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Part I. Motivation



Proof Assistants

Software program for interactively
- modeling mathematical concepts
- and stating and proving theorems about them

They are the guardians of the galaxy!
But who’s guarding the guardians?

Structure
- Logical core

Bugs? Well, OK Logical flaws? Not OK!

- Tool layer

Bugs? OK

- User interface

Bugs? OK
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Proof Assistants

Example implementation bug: Side-condition of inference rule not
implemented correctly, i.e., as prescribed by the logical system

Example logical flaw: The termination/guardedness checker is
conceptually flawed

Logical flaws should be very unlikely to occur in mature, heavily
used proof assistants...



Proof Assistants: Who’s Guarding the Guardians?

Well maintained, heavily used proof assistants
not immune to proofs of False

Coq 8.4pl2 Maxime Dénès and Daniel Schepler (2013)
Hypothesis Heq : (False → False) = True.
Fixpoint contradiction (u : True) : False := contradiction ( match Heq in (_ = T)
return T with | eq_refl => fun f:False ⇒ match f with end end ).
Lemma foo : provable_prop_extensionality → False.
< four-line proof >

Isabelle 2013-2 Ondřej Kunčar (2014)
consts c :: bool
typedef T = {True, c} by blast
defs c_bool_def: c::bool ≡ if (∀(x::T) y. x = y) then False else True
lemma A: (∀(x::T) y. x = y) ←→ c"
< one-line proof >
theorem False

< one-line proof >

Apologies to Agda, Dafny, PVS, etc. for the omissions...
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-2. Certification authorities become reluctant.

Burkhart Wolff

I am [within] the EUROMILS project part of the team that attempts
to get a common criteria (CC EAL5) evaluation for PikeOS through,
where the models and proofs were done with Isabelle.

I had a lengthy debate with evaluators and (indirectly) BSI
representatives which became aware [of a proof of False].
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Proof Assistants: Who’s Guarding the Guardians?
Well maintained, heavily used proof assistants

not immune to proofs of False

Most vulnerable place: the definitional mechanism Why is that?

Two approaches to theorem proving

- Axiomatic approach

– unsafe

Every new situation is modeled by a new set of axioms

- Definitional approach

– safer but also less convenient

Have a fixed logic, and only use definitions to capture new situations

Definitions can be compiled away without loss of provability

Most successful proof assistants

- Enforce the definitional approach

- Strive to make definitions as convenient/expressive as possible
fact : Nat→ Nat

fact (0) = 1
fact (n + 1) = (n + 1) ∗ fact (n)
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What to do?

Formalize and verify

• not their implementation – it evolves too fast
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• those deemed important by users, designers and developers
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Proof Assistants: Definitional Ambitions
Type Theory (Agda, Coq, Lean, Matita)

- Built-in recursion for types and functions

datatype α list = Nil | Cons α (α list)
fun length xs = case xs of Nil ⇒ 0 | Cons x ys ⇒ 1 + length ys

- Consistency via positivity and guardedness or type-based analysis
When analysis is flawed −→ Proofs of False

HOL (HOL4, HOL Light, Isabelle/HOL, HOL ProofPower, HOL Zero)

- All recursion reduced to non-recursive definitions
(α, β) F = unit + α× β α list = the initial algebra of (α,_) F

- No worry about inconsistency through recursion

- How about the non-recursive definitions? Well...

- HOL type definitions are not even definitions!
- In Isabelle/HOL, constant definitions are not entirely
non-recursive.
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Part II. Background on HOL



The HOL Logic
Rank-1 Polymorphic Classical Higher-Order Logic with Choice and Infinity

We fix:

• a set K of type constructors, including bool, ind, →

• a function arOf : K → N

Types: σ ::= α | (σ1, . . . , σarOf(k)) k

• a set Const of constants, including =, ε

• a function tpOf : Const→ Type
tpOf(=) = α→ α→ bool
tpOf(ε) = (α→ bool)→ α

Terms: The λ-calculus terms over variables and constants

Typing t : σ defined as expected, e.g., (λxbool. x) : bool→ bool

All other connectives and quantifiers defined from the above, e.g.,
True ≡ (λxbool. x) = (λxbool. x) ∀xσ. ϕ ≡ (λxσ. ϕ) = (λxσ. True)
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The HOL Logic
Formulas: Terms of type bool
Axioms: Equality Axioms, Infinity and Choice
Deduction system: D set of definitions, Γ proof context

[ϕ ∈ Axioms ∪ D] (Fact)
D; Γ ` ϕ [ϕ ∈ Γ] (Assum)

D; Γ ` ϕ

D; Γ ` ϕ
[α /∈ Γ] (T-Inst)

D; Γ ` ϕ[σ/α]

D; Γ ` ϕ
[xσ /∈ Γ] (Inst)

D; Γ ` ϕ[t/xσ]

(Beta)
D; Γ ` (λxσ. t) s = t[s/xσ]

D; Γ ` ϕ −→ χ D; Γ ` ϕ
(MP)

D; Γ ` χ

D; Γ ∪ {ϕ} ` χ
(Imp_Intro)

D; Γ ` ϕ −→ χ

D; Γ ` f xσ = g xσ
[xσ /∈ Γ] (Ext)

D; Γ ` f = g

Derived rules, e.g.: D; Γ ` ϕ
[xσ /∈ Γ] (All_Intro)

D; Γ ` ∀xσ. ϕ



The HOL Logic: Definitional mechanisms
Constant definitions c ≡ t where

t : σ such that TypeVars(t) ⊆ TypeVars(σ)
c fresh constant (receiving the type σ)

Type definitions (typedefs) τ ≡ t where
- τ has the form (α1, . . . , αn) k , with k fresh n-ary type
constructor
- t : σ → bool
- TypeVars(σ) ⊆ {α1, . . . , αn}

Intuition: τ is a copy of the subset of σ corresponding to t, i.e., of
{x : σ | t x}.

Constant definitions are mere equalities, whereas typedefs are
formulas stating an isomorphism:
τ ≡ t is ∃repτ→σ. ∃absσ→τ .(τ ≈ t)abs

rep
and are accepted only if the predicate is proved non-empty: ∃xσ. t x

HOL keeps its types nonempty



Part III. Background on Isabelle/HOL



Isabelle/HOL: A Definitionally More Ambitious HOL

Isabelle/

HOL constant definitions: c

σ

≡ t

t : σ

≤ tpOf(c)

c fresh constant

HOL: Either only declare a constant, or define it at most general
type

Isabelle/HOL: Ad hoc overloading is allowed: can declare a
constant, and then define different instances

⇓

Haskell-style type classes
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Ad Hoc Overloading in Isabelle/HOL
Example: The class “type endowed with a zero element”

Declare a constant 0 : α
Define other types and functions that operate on this type class
Define various instances:

- 0 : nat ≡ the number 0
- 0 : α list ≡ [0 : α] – a form of recursion

Safety measures taken against evil overloading
- Defined instances must be orthogonal: cannot define both
0α→nat and 0nat→α

- Cyclic definitions are not allowed: cannot define cnat using
cint and then cint using cnat

But, until c. 2015:
- No rigorous proof that these measures guarantee consistency.
- Various logical flaws have been discovered and fixed.
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- No rigorous proof that these measures guarantee consistency.
- Various logical flaws have been discovered and fixed.



Part IV. Let’s Get More Precise



Definitional Theory

In Standard HOL:
Sequence def 1, . . . , def n where each def i is

- either a constant definition cσ ≡ t with t : σ
where c is fresh for the signature of def 1, . . . , def i−1
(σ becomes the type of c)
- or a typedef (α1, . . . , αn) k ≡ t with t : σ → bool
(postulating the existence of a bijection between
(α1, . . . , αn) k and and {x : σ | t x})
where k is fresh for the signature of def 1, . . . , def i−1

Note: Signatures can also contain declared only constants/types.



Consistency of Standard-HOL Definitional Theories

Theorem (Andrew Pitts). Any standard-HOL definitional theory
D = {u1 ≡ t1, . . . , un ≡ tn} is consistent.

Semantic proof: Build standard model satisfied by D in a large enough
and closed enough universe U , where:

- Type constructors k of arity n interpreted as functions [k] : Un → U

- Types σ interpreted as functions [σ] : UTVar → U – their
interpretations built from those of their occurring type constructors

- Constants c : σ interpreted as families [c] ∈
∏
ξ∈UTVar [σ] ξ

- Term (in particular, formula) interpretations built form those of
their occurring constants

By freshness, LHS’s of definitions can be interpreted in order:
When interpreting ui , we already know the interpretation of ti .
(For typedefs, we need that U is closed under taking subsets.)



Definitional Theory in Isabelle/HOL?

In Standard HOL:
Sequence def 1, . . . , def n where each def i is

- Either a constant definition cσ ≡ t with t : σ
where c is fresh for the signature of def 1, . . . , def i−1
(σ becomes the type of c)
- or a typedef (α1, . . . , αn) k ≡ t with t : σ → bool
(postulating the existence of a bijection between
(α1, . . . , αn) k and and {x : σ | t x})
where k is fresh for the signature of def 1, . . . , def i−1

Note: Signatures can also contain declared only constants/types.

In Isabelle/HOL:
Constant definitions cσ ≡ t not required to have c fresh; c can be a
previously declared constant c : τ where τ ≥ σ.
Conditions laxer than freshness are imposed.
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Example: Defining Nominal Logic’s Permutation Actions
Declare • : prm→ α→ α

Other type or constant definitions can occur in between... perhaps
depending on • instances, and on which • instances may depend on.

Then define
•prm→atom→atom ≡ λπ a. apply π a

•prm→nat→nat ≡ λπ n. n

•prm→α list→α list ≡ λπ xs.map (λx . π • x) xs

•prm→(α→β)→(α→β) ≡ λπ f x . π • (f (π−1 • x))

Also, note the recursive dependencies:
•prm→α list→α list  •prm→α→α
•prm→(α→β)→(α→β)  •prm→α→α, •prm→β→β

But what exactly is a dependency?
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Definitional Dependency Relation – Preliminaries

Built-in type constructors: ind, bool (nullary), →(binary).
Non-built-in type constructors: all the others, i.e., the defined and
declared ones.

Built-in types: Types that have built-in type constructor at the top.
E.g., α→ (ind list).
Hence, non-built-in types are the type variables and those with
non-built-in type constructor at the top. E.g., (α→ ind)list.

Built-in constants: = : α→ α→ bool and ε : (α→ bool)→ α.



Definitional Dependency Relation – Preliminaries

For σ ∈ Type, NbiTps(σ) is the set of non-built-in types in σ:

NbiTps(α) = {α} NbiTps(bool) = ∅ NbiTps(ind) = ∅

NbiTps(σ1 → σ2) = NbiTps(σ1) ∪ NbiTps(σ2)

NbiTps((σ1, . . . , σn) k) = {(σ1, . . . , σn) k} ∪
⋃n

i=1 NbiTps(σi )
when k is non-built-in type constructor

Similarly, for t ∈ Term,
NbiTps(t) is the set of non-built-in types in t

NbiCinsts(t) is the set of non-built-in constant instances in t

When tracking definitional dependency of types and terms, we only
care about the non-built-in types that they contain.



Definitional Dependency Relation

Fix definitional theory D.
Define dependency relation  on Type ∪̇ CInst:

u  v
iff

there is a definition u ≡ t in D s.t. v ∈ NbiTps(t) ∪̇ NbiCinsts(t)

Definitions can be polymorphic, hence dangerous dependencies can
occur through their instances.
To account for this, we consider  ’s type-substitutive closure  ↓:
It relates u[ρ] with v [ρ] when u  v and ρ is a type substitution.

Isabelle/HOL has syntactic checks that ensure:
- Orthogonality: For any two definitions u ≡ t and u′ ≡ t ′ in
D, u and u′ are orthogonal (have no common instance)
- Termination of  ↓

Is this enough to prove consistency?



Parenthesis: Preventing Evil Dependencies Through Types
c : α

τ ≡ {True, cbool}
cbool ≡ ¬ (∀xτ yτ . x = y)

cbool  ↓ τ  ↓ cbool
Rejected by Isabelle starting 2016, but not by previous versions.

Why has previous work failed to catch this?

- Wenzel 1997
- Haftmann&Wenzel 2006
- Obua 2006 (detailed
- proof of consistency!)

They checked dependencies through constant, but not through type
definitions – all interesting information about a newly defined type
must flow through the embedding-projection pair to its host type,
i.e., through defined constants. All, but (finite) cardinality info...
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Consistency of (Isabelle/HOL Checked) Definitional Theories
Let’s try a semantic proof à la Pitts: Interpret syntax in universe U .

Syntax
• : prm→ α→ α

•atom ≡ λπ a. apply π a
•nat ≡ λπ n. n
•α list ≡ λπ xs.map (λx . π • x) xs

•α→β ≡ λπ f x . π • (f (π−1 • x))
blah

Semantics
[•] ∈

∏
A∈U

(
AA
)[prm]

[•][atom] = Λπ a. [apply] π a

[•][nat] = Λπ a. n

[•][list](A) = Λπ xs. [map]A ([•]A π) xs
for all A ∈ U

[•]A→B = Λπ f x . [•]B π (f ([•]A ([inv] π) x))
for all A, B ∈ U

Must define a family of functions ([•]A)A∈U via some equalities.
All we know: Syntactic counterparts orthogonal and terminating.
Are the semantic definitions:

- Orthogonal? Can make them, with set-theoretic acrobatics.
- Terminating? Not even clear what this means.

How to connect semantic and syntactic termination?
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Solution: Rethinking the Interpretation of Polymorphism

Interpret • : prm→ α→ α

not as [•] ∈
∏

A∈U
(
AA
)[prm]

but as [•] ∈
∏
σ∈GroundType

(
[σ][σ]

)[prm]

Blend of syntax and semantics:
- polymorphism interpreted syntactically
- everything else interpreted semantically



Solution: Rethinking the Interpretation of Polymorphism

For the polymorphic type α→ bool:
- no “global” interpretation

∏
A∈U A[bool]

- but only interpretations of its ground-instances, σ → bool for
σ ∈ GroundType, as [σ][bool]

For a polymorphic constant c : α→ bool:
- no “global” interpretation in

∏
A∈U A[bool]

- but only interpretations of its ground instances cσ for
σ ∈ GroundType, as an element of [σ][bool]

The (truth of the) formula ∀x : α. cα x

- no longer means: for all A ∈ U and x ∈ A, [c]A x = True
- but rather: for all σ ∈ GroundType and x ∈ [σ], [cσ]x = True



Solution: Rethinking the Interpretation of Polymorphism

Lemma. The HOL rules are sound for any ground interpretation.

Theorem. Any Isabelle/HOL-checked definitional theory D is true
in some ground interpretation, hence is consistent.

Proof idea. The desired interpretation is defined by well-founded recursion
w.r.t.  ↓. For any instance (u[ρ], t[ρ]) of a definition u ≡ t in D:

- All non-built-in items in t[ρ] are “smaller” than u[ρ] – hence have
already been interpreted at the time we interpret u[ρ] according to
the definition’s semantics.

- All built items have a fixed standard interpretation.

(Uses partial interpretations of well-behaved signature fragments.)

O.K. & A.P. A Consistent Foundation for Isabelle/HOL. ITP’15.



Ground Interpretation Illustrated

Syntax
• : prm→ α→ α
•α list ≡ λπ xs.map (λx . π • x) xs
•α→β ≡ λπ f x . π • (f (π−1 • x))

Pitts Semantics
[•] ∈

∏
A∈U

(
AA
)prm

[•][list](A) = Λπ xs. [map]A ([•]A π) xs
for all A ∈ U

[•]A→B = Λπ f x . [•]B π (f ([•]A ([inv] π) x))
for all A, B ∈ U

Ground Semantics
[•] ∈

∏
σ∈GroundType

(
[σ][σ]

)prm
[•][σ list] = . . .

for all σ ∈ GroundType
[•][σ→τ ] = . . .

for all σ, τ ∈ GroundType

Difference: Ground semantics equations are a well-formed definition!

[•][(nat→nat) list] defined before [•][nat→nat] defined before [•][nat] etc.



Reaction to Our Consitency Proof

Larry Paulson

“It’s a bit puzzling, not to say worrying, to want a [new]
set-theoretic semantics for plain definitions. The point
of definitions (and the origin of the idea that they
preserve consistency) is that they are abbreviations.”



Towards a Syntactic Proof of Consistency

Main difficulty:
Types and constant definitions are mutually dependent
Typedefs cannot be seen as abbreviations

Typedefs create types τ corresponding to subsets of existing types σ

∃repτ→σ. ∃absσ→τ .(τ ≈ t)abs
rep

τ ’s definition cannot be unfolded inside HOL

Similarly, there is no
√
−1 inside R...

however, we can complete R
to C, where

√
−1 makes sense.
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HOL with Comprehension Types (HOLC)

Type-fortified logic

Makes room for unfolding type definitions

α k ≡ {|λxα. cα→bool dα|}
cα k→bool ≡ λxα k . cα→bool dα

(bool k) k
⇓

{|λxbool k . cbool k→bool dbool k |}
⇓

{|λxbool k . (λxbool k . cbool→bool dbool) dbool k |}
⇓

{|λx{|λxbool. cbool→bool dbool|}.(λx{|λxbool. cbool→bool dbool|}.cbool→booldbool)d{|λxbool. cbool→bool dbool|}|}
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From HOL to HOLC

Types: σ = α | (σ1, . . . , σarOf(k)) k | {|t|}

Terms: t = xσ | cσ | t1 t2 | λxσ. t

for t : σ → bool, {|t|} means {x : σ | t x}

Typing:

α ∈ TVar
(W1)

wf(α)

wf(σ1) . . . wf(σarOf(k))
(W2)

wf((σ1, . . . , σarOf(k)) k)

t : σ → bool
(W3)

wf({|t|})

t : τ wf(σ)
(Abs)

λxσ. t : σ ⇒ τ

x ∈ VarN wf(σ)
(Var)

xσ : σ

c ∈ Const wf(τ) τ ≤ tpOf(c)
(Const)

cτ : τ

t1 : σ ⇒ τ t2 : σ
(App)

t1 t2 : τ
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From HOL to HOLC

Axioms and deduction rules: Same as for HOL, except that:
- Deduction not parameterized by definitional theory D

D; Γ ` ϕ

- In exchange, a comprehension axiom is added:

∀tα→bool. (∃xα. t x) −→ ∃rep{|t|}→α. ∃absα→{|t|}.({|t|} ≈ t)abs
rep

which captures all HOL typedefs
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Proof of Consistency

Fix Isabelle/HOL-checked definitional theory D.
Translate HOL types and terms to HOLC by recursive unfolding of
D, until a normal form is reached. This terminates because the call
graph is included in (an expansion of)  ↓.

Theorem. D; Γ ` ϕ in HOL implies ∅; UNF(Γ) ` UNF(ϕ) in HOLC

Main difficulty in proof: the type instantiation rule

D; Γ ` ϕ
[α /∈ Γ] (T-Inst)

D; Γ ` ϕ[σ/α]

UNF does not commute with type substitutions:

UNF(t[σ/α]) 6= UNF(t)[UNF(σ)/α]
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Proof of Consistency

Culprit: Of course, ad hoc overloading

Declare c : α

Define cnat ≡ 0

UNF(cα[nat/α]) = 0 6= cnat = cα[nat/α] = UNF(cα)[nat/α]

Solution:

Refrain from applying (T-Inst) in the middle of proofs, but only
apply it at the beginning – OK for rank 1 polymorphism

Hence it suffices that

- UNF(ϕ[σ/α]) = UNF(ϕ)[UNF(σ)/α] for HOL axioms ϕ
- UNF(ϕ[σ/α]) is a HOLC tautology for ϕ ∈ D

- constant definitions become equalities of identical terms
- typedefs become instances of HOLC’s compr. axiom
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Proof of Consistency

Theorem. Assume D is an Isabelle/HOL-checked definitional
theory. Then D ` ϕ in HOL implies ` UNF(ϕ) in HOLC

Have complicated the logic, but have gotten rid of definitions.

Theorem (Easy). HOLC is consistent.

Corollary. Isabelle/HOL-checked definitional theories are
consistent.

O.K. & A.P. Comprehending Isabelle/HOL’s Consistency. ESOP’17.

Can we get rid of definitions while staying in HOL? Yes, we can.
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Type HOST→ Type Type REL→ Term Term UNF→ Term

Theorem.
(1) REL(σ) : HOST(σ)→ bool and ` ∃xHOST(σ). REL(σ) x .
(2) t : σ implies UNF(t) : HOST(σ) and ` REL(σ) UNF(t).
(3) D ` ϕ implies ` UNF(ϕ).

Corollary. (Isabelle/)HOL-checked definitional theories are
conservative over initial HOL.

O.K. & A.P. Safety and Conservativity for HOL and Isabelle/HOL.
POPL’18.



HOST(α) = α
HOST((σ1, . . . , σm) k) = (HOST(σ1), . . . , HOST(σm)) k,
if k ∈ Decl

HOST((σ1, . . . , σm) k) = HOST(σ[σ1/α1, . . . , σm/αm]),
if (α1, . . . , αm) k ≡ t is in D and t : σ ⇒ bool

REL(σ) = λxσ. True, if σ ∈ TVar ∪ {bool, ind}
REL(σ1 ⇒ σ2) = λfHOST(σ1)⇒HOST(σ2). ∀xHOST(σ1). REL(σ2) (f x)
REL((σ1, . . . , σm) k) = λx(HOST(σ1),. . .,HOST(σm)) k .True, if k ∈ Decl
REL((σ1, . . . , σm) k) = UNF(t ′)
if (α1, . . . , αm) k ≡ t is in D,
where t ′ = t[σ1/α1, . . . , σm/αm]

UNF(xσ) = if_t_e (REL(σ) xHOST(σ)) x (ε REL(σ))
UNF(cσ) = cHOST(σ), if c ∈ Σinit
UNF(cσ) = if_t_e (REL(σ) cHOST(σ)) cHOST(σ) (ε REL(σ)), if c ∈ Decl
UNF(cσ) = UNF(t[ρ]), if cτ ≡ t is in D and σ ≤ρ τ
UNF(t1 t2) = UNF(t1) UNF(t2)
UNF(λxσ. t) = λxHOST(σ). UNF(t)



Epilogue

?
⇓

Proof of Consistency

⇓

λ
→

∀
=Is

ab
el
le

β

α

 

⇓



Conclusion

We gave three different proofs of consistency or stronger properties
for Isabelle/HOL, by compiling away the HOL definitions:

- Interpretation in semantic domain
- Translation to HOLC
- Translation to HOL
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Conclusion
Three different proofs of consistency, using:

- Interpretation in semantic domain
- Translation to HOLC
- Translation to HOL

Faulty lemma affects all of them.
Their well-definedness needs that a certain relation terminates:
u  ⇓ v iff there exist a definition u ≡ t in D and a type
substitution ρ s.t. v ∈ NbiTps (t[ρ]) ∪̇ NbiCinsts (t[ρ])
... whereas we know that a different relation terminates:
u  ↓ v iff there exist u′, v ′, ρ and a definition u′ ≡ t in D s.t.
u = u′[ρ], v = v ′[ρ] and v ′ ∈ NbiTps (t) ∪̇ NbiCinsts (t)
Faulty lemma would imply that that  ⇓ ⊆ ↓.

Fortunately, we can prove  ⇓ ⊆ ↓ ∪ R where R terminating and
 ↓ ◦ R ⊆ ↓ ∪ R .
Hence termination of  ⇓ follows from that of  ↓.
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