
Some results about the variations of
Higher-Order Logic underlying proof assistants

Andrei Popescu
Middlesex University London

Joint work with Ondřej Kunčar

Part I. Motivation

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core

Bugs? Well, OK Logical flaws? Not OK!

- Tool layer

Bugs? OK

- User interface

Bugs? OK

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!

But who’s guarding the guardians?

Structure
- Logical core

Bugs? Well, OK Logical flaws? Not OK!

- Tool layer

Bugs? OK

- User interface

Bugs? OK

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core

Bugs? Well, OK Logical flaws? Not OK!

- Tool layer

Bugs? OK

- User interface

Bugs? OK

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core

Bugs? Well, OK Logical flaws? Not OK!

- Tool layer

Bugs? OK

- User interface

Bugs? OK

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core

Bugs? Well, OK Logical flaws? Not OK!

- Tool layer

Bugs? OK

- User interface Bugs?

OK

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core

Bugs? Well, OK Logical flaws? Not OK!

- Tool layer

Bugs? OK

- User interface Bugs? OK

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core

Bugs? Well, OK Logical flaws? Not OK!

- Tool layer Bugs?

OK

- User interface Bugs? OK

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core

Bugs? Well, OK Logical flaws? Not OK!

- Tool layer Bugs? OK
- User interface Bugs? OK

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core Bugs?

Well, OK Logical flaws? Not OK!

- Tool layer Bugs? OK
- User interface Bugs? OK

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core Bugs? Well, OK

Logical flaws? Not OK!

- Tool layer Bugs? OK
- User interface Bugs? OK

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core Bugs? Well, OK Logical flaws?

Not OK!

- Tool layer Bugs? OK
- User interface Bugs? OK

Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core Bugs? Well, OK Logical flaws? Not OK!
- Tool layer Bugs? OK
- User interface Bugs? OK

Proof Assistants

Example implementation bug: Side-condition of inference rule not
implemented correctly, i.e., as prescribed by the logical system

Example logical flaw: The termination/guardedness checker is
conceptually flawed

Logical flaws should be very unlikely to occur in mature, heavily
used proof assistants...

Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Coq 8.4pl2 Maxime Dénès and Daniel Schepler (2013)
Hypothesis Heq : (False → False) = True.
Fixpoint contradiction (u : True) : False := contradiction (match Heq in (_ = T)
return T with | eq_refl => fun f:False ⇒ match f with end end).
Lemma foo : provable_prop_extensionality → False.
< four-line proof >

Isabelle 2013-2 Ondřej Kunčar (2014)
consts c :: bool
typedef T = {True, c} by blast
defs c_bool_def: c::bool ≡ if (∀(x::T) y. x = y) then False else True
lemma A: (∀(x::T) y. x = y) ←→ c"
< one-line proof >
theorem False

< one-line proof >

Apologies to Agda, Dafny, PVS, etc. for the omissions...

Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Coq 8.4pl2 Maxime Dénès and Daniel Schepler (2013)
Hypothesis Heq : (False → False) = True.
Fixpoint contradiction (u : True) : False := contradiction (match Heq in (_ = T)
return T with | eq_refl => fun f:False ⇒ match f with end end).
Lemma foo : provable_prop_extensionality → False.
< four-line proof >

Isabelle 2013-2 Ondřej Kunčar (2014)
consts c :: bool
typedef T = {True, c} by blast
defs c_bool_def: c::bool ≡ if (∀(x::T) y. x = y) then False else True
lemma A: (∀(x::T) y. x = y) ←→ c"
< one-line proof >
theorem False

< one-line proof >

Apologies to Agda, Dafny, PVS, etc. for the omissions...

Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Does this endanger the whole galaxy?

No.

1. So far, such flaws have been successfully fixed.
2. Honest, responsible users stay away from proofs of False.

Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Does this endanger the whole galaxy? No.

1. So far, such flaws have been successfully fixed.
2. Honest, responsible users stay away from proofs of False.

Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Does this endanger the whole galaxy? No.

1. So far, such flaws have been successfully fixed.

2. Honest, responsible users stay away from proofs of False.

Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Does this endanger the whole galaxy? No.

1. So far, such flaws have been successfully fixed.
2. Honest, responsible users stay away from proofs of False.

Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Does this endanger the whole galaxy? No.

1. So far, such flaws have been successfully fixed.
2. Honest, responsible users stay away from proofs of False.
-1. Automatic tools don’t know what honesty means.

-2. Certification authorities become reluctant.

Burkhart Wolff

I am [within] the EUROMILS project part of the team that attempts
to get a common criteria (CC EAL5) evaluation for PikeOS through,
where the models and proofs were done with Isabelle.

I had a lengthy debate with evaluators and (indirectly) BSI
representatives which became aware [of a proof of False].

Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Does this endanger the whole galaxy? No.

1. So far, such flaws have been successfully fixed.
2. Honest, responsible users stay away from proofs of False.
-1. Automatic tools don’t know what honesty means.
-2. Certification authorities become reluctant.

Burkhart Wolff

I am [within] the EUROMILS project part of the team that attempts
to get a common criteria (CC EAL5) evaluation for PikeOS through,
where the models and proofs were done with Isabelle.
I had a lengthy debate with evaluators and (indirectly) BSI
representatives which became aware [of a proof of False].

Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism Why is that?

Two approaches to theorem proving

- Axiomatic approach

– unsafe

Every new situation is modeled by a new set of axioms

- Definitional approach

– safer but also less convenient

Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible
fact : Nat→ Nat

fact (0) = 1
fact (n + 1) = (n + 1) ∗ fact (n)

Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism

Why is that?

Two approaches to theorem proving

- Axiomatic approach

– unsafe

Every new situation is modeled by a new set of axioms

- Definitional approach

– safer but also less convenient

Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible
fact : Nat→ Nat

fact (0) = 1
fact (n + 1) = (n + 1) ∗ fact (n)

Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism Why is that?

Two approaches to theorem proving

- Axiomatic approach

– unsafe

Every new situation is modeled by a new set of axioms

- Definitional approach

– safer but also less convenient

Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible
fact : Nat→ Nat

fact (0) = 1
fact (n + 1) = (n + 1) ∗ fact (n)

Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism Why is that?

Two approaches to theorem proving

- Axiomatic approach

– unsafe

Every new situation is modeled by a new set of axioms

- Definitional approach

– safer but also less convenient

Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible
fact : Nat→ Nat

fact (0) = 1
fact (n + 1) = (n + 1) ∗ fact (n)

Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism Why is that?

Two approaches to theorem proving

- Axiomatic approach – unsafe
Every new situation is modeled by a new set of axioms

- Definitional approach – safer

but also less convenient

Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible
fact : Nat→ Nat

fact (0) = 1
fact (n + 1) = (n + 1) ∗ fact (n)

Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism Why is that?

Two approaches to theorem proving

- Axiomatic approach – unsafe
Every new situation is modeled by a new set of axioms

- Definitional approach – safer

but also less convenient

Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible
fact : Nat→ Nat

fact (0) = 1
fact (n + 1) = (n + 1) ∗ fact (n)

Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism Why is that?

Two approaches to theorem proving

- Axiomatic approach – unsafe
Every new situation is modeled by a new set of axioms

- Definitional approach – safer but also less convenient
Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible
fact : Nat→ Nat

fact (0) = 1
fact (n + 1) = (n + 1) ∗ fact (n)

Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism Why is that?

Two approaches to theorem proving

- Axiomatic approach – unsafe
Every new situation is modeled by a new set of axioms

- Definitional approach – safer but also less convenient
Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible

fact : Nat→ Nat
fact (0) = 1

fact (n + 1) = (n + 1) ∗ fact (n)

Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism Why is that?

Two approaches to theorem proving

- Axiomatic approach – unsafe
Every new situation is modeled by a new set of axioms

- Definitional approach – safer but also less convenient
Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible
fact : Nat→ Nat

fact (0) = 1
fact (n + 1) = (n + 1) ∗ fact (n)

Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism Why is that?

Two approaches to theorem proving

- Axiomatic approach – unsafe
Every new situation is modeled by a new set of axioms

- Definitional approach – safer but also less convenient
Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible
collatz : Nat→ LazyList(Nat)

collatz (n) =

 [] if n ≤ 1
collatz (n / 2) if n > 1 and n even

n :: collatz (3 ∗ n + 1) if n > 1 and n odd

Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism Why is that?

Two approaches to theorem proving

- Axiomatic approach – unsafe
Every new situation is modeled by a new set of axioms

- Definitional approach – safer but also less convenient
Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible

Proofs of False are a pest feeding on
a proof assistant’s definitional ambition

Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Proofs of False are a natural consequence of
a proof assistant’s definitional ambition

What to do?

Formalize and verify

• not their implementation – it evolves too fast

• but their precise logical system – it also evolves, but not so fast
Pay particular attention to the definitional mechanisms

Properties to prove

• those deemed important by users, designers and developers

• including, of course, consistency

Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Proofs of False are a natural consequence of
a proof assistant’s definitional ambition

What to do?

Formalize and verify

• not their implementation – it evolves too fast

• but their precise logical system – it also evolves, but not so fast
Pay particular attention to the definitional mechanisms

Properties to prove

• those deemed important by users, designers and developers

• including, of course, consistency

Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Proofs of False are a natural consequence of
a proof assistant’s definitional ambition

What to do?

Formalize and verify

• not their implementation – it evolves too fast

• but their precise logical system – it also evolves, but not so fast
Pay particular attention to the definitional mechanisms

Properties to prove

• those deemed important by users, designers and developers

• including, of course, consistency

Proof Assistants: Definitional Ambitions
Type Theory (Agda, Coq, Lean, Matita)

- Built-in recursion for types and functions

datatype α list = Nil | Cons α (α list)
fun length xs = case xs of Nil ⇒ 0 | Cons x ys ⇒ 1 + length ys

- Consistency via positivity and guardedness or type-based analysis
When analysis is flawed −→ Proofs of False

HOL (HOL4, HOL Light, Isabelle/HOL, HOL ProofPower, HOL Zero)

- All recursion reduced to non-recursive definitions
(α, β) F = unit + α× β α list = the initial algebra of (α,_) F

- No worry about inconsistency through recursion

- How about the non-recursive definitions? Well...

- HOL type definitions are not even definitions!
- In Isabelle/HOL, constant definitions are not entirely
non-recursive.

Proof Assistants: Definitional Ambitions
Type Theory (Agda, Coq, Lean, Matita)

- Built-in recursion for types and functions

datatype α list = Nil | Cons α (α list)
fun length xs = case xs of Nil ⇒ 0 | Cons x ys ⇒ 1 + length ys

- Consistency via positivity and guardedness or type-based analysis

When analysis is flawed −→ Proofs of False

HOL (HOL4, HOL Light, Isabelle/HOL, HOL ProofPower, HOL Zero)

- All recursion reduced to non-recursive definitions
(α, β) F = unit + α× β α list = the initial algebra of (α,_) F

- No worry about inconsistency through recursion

- How about the non-recursive definitions? Well...

- HOL type definitions are not even definitions!
- In Isabelle/HOL, constant definitions are not entirely
non-recursive.

Proof Assistants: Definitional Ambitions
Type Theory (Agda, Coq, Lean, Matita)

- Built-in recursion for types and functions

datatype α list = Nil | Cons α (α list)
fun length xs = case xs of Nil ⇒ 0 | Cons x ys ⇒ 1 + length ys

- Consistency via positivity and guardedness or type-based analysis
When analysis is flawed −→ Proofs of False

HOL (HOL4, HOL Light, Isabelle/HOL, HOL ProofPower, HOL Zero)

- All recursion reduced to non-recursive definitions
(α, β) F = unit + α× β α list = the initial algebra of (α,_) F

- No worry about inconsistency through recursion

- How about the non-recursive definitions? Well...

- HOL type definitions are not even definitions!
- In Isabelle/HOL, constant definitions are not entirely
non-recursive.

Proof Assistants: Definitional Ambitions
Type Theory (Agda, Coq, Lean, Matita)

- Built-in recursion for types and functions

datatype α list = Nil | Cons α (α list)
fun length xs = case xs of Nil ⇒ 0 | Cons x ys ⇒ 1 + length ys

- Consistency via positivity and guardedness or type-based analysis
When analysis is flawed −→ Proofs of False

HOL (HOL4, HOL Light, Isabelle/HOL, HOL ProofPower, HOL Zero)

- All recursion reduced to non-recursive definitions
(α, β) F = unit + α× β α list = the initial algebra of (α,_) F

- No worry about inconsistency through recursion

- How about the non-recursive definitions? Well...

- HOL type definitions are not even definitions!
- In Isabelle/HOL, constant definitions are not entirely
non-recursive.

Proof Assistants: Definitional Ambitions
Type Theory (Agda, Coq, Lean, Matita)

- Built-in recursion for types and functions

datatype α list = Nil | Cons α (α list)
fun length xs = case xs of Nil ⇒ 0 | Cons x ys ⇒ 1 + length ys

- Consistency via positivity and guardedness or type-based analysis
When analysis is flawed −→ Proofs of False

HOL (HOL4, HOL Light, Isabelle/HOL, HOL ProofPower, HOL Zero)

- All recursion reduced to non-recursive definitions
(α, β) F = unit + α× β α list = the initial algebra of (α,_) F

- No worry about inconsistency through recursion

- How about the non-recursive definitions?

Well...

- HOL type definitions are not even definitions!
- In Isabelle/HOL, constant definitions are not entirely
non-recursive.

Proof Assistants: Definitional Ambitions
Type Theory (Agda, Coq, Lean, Matita)

- Built-in recursion for types and functions

datatype α list = Nil | Cons α (α list)
fun length xs = case xs of Nil ⇒ 0 | Cons x ys ⇒ 1 + length ys

- Consistency via positivity and guardedness or type-based analysis
When analysis is flawed −→ Proofs of False

HOL (HOL4, HOL Light, Isabelle/HOL, HOL ProofPower, HOL Zero)

- All recursion reduced to non-recursive definitions
(α, β) F = unit + α× β α list = the initial algebra of (α,_) F

- No worry about inconsistency through recursion

- How about the non-recursive definitions? Well...

- HOL type definitions are not even definitions!
- In Isabelle/HOL, constant definitions are not entirely
non-recursive.

Proof Assistants: Definitional Ambitions
Type Theory (Agda, Coq, Lean, Matita)

- Built-in recursion for types and functions

datatype α list = Nil | Cons α (α list)
fun length xs = case xs of Nil ⇒ 0 | Cons x ys ⇒ 1 + length ys

- Consistency via positivity and guardedness or type-based analysis
When analysis is flawed −→ Proofs of False

HOL (HOL4, HOL Light, Isabelle/HOL, HOL ProofPower, HOL Zero)

- All recursion reduced to non-recursive definitions
(α, β) F = unit + α× β α list = the initial algebra of (α,_) F

- No worry about inconsistency through recursion

- How about the non-recursive definitions? Well...

- HOL type definitions are not even definitions!
- In Isabelle/HOL, constant definitions are not entirely
non-recursive.

Part II. Background on HOL

The HOL Logic
Rank-1 Polymorphic Classical Higher-Order Logic with Choice and Infinity

We fix:

• a set K of type constructors, including bool, ind, →

• a function arOf : K → N

Types: σ ::= α | (σ1, . . . , σarOf(k)) k

• a set Const of constants, including =, ε

• a function tpOf : Const→ Type
tpOf(=) = α→ α→ bool
tpOf(ε) = (α→ bool)→ α

Terms: The λ-calculus terms over variables and constants

Typing t : σ defined as expected, e.g., (λxbool. x) : bool→ bool

All other connectives and quantifiers defined from the above, e.g.,
True ≡ (λxbool. x) = (λxbool. x) ∀xσ. ϕ ≡ (λxσ. ϕ) = (λxσ. True)

The HOL Logic
Rank-1 Polymorphic Classical Higher-Order Logic with Choice and Infinity

We fix:

• a set K of type constructors, including bool, ind, →

• a function arOf : K → N

Types: σ ::= α | (σ1, . . . , σarOf(k)) k

• a set Const of constants, including =, ε

• a function tpOf : Const→ Type
tpOf(=) = α→ α→ bool
tpOf(ε) = (α→ bool)→ α

Terms: The λ-calculus terms over variables and constants

Typing t : σ defined as expected, e.g., (λxbool. x) : bool→ bool

All other connectives and quantifiers defined from the above, e.g.,
True ≡ (λxbool. x) = (λxbool. x) ∀xσ. ϕ ≡ (λxσ. ϕ) = (λxσ. True)

The HOL Logic
Formulas: Terms of type bool
Axioms: Equality Axioms, Infinity and Choice
Deduction system: D set of definitions, Γ proof context

[ϕ ∈ Axioms ∪ D] (Fact)
D; Γ ` ϕ [ϕ ∈ Γ] (Assum)

D; Γ ` ϕ

D; Γ ` ϕ
[α /∈ Γ] (T-Inst)

D; Γ ` ϕ[σ/α]

D; Γ ` ϕ
[xσ /∈ Γ] (Inst)

D; Γ ` ϕ[t/xσ]

(Beta)
D; Γ ` (λxσ. t) s = t[s/xσ]

D; Γ ` ϕ −→ χ D; Γ ` ϕ
(MP)

D; Γ ` χ

D; Γ ∪ {ϕ} ` χ
(Imp_Intro)

D; Γ ` ϕ −→ χ

D; Γ ` f xσ = g xσ
[xσ /∈ Γ] (Ext)

D; Γ ` f = g

Derived rules, e.g.: D; Γ ` ϕ
[xσ /∈ Γ] (All_Intro)

D; Γ ` ∀xσ. ϕ

The HOL Logic: Definitional mechanisms
Constant definitions c ≡ t where

t : σ such that TypeVars(t) ⊆ TypeVars(σ)
c fresh constant (receiving the type σ)

Type definitions (typedefs) τ ≡ t where
- τ has the form (α1, . . . , αn) k , with k fresh n-ary type
constructor
- t : σ → bool
- TypeVars(σ) ⊆ {α1, . . . , αn}

Intuition: τ is a copy of the subset of σ corresponding to t, i.e., of
{x : σ | t x}.

Constant definitions are mere equalities, whereas typedefs are
formulas stating an isomorphism:
τ ≡ t is ∃repτ→σ. ∃absσ→τ .(τ ≈ t)abs

rep
and are accepted only if the predicate is proved non-empty: ∃xσ. t x

HOL keeps its types nonempty

Part III. Background on Isabelle/HOL

Isabelle/HOL: A Definitionally More Ambitious HOL

Isabelle/

HOL constant definitions: c

σ

≡ t

t : σ

≤ tpOf(c)

c fresh constant

HOL: Either only declare a constant, or define it at most general
type

Isabelle/HOL: Ad hoc overloading is allowed: can declare a
constant, and then define different instances

⇓

Haskell-style type classes

Isabelle/HOL: A Definitionally More Ambitious HOL

Isabelle/HOL constant definitions: cσ≡ t

t : σ ≤ tpOf(c)

c fresh constant

HOL: Either only declare a constant, or define it at most general
type

Isabelle/HOL: Ad hoc overloading is allowed: can declare a
constant, and then define different instances

⇓

Haskell-style type classes

Isabelle/HOL: A Definitionally More Ambitious HOL

Isabelle/HOL constant definitions: cσ≡ t

t : σ ≤ tpOf(c)

c fresh constant

HOL: Either only declare a constant, or define it at most general
type

Isabelle/HOL: Ad hoc overloading is allowed: can declare a
constant, and then define different instances

⇓

Haskell-style type classes

Ad Hoc Overloading in Isabelle/HOL
Example: The class “type endowed with a zero element”

Declare a constant 0 : α
Define other types and functions that operate on this type class
Define various instances:

- 0 : nat ≡ the number 0
- 0 : α list ≡ [0 : α] – a form of recursion

Safety measures taken against evil overloading
- Defined instances must be orthogonal: cannot define both
0α→nat and 0nat→α

- Cyclic definitions are not allowed: cannot define cnat using
cint and then cint using cnat

But, until c. 2015:
- No rigorous proof that these measures guarantee consistency.
- Various logical flaws have been discovered and fixed.

Ad Hoc Overloading in Isabelle/HOL
Example: The class “type endowed with a zero element”

Declare a constant 0 : α
Define other types and functions that operate on this type class
Define various instances:

- 0 : nat ≡ the number 0
- 0 : α list ≡ [0 : α] – a form of recursion

Safety measures taken against evil overloading
- Defined instances must be orthogonal: cannot define both
0α→nat and 0nat→α

- Cyclic definitions are not allowed: cannot define cnat using
cint and then cint using cnat

But, until c. 2015:
- No rigorous proof that these measures guarantee consistency.
- Various logical flaws have been discovered and fixed.

Part IV. Let’s Get More Precise

Definitional Theory

In Standard HOL:
Sequence def 1, . . . , def n where each def i is

- either a constant definition cσ ≡ t with t : σ
where c is fresh for the signature of def 1, . . . , def i−1
(σ becomes the type of c)
- or a typedef (α1, . . . , αn) k ≡ t with t : σ → bool
(postulating the existence of a bijection between
(α1, . . . , αn) k and and {x : σ | t x})
where k is fresh for the signature of def 1, . . . , def i−1

Note: Signatures can also contain declared only constants/types.

Consistency of Standard-HOL Definitional Theories

Theorem (Andrew Pitts). Any standard-HOL definitional theory
D = {u1 ≡ t1, . . . , un ≡ tn} is consistent.

Semantic proof: Build standard model satisfied by D in a large enough
and closed enough universe U , where:

- Type constructors k of arity n interpreted as functions [k] : Un → U

- Types σ interpreted as functions [σ] : UTVar → U – their
interpretations built from those of their occurring type constructors

- Constants c : σ interpreted as families [c] ∈
∏
ξ∈UTVar [σ] ξ

- Term (in particular, formula) interpretations built form those of
their occurring constants

By freshness, LHS’s of definitions can be interpreted in order:
When interpreting ui , we already know the interpretation of ti .
(For typedefs, we need that U is closed under taking subsets.)

Definitional Theory in Isabelle/HOL?

In Standard HOL:
Sequence def 1, . . . , def n where each def i is

- Either a constant definition cσ ≡ t with t : σ
where c is fresh for the signature of def 1, . . . , def i−1
(σ becomes the type of c)
- or a typedef (α1, . . . , αn) k ≡ t with t : σ → bool
(postulating the existence of a bijection between
(α1, . . . , αn) k and and {x : σ | t x})
where k is fresh for the signature of def 1, . . . , def i−1

Note: Signatures can also contain declared only constants/types.

In Isabelle/HOL:
Constant definitions cσ ≡ t not required to have c fresh; c can be a
previously declared constant c : τ where τ ≥ σ.
Conditions laxer than freshness are imposed.

Definitional Theory in Isabelle/HOL?

In Standard HOL:
Sequence def 1, . . . , def n where each def i is

- Either a constant definition cσ ≡ t with t : σ
where c is fresh for the signature of def 1, . . . , def i−1
(σ becomes the type of c)
- or a typedef (α1, . . . , αn) k ≡ t with t : σ → bool
(postulating the existence of a bijection between
(α1, . . . , αn) k and and {x : σ | t x})
where k is fresh for the signature of def 1, . . . , def i−1

Note: Signatures can also contain declared only constants/types.

In Isabelle/HOL:
Constant definitions cσ ≡ t not required to have c fresh; c can be a
previously declared constant c : τ where τ ≥ σ.
Conditions laxer than freshness are imposed.

Example: Defining Nominal Logic’s Permutation Actions
Declare • : prm→ α→ α

Other type or constant definitions can occur in between... perhaps
depending on • instances, and on which • instances may depend on.

Then define
•prm→atom→atom ≡ λπ a. apply π a

•prm→nat→nat ≡ λπ n. n

•prm→α list→α list ≡ λπ xs.map (λx . π • x) xs

•prm→(α→β)→(α→β) ≡ λπ f x . π • (f (π−1 • x))

Also, note the recursive dependencies:
•prm→α list→α list •prm→α→α
•prm→(α→β)→(α→β) •prm→α→α, •prm→β→β

But what exactly is a dependency?

Example: Defining Nominal Logic’s Permutation Actions
Declare • : prm→ α→ α

Other type or constant definitions can occur in between... perhaps
depending on • instances, and on which • instances may depend on.

Then define
•prm→atom→atom ≡ λπ a. apply π a

•prm→nat→nat ≡ λπ n. n

•prm→α list→α list ≡ λπ xs.map (λx . π • x) xs

•prm→(α→β)→(α→β) ≡ λπ f x . π • (f (π−1 • x))

Also, note the recursive dependencies:
•prm→α list→α list •prm→α→α
•prm→(α→β)→(α→β) •prm→α→α, •prm→β→β

But what exactly is a dependency?

Example: Defining Nominal Logic’s Permutation Actions
Declare • : prm→ α→ α

Other type or constant definitions can occur in between... perhaps
depending on • instances, and on which • instances may depend on.

Then define
•prm→atom→atom ≡ λπ a. apply π a

•prm→nat→nat ≡ λπ n. n

•prm→α list→α list ≡ λπ xs.map (λx . π • x) xs

•prm→(α→β)→(α→β) ≡ λπ f x . π • (f (π−1 • x))

Also, note the recursive dependencies:
•prm→α list→α list •prm→α→α
•prm→(α→β)→(α→β) •prm→α→α, •prm→β→β

But what exactly is a dependency?

Definitional Dependency Relation – Preliminaries

Built-in type constructors: ind, bool (nullary), →(binary).
Non-built-in type constructors: all the others, i.e., the defined and
declared ones.

Built-in types: Types that have built-in type constructor at the top.
E.g., α→ (ind list).
Hence, non-built-in types are the type variables and those with
non-built-in type constructor at the top. E.g., (α→ ind)list.

Built-in constants: = : α→ α→ bool and ε : (α→ bool)→ α.

Definitional Dependency Relation – Preliminaries

For σ ∈ Type, NbiTps(σ) is the set of non-built-in types in σ:

NbiTps(α) = {α} NbiTps(bool) = ∅ NbiTps(ind) = ∅

NbiTps(σ1 → σ2) = NbiTps(σ1) ∪ NbiTps(σ2)

NbiTps((σ1, . . . , σn) k) = {(σ1, . . . , σn) k} ∪
⋃n

i=1 NbiTps(σi)
when k is non-built-in type constructor

Similarly, for t ∈ Term,
NbiTps(t) is the set of non-built-in types in t

NbiCinsts(t) is the set of non-built-in constant instances in t

When tracking definitional dependency of types and terms, we only
care about the non-built-in types that they contain.

Definitional Dependency Relation

Fix definitional theory D.
Define dependency relation on Type ∪̇ CInst:

u v
iff

there is a definition u ≡ t in D s.t. v ∈ NbiTps(t) ∪̇ NbiCinsts(t)

Definitions can be polymorphic, hence dangerous dependencies can
occur through their instances.
To account for this, we consider ’s type-substitutive closure ↓:
It relates u[ρ] with v [ρ] when u v and ρ is a type substitution.

Isabelle/HOL has syntactic checks that ensure:
- Orthogonality: For any two definitions u ≡ t and u′ ≡ t ′ in
D, u and u′ are orthogonal (have no common instance)
- Termination of ↓

Is this enough to prove consistency?

Parenthesis: Preventing Evil Dependencies Through Types
c : α

τ ≡ {True, cbool}
cbool ≡ ¬ (∀xτ yτ . x = y)

cbool ↓ τ ↓ cbool
Rejected by Isabelle starting 2016, but not by previous versions.

Why has previous work failed to catch this?

- Wenzel 1997
- Haftmann&Wenzel 2006
- Obua 2006 (detailed
- proof of consistency!)

They checked dependencies through constant, but not through type
definitions – all interesting information about a newly defined type
must flow through the embedding-projection pair to its host type,
i.e., through defined constants. All, but (finite) cardinality info...

Parenthesis: Preventing Evil Dependencies Through Types
c : α

τ ≡ {True, cbool}
cbool ≡ ¬ (∀xτ yτ . x = y)

cbool ↓ τ ↓ cbool
Rejected by Isabelle starting 2016, but not by previous versions.

Why has previous work failed to catch this?

- Wenzel 1997
- Haftmann&Wenzel 2006
- Obua 2006 (detailed
- proof of consistency!)

They checked dependencies through constant, but not through type
definitions – all interesting information about a newly defined type
must flow through the embedding-projection pair to its host type,
i.e., through defined constants. All, but (finite) cardinality info...

Consistency of (Isabelle/HOL Checked) Definitional Theories
Let’s try a semantic proof à la Pitts: Interpret syntax in universe U .

Syntax
• : prm→ α→ α

•atom ≡ λπ a. apply π a
•nat ≡ λπ n. n
•α list ≡ λπ xs.map (λx . π • x) xs

•α→β ≡ λπ f x . π • (f (π−1 • x))
blah

Semantics
[•] ∈

∏
A∈U

(
AA
)[prm]

[•][atom] = Λπ a. [apply] π a

[•][nat] = Λπ a. n

[•][list](A) = Λπ xs. [map]A ([•]A π) xs
for all A ∈ U

[•]A→B = Λπ f x . [•]B π (f ([•]A ([inv] π) x))
for all A, B ∈ U

Must define a family of functions ([•]A)A∈U via some equalities.
All we know: Syntactic counterparts orthogonal and terminating.
Are the semantic definitions:

- Orthogonal? Can make them, with set-theoretic acrobatics.
- Terminating? Not even clear what this means.

How to connect semantic and syntactic termination?

Consistency of (Isabelle/HOL Checked) Definitional Theories
Let’s try a semantic proof à la Pitts: Interpret syntax in universe U .

Syntax
• : prm→ α→ α

•atom ≡ λπ a. apply π a
•nat ≡ λπ n. n
•α list ≡ λπ xs.map (λx . π • x) xs

•α→β ≡ λπ f x . π • (f (π−1 • x))
blah

Semantics
[•] ∈

∏
A∈U

(
AA
)[prm]

[•][atom] = Λπ a. [apply] π a

[•][nat] = Λπ a. n

[•][list](A) = Λπ xs. [map]A ([•]A π) xs
for all A ∈ U

[•]A→B = Λπ f x . [•]B π (f ([•]A ([inv] π) x))
for all A, B ∈ U

Must define a family of functions ([•]A)A∈U via some equalities.
All we know: Syntactic counterparts orthogonal and terminating.
Are the semantic definitions:

- Orthogonal? Can make them, with set-theoretic acrobatics.
- Terminating? Not even clear what this means.

How to connect semantic and syntactic termination?

Solution: Rethinking the Interpretation of Polymorphism

Interpret • : prm→ α→ α

not as [•] ∈
∏

A∈U
(
AA
)[prm]

but as [•] ∈
∏
σ∈GroundType

(
[σ][σ]

)[prm]

Blend of syntax and semantics:
- polymorphism interpreted syntactically
- everything else interpreted semantically

Solution: Rethinking the Interpretation of Polymorphism

For the polymorphic type α→ bool:
- no “global” interpretation

∏
A∈U A[bool]

- but only interpretations of its ground-instances, σ → bool for
σ ∈ GroundType, as [σ][bool]

For a polymorphic constant c : α→ bool:
- no “global” interpretation in

∏
A∈U A[bool]

- but only interpretations of its ground instances cσ for
σ ∈ GroundType, as an element of [σ][bool]

The (truth of the) formula ∀x : α. cα x

- no longer means: for all A ∈ U and x ∈ A, [c]A x = True
- but rather: for all σ ∈ GroundType and x ∈ [σ], [cσ]x = True

Solution: Rethinking the Interpretation of Polymorphism

Lemma. The HOL rules are sound for any ground interpretation.

Theorem. Any Isabelle/HOL-checked definitional theory D is true
in some ground interpretation, hence is consistent.

Proof idea. The desired interpretation is defined by well-founded recursion
w.r.t. ↓. For any instance (u[ρ], t[ρ]) of a definition u ≡ t in D:

- All non-built-in items in t[ρ] are “smaller” than u[ρ] – hence have
already been interpreted at the time we interpret u[ρ] according to
the definition’s semantics.

- All built items have a fixed standard interpretation.

(Uses partial interpretations of well-behaved signature fragments.)

O.K. & A.P. A Consistent Foundation for Isabelle/HOL. ITP’15.

Ground Interpretation Illustrated

Syntax
• : prm→ α→ α
•α list ≡ λπ xs.map (λx . π • x) xs
•α→β ≡ λπ f x . π • (f (π−1 • x))

Pitts Semantics
[•] ∈

∏
A∈U

(
AA
)prm

[•][list](A) = Λπ xs. [map]A ([•]A π) xs
for all A ∈ U

[•]A→B = Λπ f x . [•]B π (f ([•]A ([inv] π) x))
for all A, B ∈ U

Ground Semantics
[•] ∈

∏
σ∈GroundType

(
[σ][σ]

)prm
[•][σ list] = . . .

for all σ ∈ GroundType
[•][σ→τ] = . . .

for all σ, τ ∈ GroundType

Difference: Ground semantics equations are a well-formed definition!

[•][(nat→nat) list] defined before [•][nat→nat] defined before [•][nat] etc.

Reaction to Our Consitency Proof

Larry Paulson

“It’s a bit puzzling, not to say worrying, to want a [new]
set-theoretic semantics for plain definitions. The point
of definitions (and the origin of the idea that they
preserve consistency) is that they are abbreviations.”

Towards a Syntactic Proof of Consistency

Main difficulty:
Types and constant definitions are mutually dependent
Typedefs cannot be seen as abbreviations

Typedefs create types τ corresponding to subsets of existing types σ

∃repτ→σ. ∃absσ→τ .(τ ≈ t)abs
rep

τ ’s definition cannot be unfolded inside HOL

Similarly, there is no
√
−1 inside R...

however, we can complete R
to C, where

√
−1 makes sense.

Towards a Syntactic Proof of Consistency

Main difficulty:
Types and constant definitions are mutually dependent
Typedefs cannot be seen as abbreviations

Typedefs create types τ corresponding to subsets of existing types σ

∃repτ→σ. ∃absσ→τ .(τ ≈ t)abs
rep

τ ’s definition cannot be unfolded inside HOL

Similarly, there is no
√
−1 inside R... however, we can complete R

to C, where
√
−1 makes sense.

HOL with Comprehension Types (HOLC)

Type-fortified logic

Makes room for unfolding type definitions

α k ≡ {|λxα. cα→bool dα|}
cα k→bool ≡ λxα k . cα→bool dα

(bool k) k
⇓

{|λxbool k . cbool k→bool dbool k |}
⇓

{|λxbool k . (λxbool k . cbool→bool dbool) dbool k |}
⇓

{|λx{|λxbool. cbool→bool dbool|}.(λx{|λxbool. cbool→bool dbool|}.cbool→booldbool)d{|λxbool. cbool→bool dbool|}|}

HOL with Comprehension Types (HOLC)

Type-fortified logic

Makes room for unfolding type definitions

α k ≡ {|λxα. cα→bool dα|}
cα k→bool ≡ λxα k . cα→bool dα

(bool k) k

⇓
{|λxbool k . cbool k→bool dbool k |}

⇓
{|λxbool k . (λxbool k . cbool→bool dbool) dbool k |}

⇓
{|λx{|λxbool. cbool→bool dbool|}.(λx{|λxbool. cbool→bool dbool|}.cbool→booldbool)d{|λxbool. cbool→bool dbool|}|}

HOL with Comprehension Types (HOLC)

Type-fortified logic

Makes room for unfolding type definitions

α k ≡ {|λxα. cα→bool dα|}
cα k→bool ≡ λxα k . cα→bool dα

(bool k) k
⇓

{|λxbool k . cbool k→bool dbool k |}

⇓
{|λxbool k . (λxbool k . cbool→bool dbool) dbool k |}

⇓
{|λx{|λxbool. cbool→bool dbool|}.(λx{|λxbool. cbool→bool dbool|}.cbool→booldbool)d{|λxbool. cbool→bool dbool|}|}

HOL with Comprehension Types (HOLC)

Type-fortified logic

Makes room for unfolding type definitions

α k ≡ {|λxα. cα→bool dα|}
cα k→bool ≡ λxα k . cα→bool dα

(bool k) k
⇓

{|λxbool k . cbool k→bool dbool k |}
⇓

{|λxbool k . (λxbool k . cbool→bool dbool) dbool k |}

⇓
{|λx{|λxbool. cbool→bool dbool|}.(λx{|λxbool. cbool→bool dbool|}.cbool→booldbool)d{|λxbool. cbool→bool dbool|}|}

HOL with Comprehension Types (HOLC)

Type-fortified logic

Makes room for unfolding type definitions

α k ≡ {|λxα. cα→bool dα|}
cα k→bool ≡ λxα k . cα→bool dα

(bool k) k
⇓

{|λxbool k . cbool k→bool dbool k |}
⇓

{|λxbool k . (λxbool k . cbool→bool dbool) dbool k |}
⇓

{|λx{|λxbool. cbool→bool dbool|}.(λx{|λxbool. cbool→bool dbool|}.cbool→booldbool)d{|λxbool. cbool→bool dbool|}|}

From HOL to HOLC

Types: σ = α | (σ1, . . . , σarOf(k)) k | {|t|}

Terms: t = xσ | cσ | t1 t2 | λxσ. t

for t : σ → bool, {|t|} means {x : σ | t x}

Typing:

α ∈ TVar
(W1)

wf(α)

wf(σ1) . . . wf(σarOf(k))
(W2)

wf((σ1, . . . , σarOf(k)) k)

t : σ → bool
(W3)

wf({|t|})

t : τ wf(σ)
(Abs)

λxσ. t : σ ⇒ τ

x ∈ VarN wf(σ)
(Var)

xσ : σ

c ∈ Const wf(τ) τ ≤ tpOf(c)
(Const)

cτ : τ

t1 : σ ⇒ τ t2 : σ
(App)

t1 t2 : τ

From HOL to HOLC

Types: σ = α | (σ1, . . . , σarOf(k)) k | {|t|}

Terms: t = xσ | cσ | t1 t2 | λxσ. t

for t : σ → bool, {|t|} means {x : σ | t x}

Typing:

α ∈ TVar
(W1)

wf(α)

wf(σ1) . . . wf(σarOf(k))
(W2)

wf((σ1, . . . , σarOf(k)) k)

t : σ → bool
(W3)

wf({|t|})

t : τ wf(σ)
(Abs)

λxσ. t : σ ⇒ τ

x ∈ VarN wf(σ)
(Var)

xσ : σ

c ∈ Const wf(τ) τ ≤ tpOf(c)
(Const)

cτ : τ

t1 : σ ⇒ τ t2 : σ
(App)

t1 t2 : τ

From HOL to HOLC

Axioms and deduction rules: Same as for HOL, except that:
- Deduction not parameterized by definitional theory D

D; Γ ` ϕ

- In exchange, a comprehension axiom is added:

∀tα→bool. (∃xα. t x) −→ ∃rep{|t|}→α. ∃absα→{|t|}.({|t|} ≈ t)abs
rep

which captures all HOL typedefs

From HOL to HOLC

Axioms and deduction rules: Same as for HOL, except that:
- Deduction not parameterized by definitional theory D

∅; Γ ` ϕ

- In exchange, a comprehension axiom is added:

∀tα→bool. (∃xα. t x) −→ ∃rep{|t|}→α. ∃absα→{|t|}.({|t|} ≈ t)abs
rep

which captures all HOL typedefs

From HOL to HOLC

Axioms and deduction rules: Same as for HOL, except that:
- Deduction not parameterized by definitional theory D

∅; Γ ` ϕ

- In exchange, a comprehension axiom is added:

∀tα→bool. (∃xα. t x) −→ ∃rep{|t|}→α. ∃absα→{|t|}.({|t|} ≈ t)abs
rep

which captures all HOL typedefs

Proof of Consistency

Fix Isabelle/HOL-checked definitional theory D.
Translate HOL types and terms to HOLC by recursive unfolding of
D, until a normal form is reached. This terminates because the call
graph is included in (an expansion of) ↓.

Theorem. D; Γ ` ϕ in HOL implies ∅; UNF(Γ) ` UNF(ϕ) in HOLC

Main difficulty in proof: the type instantiation rule

D; Γ ` ϕ
[α /∈ Γ] (T-Inst)

D; Γ ` ϕ[σ/α]

UNF does not commute with type substitutions:

UNF(t[σ/α]) 6= UNF(t)[UNF(σ)/α]

Proof of Consistency

Fix Isabelle/HOL-checked definitional theory D.
Translate HOL types and terms to HOLC by recursive unfolding of
D, until a normal form is reached. This terminates because the call
graph is included in (an expansion of) ↓.

Theorem. D; Γ ` ϕ in HOL implies ∅; UNF(Γ) ` UNF(ϕ) in HOLC

Main difficulty in proof: the type instantiation rule

D; Γ ` ϕ
[α /∈ Γ] (T-Inst)

D; Γ ` ϕ[σ/α]

UNF does not commute with type substitutions:

UNF(t[σ/α]) 6= UNF(t)[UNF(σ)/α]

Proof of Consistency

Culprit: Of course, ad hoc overloading

Declare c : α

Define cnat ≡ 0

UNF(cα[nat/α]) = 0 6= cnat = cα[nat/α] = UNF(cα)[nat/α]

Solution:

Refrain from applying (T-Inst) in the middle of proofs, but only
apply it at the beginning – OK for rank 1 polymorphism

Hence it suffices that

- UNF(ϕ[σ/α]) = UNF(ϕ)[UNF(σ)/α] for HOL axioms ϕ
- UNF(ϕ[σ/α]) is a HOLC tautology for ϕ ∈ D

- constant definitions become equalities of identical terms
- typedefs become instances of HOLC’s compr. axiom

Proof of Consistency

Culprit: Of course, ad hoc overloading

Declare c : α

Define cnat ≡ 0

UNF(cα[nat/α]) = 0 6= cnat = cα[nat/α] = UNF(cα)[nat/α]

Solution:

Refrain from applying (T-Inst) in the middle of proofs, but only
apply it at the beginning – OK for rank 1 polymorphism

Hence it suffices that

- UNF(ϕ[σ/α]) = UNF(ϕ)[UNF(σ)/α] for HOL axioms ϕ
- UNF(ϕ[σ/α]) is a HOLC tautology for ϕ ∈ D

- constant definitions become equalities of identical terms
- typedefs become instances of HOLC’s compr. axiom

Proof of Consistency

Theorem. Assume D is an Isabelle/HOL-checked definitional
theory. Then D ` ϕ in HOL implies ` UNF(ϕ) in HOLC

Have complicated the logic, but have gotten rid of definitions.

Theorem (Easy). HOLC is consistent.

Corollary. Isabelle/HOL-checked definitional theories are
consistent.

O.K. & A.P. Comprehending Isabelle/HOL’s Consistency. ESOP’17.

Can we get rid of definitions while staying in HOL? Yes, we can.

Proof of Consistency

Theorem. Assume D is an Isabelle/HOL-checked definitional
theory. Then D ` ϕ in HOL implies ` UNF(ϕ) in HOLC

Have complicated the logic, but have gotten rid of definitions.

Theorem (Easy). HOLC is consistent.

Corollary. Isabelle/HOL-checked definitional theories are
consistent.

O.K. & A.P. Comprehending Isabelle/HOL’s Consistency. ESOP’17.

Can we get rid of definitions while staying in HOL? Yes, we can.

Proof of Consistency

Theorem. Assume D is an Isabelle/HOL-checked definitional
theory. Then D ` ϕ in HOL implies ` UNF(ϕ) in HOLC

Have complicated the logic, but have gotten rid of definitions.

Have have gotten rid of definitions, but have complicated the logic.
blah
blah
blah
blah
blah

Can we get rid of definitions while staying in HOL? Yes, we can.

Proof of Consistency

Theorem. Assume D is an Isabelle/HOL-checked definitional
theory. Then D ` ϕ in HOL implies ` UNF(ϕ) in HOLC

Have complicated the logic, but have gotten rid of definitions.

Have have gotten rid of definitions, but have complicated the logic.
blah
blah
blah
blah
blah

Can we get rid of definitions while staying in HOL?

Yes, we can.

Proof of Consistency

Theorem. Assume D is an Isabelle/HOL-checked definitional
theory. Then D ` ϕ in HOL implies ` UNF(ϕ) in HOLC

Have complicated the logic, but have gotten rid of definitions.

Have have gotten rid of definitions, but have complicated the logic.
blah
blah
blah
blah
blah

Can we get rid of definitions while staying in HOL? Yes, we can.

Type HOST→ Type Type REL→ Term Term UNF→ Term

Theorem.
(1) REL(σ) : HOST(σ)→ bool and ` ∃xHOST(σ). REL(σ) x .
(2) t : σ implies UNF(t) : HOST(σ) and ` REL(σ) UNF(t).
(3) D ` ϕ implies ` UNF(ϕ).

Corollary. (Isabelle/)HOL-checked definitional theories are
conservative over initial HOL.

O.K. & A.P. Safety and Conservativity for HOL and Isabelle/HOL.
POPL’18.

HOST(α) = α
HOST((σ1, . . . , σm) k) = (HOST(σ1), . . . , HOST(σm)) k,
if k ∈ Decl

HOST((σ1, . . . , σm) k) = HOST(σ[σ1/α1, . . . , σm/αm]),
if (α1, . . . , αm) k ≡ t is in D and t : σ ⇒ bool

REL(σ) = λxσ. True, if σ ∈ TVar ∪ {bool, ind}
REL(σ1 ⇒ σ2) = λfHOST(σ1)⇒HOST(σ2). ∀xHOST(σ1). REL(σ2) (f x)
REL((σ1, . . . , σm) k) = λx(HOST(σ1),. . .,HOST(σm)) k .True, if k ∈ Decl
REL((σ1, . . . , σm) k) = UNF(t ′)
if (α1, . . . , αm) k ≡ t is in D,
where t ′ = t[σ1/α1, . . . , σm/αm]

UNF(xσ) = if_t_e (REL(σ) xHOST(σ)) x (ε REL(σ))
UNF(cσ) = cHOST(σ), if c ∈ Σinit
UNF(cσ) = if_t_e (REL(σ) cHOST(σ)) cHOST(σ) (ε REL(σ)), if c ∈ Decl
UNF(cσ) = UNF(t[ρ]), if cτ ≡ t is in D and σ ≤ρ τ
UNF(t1 t2) = UNF(t1) UNF(t2)
UNF(λxσ. t) = λxHOST(σ). UNF(t)

Epilogue

?
⇓

Proof of Consistency

⇓

λ
→

∀
=Is

ab
el
le

β

α

⇓

Conclusion

We gave three different proofs of consistency or stronger properties
for Isabelle/HOL, by compiling away the HOL definitions:

- Interpretation in semantic domain
- Translation to HOLC
- Translation to HOL

Proofs developed rigorously

Proofs developed rigorously... save for a few routine lemmas.

Thank You

Proofs developed rigorously... save for a few routine lemmas.

Conclusion
Three different proofs of consistency, using:

- Interpretation in semantic domain
- Translation to HOLC
- Translation to HOL

Faulty lemma affects all of them.
Their well-definedness needs that a certain relation terminates:
u ⇓ v iff there exist a definition u ≡ t in D and a type
substitution ρ s.t. v ∈ NbiTps (t[ρ]) ∪̇ NbiCinsts (t[ρ])
... whereas we know that a different relation terminates:
u ↓ v iff there exist u′, v ′, ρ and a definition u′ ≡ t in D s.t.
u = u′[ρ], v = v ′[ρ] and v ′ ∈ NbiTps (t) ∪̇ NbiCinsts (t)
Faulty lemma would imply that that ⇓ ⊆ ↓.

Fortunately, we can prove ⇓ ⊆ ↓ ∪ R where R terminating and
 ↓ ◦ R ⊆ ↓ ∪ R .
Hence termination of ⇓ follows from that of ↓.
blah

λ
→

∀
=Is

ab
el
le

β

α

Conclusion
Three different proofs of consistency, using:

- Interpretation in semantic domain
- Translation to HOLC
- Translation to HOL

Faulty lemma affects all of them.
Their well-definedness needs that a certain relation terminates:
u ⇓ v iff there exist a definition u ≡ t in D and a type
substitution ρ s.t. v ∈ NbiTps (t[ρ]) ∪̇ NbiCinsts (t[ρ])
... whereas we know that a different relation terminates:
u ↓ v iff there exist u′, v ′, ρ and a definition u′ ≡ t in D s.t.
u = u′[ρ], v = v ′[ρ] and v ′ ∈ NbiTps (t) ∪̇ NbiCinsts (t)
Faulty lemma would imply that that ⇓ ⊆ ↓.
Fortunately, we can prove ⇓ ⊆ ↓ ∪ R where R terminating and
 ↓ ◦ R ⊆ ↓ ∪ R .
Hence termination of ⇓ follows from that of ↓.
blah

λ
→

∀
=Is

ab
el
le

β

α

Epilogue

(work in progress)
λ

→

∀
=Is

ab
el
le

β

α

(work in progress)

⇓
Proof of Consistency

⇓

λ
→

∀
=Is

ab
el
le

β

α

⇓

Some results about the variations of
Higher-Order Logic underlying proof assistants

or
How I Learned to Start Worrying and Became Less Productive

Andrei Popescu
Middlesex University London

Joint work with Ondřej Kunčar

