For F = Stream, [0, 0, 1, 2, 3, . . .] ∈ F (IN) linear.

Parenthesis: Linearization Modifier @

List (A)@A = {xs ∈ List (A) | ∀i , j . i 6= j −→ xs i 6= xs j}

Linearity for an arbitrary BNF, F : Set→ Set?

!A : A→ Unit = {∗}
shape = mapF !A : F (A)→ F (Unit)

F F

x ** ∗

How about: p ∈ F (A) linear
... if ∀q. shape (q) = shape (p) −→ |suppF (q)| ≤ |suppF (p)|

Works for finitary functors.

Fails in general: For F = Stream, [0, 0, 1, 2, 3, . . .] ∈ F (IN) linear.

Parenthesis: Linearization Modifier @

List (A)@A = {xs ∈ List (A) | ∀i , j . i 6= j −→ xs i 6= xs j}

Linearity for an arbitrary BNF, F : Set→ Set?

!A : A→ Unit = {∗}
shape = mapF !A : F (A)→ F (Unit)

F F

x ** ∗

How about: p ∈ F (A) linear
... if ∀q. shape (q) = shape (p) −→ |suppF (q)| ≤ |suppF (p)|

Works for finitary functors.

Fails in general: For F = Stream, [0, 0, 1, 2, 3, . . .] ∈ F (IN) linear.

Parenthesis: Linearization Modifier @

List (A)@A = {xs ∈ List (A) | ∀i , j . i 6= j −→ xs i 6= xs j}

Linearity for an arbitrary BNF, F : Set→ Set?

!A : A→ Unit = {∗}
shape = mapF !A : F (A)→ F (Unit)

F F

x ** ∗

Better: p ∈ F (A) linear
... if ∀q. shape (q) = shape (p) −→ ∃f : A→ A. mapF (f) (p) = q

Works in general.

Gives us back a sub-functor, F@, of F’s restriction to bijections.

Structure of Binders (Summary)

Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
that is a Map-Restricted Bounded Natural Functor (MRBNF):

w.r.t. arbitrary functions on the p free-variable arguments
w.r.t. injections on the m binding-variable arguments
w.r.t. arbitrary functions on the n “term” arguments

plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

So far, term-agnostic: can bind in any hypothetical terms.

Actual terms? Built by composing and iterating binders.

Structure of Binders (Summary)

Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
that is a Map-Restricted Bounded Natural Functor (MRBNF):

w.r.t. arbitrary functions on the p free-variable arguments
w.r.t. injections on the m binding-variable arguments
w.r.t. arbitrary functions on the n “term” arguments

plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

So far, term-agnostic: can bind in any hypothetical terms.

Actual terms? Built by composing and iterating binders.

Structure of Binders (Summary)

Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
that is a Map-Restricted Bounded Natural Functor (MRBNF):

w.r.t. arbitrary functions on the p free-variable arguments
w.r.t. injections on the m binding-variable arguments
w.r.t. arbitrary functions on the n “term” arguments

plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

So far, term-agnostic: can bind in any hypothetical terms.

Actual terms?

Built by composing and iterating binders.

Structure of Binders (Summary)

Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
that is a Map-Restricted Bounded Natural Functor (MRBNF):

w.r.t. arbitrary functions on the p free-variable arguments
w.r.t. injections on the m binding-variable arguments
w.r.t. arbitrary functions on the n “term” arguments

plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

So far, term-agnostic: can bind in any hypothetical terms.

Actual terms? Built by composing and iterating binders.

Structure of Binders (Summary)

Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
that is a Map-Restricted Bounded Natural Functor (MRBNF):

w.r.t. small-support functions on the p free-variable arguments
w.r.t. small-support bijections on the m binding-vars. arguments
w.r.t. arbitrary functions on the n “term” arguments

plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

So far, term-agnostic: can bind in any hypothetical terms.

Actual terms? Built by composing and iterating binders.

Example: POPLmark Syntax Fragment

Type-variable α, term-variables x , labels l

Types σ ::= α | . . .
Patterns p ::= x : σ | {li = pi

i ∈ 1...n}
Terms t ::= x | Λα. t | let p = t1 in t2

Assumptions: Term-variables are pairwise distinct in any pattern.
Assumptions: In terms, term-variables coming from patterns and
Assumptions: type-variables near Λ’s are binding.

Type (A) = . . .
Pattern (A,X) = (µP. X×Type (A) + FinPFunc (Label,P))@X

Term (A,X) = µθT . X + A× T + Pattern (A,X)×T 2

= µθT . F (A,X ,A,X ,T)
where:

F (A′,X ′,A,X ,T) = X ′ + A× T + Pattern (A′,X)×T 2

θ = {(1, 1), (2, 1)}

Example: POPLmark Syntax Fragment

Type-variable α, term-variables x , labels l

Types σ ::= α | . . .
Patterns p ::= x : σ | {li = pi

i ∈ 1...n}
Terms t ::= x | Λα. t | let p = t1 in t2

Assumptions: Term-variables are pairwise distinct in any pattern.
Assumptions: In terms, term-variables coming from patterns and
Assumptions: type-variables near Λ’s are binding.

Type (A) = . . .
Pattern (A,X) = (µP. X×Type (A) + FinPFunc (Label,P))@X

Term (A,X) = µθT . X + A× T + Pattern (A,X)×T 2

= µθT . F (A,X ,A,X ,T)
where:

F (A′,X ′,A,X ,T) = X ′ + A× T + Pattern (A′,X)×T 2

θ = {(1, 1), (2, 1)}

Example: POPLmark Syntax Fragment

Type-variable α, term-variables x , labels l

Types σ ::= α | . . .
Patterns p ::= x : σ | {li = pi

i ∈ 1...n}
Terms t ::= x | Λα. t | let pp = t1 in t2

Assumptions: Term-variables are pairwise distinct in any pattern.
Assumptions: In terms, term-variables coming from patterns and
Assumptions: type-variables near Λ’s are binding.

Type (A) = . . .
Pattern (A,X) = (µP. X×Type (A) + FinPFunc (Label,P))@X

Term (A,X) = µθT . X + A× T + Pattern (A,X)×T 2

= µθT . F (A,X ,A,X ,T)
where:

F (A′,X ′,A,X ,T) = X ′ + A× T + Pattern (A′,X)×T 2

θ = {(1, 1), (2, 1)}

Example: POPLmark Syntax Fragment

Type-variable α, term-variables x , labels l

Types σ ::= α | . . .
Patterns p ::= x : σ | {li = pi

i ∈ 1...n}
Terms t ::= x | Λα. t | let pp = t1 in t2

Assumptions: Term-variables are pairwise distinct in any pattern.
Assumptions: In terms, term-variables coming from patterns and
Assumptions: type-variables near Λ’s are binding.

Type (A) = . . .
Pattern (A,X) = (µP. X×Type (A) + FinPFunc (Label,P))@X

Term (A,X) = µθT . X + A× T + Pattern (A,X)×T 2

= µθT . F (A,X ,A,X ,T)
where:

F (A′,X ′,A,X ,T) = X ′ + A× T + Pattern (A′,X)×T 2

θ = {(1, 1), (2, 1)}

Example: POPLmark Syntax Fragment

Type-variable α, term-variables x , labels l

Types σ ::= α | . . .
Patterns p ::= x : σ | {li = pi

i ∈ 1...n}
Terms t ::= x | Λα. t | let pp = t1 in t2

Assumptions: Term-variables are pairwise distinct in any pattern.
Assumptions: In terms, term-variables coming from patterns and
Assumptions: type-variables near Λ’s are binding.

Type (A) = . . .
Pattern (A,X) = (µP. X×Type (A) + FinPFunc (Label,P))@X

Term (A,X) = µθT . X + A× T + Pattern (A,X)×T 2

= µθT . F (A,X ,A,X ,T)
where:

F (A′,X ′,A,X ,T) = X ′ + A× T + Pattern (A′,X)×T 2

θ = {(1, 1), (2, 1)}

From Binders to Terms with Bindings

Constructing Terms from Binders

F : Setp × Setm × Setn → Set

Assume p = m.

Raw terms:

T (V) = µA. F(V ,V ,A)

v ′ v t○

Alpha-quotiented terms: T (V) = T (V) /≡θ

Constructing Terms from Binders

F : Setp × Setm × Setn → Set

Assume p = m.

Raw terms: T (V) = µA. F(V ,V ,A)

v ′ v t○

Alpha-quotiented terms: T (V) = T (V) /≡θ

Constructing Terms from Binders

F : Setp × Setm × Setn → Set

Assume p = m.

Raw terms: T (V) = µA. F(V ,V ,A)

v ′ v t○

Alpha-quotiented terms: T (V) = T (V) /≡θ

Inductive Definition of Alpha-Equivalence

F F

w

=

v

∃ f

t

mapT f
θ _ ≡θ _

w ′ v ′ t ′

Renaming via fi of vi in tj only if (i , j) ∈ θ

Equality on the top free variables
Possible bijective renamings of top binding variables
Recursive call factoring in the renamings

Inductive Definition of Alpha-Equivalence

F F

w

=

v

∃ f

t

mapT f
θ _ ≡θ _

w ′ v ′ t ′

Renaming via fi of vi in tj only if (i , j) ∈ θ
Equality on the top free variables
Possible bijective renamings of top binding variables
Recursive call factoring in the renamings

Inductive Definition of Alpha-Equivalence

F F

w

=

v

∃ f

t

mapT f
θ _ ≡θ _

w ′ v ′ t ′

F being a relator is crucial:
Equality on the top free variables
Possible bijective renamings of top binding variables
Recursive call factoring in the renamings

Inductive Definition of Alpha-Equivalence

F F

w

=

v

∃ f

t

mapT f
θ _ ≡θ _

w ′ v ′ t ′

F being a relator is crucial:

(unf(t), unf(t ′)) ∈ relF (=) {(v , f v) | . . .} {(t, t ′) | mapT f
θ
t ≡Θ t ′}

t ≡θ t ′

Abstract Characterization of Alpha-Quotinented Terms?

T (V) = µA. F(V ,V ,A) OK
T (V) = T (V) / ≡θ too low-level

Operators on T:
- ctor : F (V ,V ,T (V))→ T (V) non-injective constructor
- FVarsi : T (V)→ Vi

- mapT functorial action on T w.r.t. bijections

Theorem: (T,FVars,mapT, ctor) is the initial object in a category
of models U = (U,UFVars,Umap,Uctor) satisfying:

- Umap functorial on bijections
- Umap and UFVarsi distribute over Uctor
- Umap satisfies congruence w.r.t. UFVarsi

⇓
Recursor generalizing the state-of-the-art nominal recursors
(Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Abstract Characterization of Alpha-Quotinented Terms?

T (V) = µA. F(V ,V ,A) OK
T (V) = T (V) / ≡θ too low-level

Operators on T:
- ctor : F (V ,V ,T (V))→ T (V) non-injective constructor
- FVarsi : T (V)→ Vi

- mapT functorial action on T w.r.t. bijections

Theorem: (T,FVars,mapT, ctor) is the initial object in a category
of models U = (U,UFVars,Umap,Uctor) satisfying:

- Umap functorial on bijections
- Umap and UFVarsi distribute over Uctor
- Umap satisfies congruence w.r.t. UFVarsi

⇓
Recursor generalizing the state-of-the-art nominal recursors
(Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Abstract Characterization of Alpha-Quotinented Terms?

T (V) = µA. F(V ,V ,A) OK
T (V) = T (V) / ≡θ too low-level

Operators on T:
- ctor : F (V ,V ,T (V))→ T (V) non-injective constructor
- FVarsi : T (V)→ Vi

- mapT functorial action on T w.r.t. bijections

Theorem: (T,FVars,mapT, ctor) is the initial object in a category
of models U = (U,UFVars,Umap,Uctor) satisfying:

- Umap functorial on bijections
- Umap and UFVarsi distribute over Uctor
- Umap satisfies congruence w.r.t. UFVarsi

⇓
Recursor generalizing the state-of-the-art nominal recursors
(Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Abstract Characterization of Alpha-Quotinented Terms?

Notation: T (V) = µθA. F(V ,V ,A)

Operators on T:
- ctor : F (V ,V ,T (V))→ T (V) non-injective constructor
- FVarsi : T (V)→ Vi

- mapT functorial action on T w.r.t. bijections

Theorem: (T,FVars,mapT, ctor) is the initial object in a category
of models U = (U,UFVars,Umap,Uctor) satisfying:

- Umap functorial on bijections
- Umap and UFVarsi distribute over Uctor
- Umap satisfies congruence w.r.t. UFVarsi

⇓
Recursor generalizing the state-of-the-art nominal recursors
(Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Parenthesis: How the Recursors Work

Example – HOAS encoding
: Termλ → Termλ(app, lam)

(1) x# = x
(2) (s t)# = app s# t#

(3) (λx . t)# = lam (λx . t#)
Why is this a correct recursive definition?
To answer this, we must also ask:
How should # behave w.r.t. free variables?

(4) FV(t#) ⊆ FV(t)
How should # behave w.r.t. swapping?

(5) t[x ↔ y]# = t#[x ↔ y]
Alternatively: How should # behave w.r.t. substitution?

(5’) t[s/x]# = t#[s#/x] (btw, this part of adequacy)

Must check some conditions – here, easy, as in Isabelle’s "by auto".
End product: ∃! # satisfying (1-4), and (5) or (5’) or both.

Parenthesis: How the Recursors Work

Example – HOAS encoding
: Termλ → Termλ(app, lam)

(1) x# = x
(2) (s t)# = app s# t#

(3) (λx . t)# = lam (λx . t#)
Why is this a correct recursive definition?

To answer this, we must also ask:
How should # behave w.r.t. free variables?

(4) FV(t#) ⊆ FV(t)
How should # behave w.r.t. swapping?

(5) t[x ↔ y]# = t#[x ↔ y]
Alternatively: How should # behave w.r.t. substitution?

(5’) t[s/x]# = t#[s#/x] (btw, this part of adequacy)

Must check some conditions – here, easy, as in Isabelle’s "by auto".
End product: ∃! # satisfying (1-4), and (5) or (5’) or both.

Parenthesis: How the Recursors Work

Example – HOAS encoding
: Termλ → Termλ(app, lam)

(1) x# = x
(2) (s t)# = app s# t#

(3) (λx . t)# = lam (λx . t#)
Why is this a correct recursive definition?
To answer this, we must also ask:
How should # behave w.r.t. free variables?

(4) FV(t#) ⊆ FV(t)
How should # behave w.r.t. swapping?

(5) t[x ↔ y]# = t#[x ↔ y]
Alternatively: How should # behave w.r.t. substitution?

(5’) t[s/x]# = t#[s#/x] (btw, this part of adequacy)

Must check some conditions – here, easy, as in Isabelle’s "by auto".
End product: ∃! # satisfying (1-4), and (5) or (5’) or both.

Parenthesis: How the Recursors Work

Example – HOAS encoding
: Termλ → Termλ(app, lam)

(1) x# = x
(2) (s t)# = app s# t#

(3) (λx . t)# = lam (λx . t#)
Why is this a correct recursive definition?
To answer this, we must also ask:
How should # behave w.r.t. free variables?

(4) FV(t#) ⊆ FV(t)

How should # behave w.r.t. swapping?
(5) t[x ↔ y]# = t#[x ↔ y]

Alternatively: How should # behave w.r.t. substitution?
(5’) t[s/x]# = t#[s#/x] (btw, this part of adequacy)

Must check some conditions – here, easy, as in Isabelle’s "by auto".
End product: ∃! # satisfying (1-4), and (5) or (5’) or both.

Parenthesis: How the Recursors Work

Example – HOAS encoding
: Termλ → Termλ(app, lam)

(1) x# = x
(2) (s t)# = app s# t#

(3) (λx . t)# = lam (λx . t#)
Why is this a correct recursive definition?
To answer this, we must also ask:
How should # behave w.r.t. free variables?

(4) FV(t#) ⊆ FV(t)
How should # behave w.r.t. swapping?

(5) t[x ↔ y]# = t#[x ↔ y]
Alternatively: How should # behave w.r.t. substitution?

(5’) t[s/x]# = t#[s#/x] (btw, this part of adequacy)

Must check some conditions – here, easy, as in Isabelle’s "by auto".
End product: ∃! # satisfying (1-4), and (5) or (5’) or both.

Parenthesis: How the Recursors Work

Example – HOAS encoding
: Termλ → Termλ(app, lam)

(1) x# = x
(2) (s t)# = app s# t#

(3) (λx . t)# = lam (λx . t#)
Why is this a correct recursive definition?
To answer this, we must also ask:
How should # behave w.r.t. free variables?

(4) FV(t#) ⊆ FV(t)
How should # behave w.r.t. swapping?

(5) t[x ↔ y]# = t#[x ↔ y]

Alternatively: How should # behave w.r.t. substitution?
(5’) t[s/x]# = t#[s#/x] (btw, this part of adequacy)

Must check some conditions – here, easy, as in Isabelle’s "by auto".
End product: ∃! # satisfying (1-4), and (5) or (5’) or both.

Parenthesis: How the Recursors Work

Example – HOAS encoding
: Termλ → Termλ(app, lam)

(1) x# = x
(2) (s t)# = app s# t#

(3) (λx . t)# = lam (λx . t#)
Why is this a correct recursive definition?
To answer this, we must also ask:
How should # behave w.r.t. free variables?

(4) FV(t#) ⊆ FV(t)
How should # behave w.r.t. swapping?

(5) t[x ↔ y]# = t#[x ↔ y]
Alternatively: How should # behave w.r.t. substitution?

(5’) t[s/x]# = t#[s#/x] (btw, this part of adequacy)

Must check some conditions – here, easy, as in Isabelle’s "by auto".
End product: ∃! # satisfying (1-4), and (5) or (5’) or both.

Parenthesis: How the Recursors Work

Example – HOAS encoding
: Termλ → Termλ(app, lam)

(1) x# = x
(2) (s t)# = app s# t#

(3) (λx . t)# = lam (λx . t#)
Why is this a correct recursive definition?
To answer this, we must also ask:
How should # behave w.r.t. free variables?

(4) FV(t#) ⊆ FV(t)
How should # behave w.r.t. swapping?

(5) t[x ↔ y]# = t#[x ↔ y]
Alternatively: How should # behave w.r.t. substitution?

(5’) t[s/x]# = t#[s#/x] (btw, this part of adequacy)

Must check some conditions – here, easy, as in Isabelle’s "by auto".

End product: ∃! # satisfying (1-4), and (5) or (5’) or both.

Parenthesis: How the Recursors Work

Example – HOAS encoding
: Termλ → Termλ(app, lam)

(1) x# = x
(2) (s t)# = app s# t#

(3) (λx . t)# = lam (λx . t#)
Why is this a correct recursive definition?
To answer this, we must also ask:
How should # behave w.r.t. free variables?

(4) FV(t#) ⊆ FV(t)
How should # behave w.r.t. swapping?

(5) t[x ↔ y]# = t#[x ↔ y]
Alternatively: How should # behave w.r.t. substitution?

(5’) t[s/x]# = t#[s#/x] (btw, this part of adequacy)

Must check some conditions – here, easy, as in Isabelle’s "by auto".
End product: ∃! # satisfying (1-4), and (5) or (5’) or both.

Parenthesis: How the Recursors Work

Example: Interpretation of FOL formulas
sem : Fmla→ (Var→ M)→ Bool

sem (∀x . ϕ) (ξ) defined as
sem (ϕ) (ξ[a← x]) for all a ∈ M

To “convince” the recursor this is correct, we declare:
If x 6∈ FV(ϕ) and ξ =−x ξ

′, then sem (ϕ) (ξ) = sem (ϕ) (ξ′)
sem (ϕ[t/x]) ξ = sem (ϕ) (ξ[x ← sem(t)])

Again, the necessary checks are trivial.

“That was not too hard: I have my
(α-preserving) semantic interpretation defined,
its dependence on free vars proved, and
its substitution lemma proved, all in one go.
Now I can move on and do interesting things.”

Parenthesis: How the Recursors Work

Example: Interpretation of FOL formulas
sem : Fmla→ (Var→ M)→ Bool

sem (∀x . ϕ) (ξ) defined as
sem (ϕ) (ξ[a← x]) for all a ∈ M

To “convince” the recursor this is correct, we declare:
If x 6∈ FV(ϕ) and ξ =−x ξ

′, then sem (ϕ) (ξ) = sem (ϕ) (ξ′)
sem (ϕ[t/x]) ξ = sem (ϕ) (ξ[x ← sem(t)])

Again, the necessary checks are trivial.

“That was not too hard: I have my
(α-preserving) semantic interpretation defined,
its dependence on free vars proved, and
its substitution lemma proved, all in one go.
Now I can move on and do interesting things.”

Parenthesis: How the Recursors Work

Example: Interpretation of FOL formulas
sem : Fmla→ (Var→ M)→ Bool

sem (∀x . ϕ) (ξ) defined as
sem (ϕ) (ξ[a← x]) for all a ∈ M

To “convince” the recursor this is correct, we declare:
If x 6∈ FV(ϕ) and ξ =−x ξ

′, then sem (ϕ) (ξ) = sem (ϕ) (ξ′)
sem (ϕ[t/x]) ξ = sem (ϕ) (ξ[x ← sem(t)])

Again, the necessary checks are trivial.

“That was not too hard: I have my
(α-preserving) semantic interpretation defined,
its dependence on free vars proved, and
its substitution lemma proved, all in one go.
Now I can move on and do interesting things.”

Infinitary Terms with Bindings?

Occasionally useful
Infinitely branching process sums in Milner’s CSS:

∑
i∈I Pi

Infinitary logics
Böhm trees: λ-terms with possibly infinite depth
Fully abstract π-calculus trees (via “unfolding” process terms)

Already in the scope of what I’ve shown
Covered by binding-aware greatest fixpoints

Infinitary Terms with Bindings?

Occasionally useful
Infinitely branching process sums in Milner’s CSS:

∑
i∈I Pi

Infinitary logics
Böhm trees: λ-terms with possibly infinite depth
Fully abstract π-calculus trees (via “unfolding” process terms)

Already in the scope of what I’ve shown

Covered by binding-aware greatest fixpoints

Infinitary Terms with Bindings?

Occasionally useful
Infinitely branching process sums in Milner’s CSS:

∑
i∈I Pi

Infinitary logics
Böhm trees: λ-terms with possibly infinite depth
Fully abstract π-calculus trees (via “unfolding” process terms)

Already in the scope of what I’ve shown
Covered by binding-aware greatest fixpoints

Binding-Aware Greatest Fixpoints?

Recall the Binding-Aware Least Fixpoints

F : Setp × Setm × Set→ Set

Assume p = m.

Raw terms: T (V) = µA. F(V ,V ,A)

v ′ v t○

∞

Alpha-quotiented terms: T (V) = T (V) /≡θ

Binding-Aware Greatest Fixpoints?

Recall the Binding-Aware Least Fixpoints

F : Setp × Setm × Set→ Set

Assume p = m.

Raw terms: T (V) = νA. F(V ,V ,A)

v ′ v t○
∞

Alpha-quotiented terms: T (V) = T (V) /≡θ

Inductive Definition of Alpha-Equivalence

Same characteristic clause, same intuition,
... but GFP instead of LFP in Knaster-Tarski

F F

w

=

v

∃ f

t

mapT f
θ _ ≡θ _

w ′ v ′ t ′

Equality on the top free variables
Possible bijective renamings of top binding variables
Recursive call factoring in the renamings

Coinductive Definition of Alpha-Equivalence

Same characteristic clause, same intuition,
... but GFP instead of LFP in Knaster-Tarski

F F

w

=

v

∃ f

t

mapT f
θ _ ≡θ _

w ′ v ′ t ′

Equality on the top free variables
Possible bijective renamings of top binding variables
Recursive call factoring in the renamings

MRBNFs = BNFs with Binding Awareness

MR

BNFs
Include many useful container types
Closed under composition
Closed under least fixpoints
Closed under greatest fixpoints

Closed under binding-aware least fixpoints
Closed under binding-aware greatest fixpoints
Closed under linearization

⇓
Compositional (co)datatypes
Implemented in Isabelle: user-friendly, hides category theory

MRBNFs = BNFs with Binding Awareness

MRBNFs
Include many useful container types
Closed under composition
Closed under least fixpoints
Closed under greatest fixpoints
Closed under binding-aware least fixpoints
Closed under binding-aware greatest fixpoints
Closed under linearization

⇓
Compositional binding-aware (co)datatypes
Isabelle: worked out category theory, not yet user-friendly

References

Expressive datatypes and codatatypes:
• Foundational, Compositional (Co)datatypes for HOL. LICS’12
• Truly Modular (Co)datatypes for Isabelle/HOL. ITP’14
• Foundational nonuniform (Co)datatypes for HOL. LICS’17
• Relational Parametricity and Quotient Preservation for Modular
• (Co)datatypes. ITP’18
• Quotients of Bounded Natural Functors. IJCAR’20
• (TBP tomorrow)

Ensuring non-emptiness of types:
• Witnessing (Co)datatypes. ESOP’15

Expressive function definition mechanisms:
• Foundational extensible corecursion. ICFP’15
• Corecursion in Foundational Proof Assistants. ESOP’17

Overview of entire line of work
• Foundational (Co)datatypes and (Co)recursion for HOL.
• FroCoS’17

Supernominal (MRBNF extension of BNF)
• Bindings as Bounded Natural Functors. POPL’19

Related Work

Nominal: Logic, Techniques, Datatypes

Murdoch J.
Gabbay’

Michael
Norrish

Andrew
Pitts

Christian
Urban

The Super in Supernominal

Also, Transnominal: Beyond Finite Support

Nominal Datatypes MRBNFs (Binders as Functors)

BA-Induction

BA-Recursion

Infinite Branching

Coinductive Types

BA-Coinduction

BA-Corecursion

Complex Binders

Modularity

BA = binding-aware

The Super in Supernominal
Also, Transnominal: Beyond Finite Support

Nominal Datatypes MRBNFs (Binders as Functors)

BA-Induction

BA-Recursion

Infinite Branching

Coinductive Types

BA-Coinduction

BA-Corecursion

Complex Binders

Modularity

BA = binding-aware

Binding-Aware Induction and Recursion

Supernominal Recursors
Urban’08 Norrish’04 Gheri&Popescu’17
Pitts’05 Gordon&Melham’96 Popescu&Gunter’11

Prior work on nominal corecursion: Kurz et al. 2013
Supernominal lifts their restriction to finite support

Syntax with Bindings in Isabelle

λ
→

∀
=Is

ab
el
le

β

α

Isabelle Nominal2 [Urban and Kaliszyk 2012]
- Good user support
- Complex binders via syntactic format

Supernominal (not yet fully implemented)
- Will boost expressiveness and compositionality
- Will stay backwards-compatiblish with Nominal/Nominal2

1999: The Year the Earth Stood Still

Much category theory on De Bruijn style, starting with
Fiore et al. (LICS’99)
Hofmann (LICS’99)
Bird and Paterson (J. Func. Prog. ’99)
Altenkirch and Reus (CSL’99)

The same year: Nominal Logic – Gabbay and Pitts (LICS’99)

Precursors of BNFs

BNFs = subclass of k-accessible functors

Container types [Hoogendijk and de Moor 2000]

Containers [Abbott et al. 2005]

Relevant Classes of Functors

Dependent Polynomial
=

Indexed Container
MRBNF

Accessible
=

Quotient of Polynomial

BNF

LEAN (co)datatypes
Avigad et al. ITP’19

(Infinitary) Analytic
=

Quotient Container

Polynomial
=

Container

Coq (co)datatypes
gaining some
compositionality
Tassi, ITP’19

Relevant Classes of Functors

Dependent Polynomial
=

Indexed Container
MRBNF

Accessible
=

Quotient of Polynomial

BNF LEAN (co)datatypes
Avigad et al. ITP’19

(Infinitary) Analytic
=

Quotient Container

Polynomial
=

Container

Coq (co)datatypes
gaining some
compositionality
Tassi, ITP’19

Relevant Classes of Functors

Dependent Polynomial
=

Indexed Container
MRBNF

Accessible
=

Quotient of Polynomial

BNF LEAN (co)datatypes
Avigad et al. ITP’19

(Infinitary) Analytic
=

Quotient Container

Polynomial
=

Container

Coq (co)datatypes
gaining some
compositionality
Tassi, ITP’19

Main Insight Behind Supernominal

Bindings Are Functors

Andrei Popescu
University of Sheffield, UK

LFMTP
June 30, 2020

Joint work with

Jasmin Blanchette, Lorenzo Gheri, Dmitriy Traytel, Isabelle/HOL

λ
→

∀
=Is

ab
el
le

β

α

Main Insight Behind Supernominal

Bindings Are Functors
Andrei Popescu

University of Sheffield, UK
LFMTP

June 30, 2020

Joint work with

Jasmin Blanchette, Lorenzo Gheri, Dmitriy Traytel, Isabelle/HOL

λ
→

∀
=Is

ab
el
le

β

α

