
Relative Security: Formally Modeling and (Dis)Proving
Resilience Against Semantic Optimization Vulnerabilities

Brijesh Dongol∗, Matt Griffin∗, Andrei Popescu† and Jamie Wright†
∗Department of Computer Science, University of Surrey, UK Email: {b.dongol, matt.griffin}@surrey.ac.uk
†Department of Computer Science, University of Sheffield, UK Email: {a.popescu, jwright8}@sheffield.ac.uk

Abstract—Meltdown and Spectre are vulnerabilities known as
transient execution vulnerabilities, where an attacker exploits
speculative execution (a semantic optimization present in most
modern processors) to break confidentiality. We introduce
relative security, a general notion of information-flow security
that models this type of vulnerability by contrasting the leaks
that are possible in a “vanilla” semantics with those possible in
a different semantics, often obtained from the vanilla semantics
via some optimizations. We describe incremental proof meth-
ods, in the style of Goguen and Meseguer’s unwinding, both for
proving and for disproving relative security, and deploy these
to formally establish the relative (in)security of some standard
Spectre examples. Both the abstract results and the case studies
have been mechanized in the Isabelle/HOL theorem prover.

1. Introduction
Meltdown [19] and Spectre [18] are transient execution

vulnerabilities, which exploit timing-based side-channels
caused by speculative execution optimizations, as present
in almost all modern processors. Mitigating against such
vulnerabilities is of significant importance for computer
security. This paper proposes a new model-theoretic and
proof-theoretic framework for describing and verifying
resilience against transient execution attacks and beyond. We
introduce relative security (§2), a general notion that focuses
not on the absolute (information-flow) security of a system,
but on the difference in security between a basic, “vanilla”
system and a system that is enhanced to allow optimizations
in the system’s execution. More precisely, relative security
expresses that there is no difference in information flow:
Any leak occurring in the vanilla system can also occur in
the optimization-enhanced one. We instantiate this notion to
a programming language with speculative semantics (§3),
yielding intuitive results on some standard example pro-
grams. While building on a rich literature that addresses this
problem from a formal modeling perspective (§4), relative
security’s innovation is in natively capturing fully interactive
attackers and dynamic creation of secrets, as required, e.g.,
by operating system processes. There are two key features
enabling this: 1) a fine-grained attacker model that allows
secrets, attacker actions and attacker observations anywhere
on the execution trace, and 2) a view of leaks as first-class
citizens that takes advantage of this fine granularity.

Our second contribution is general methods for proving
and disproving relative security in an incremental fashion

(§5), generalizing the unwinding method by Goguen
and Meseguer [11]. On the proof front (§5.1–5.4), our
method allows the incremental construction, from any two
optimization-enhanced execution traces that exhibit a leak,
of two counterpart vanilla traces that exhibit the same
leak. The four traces are constrained by both “secrecy
contracts” and “interaction contracts”, which postulate local
similarities and disimilarities between pairs of them.

Due to the complex dynamics between the four involved
traces, the disproof front of relative security (§5.5) is also
interesting and benefits from the idea of unwinding: A
counterexample requires indicating a concrete leak in
the optimization-enhanced system, followed by a proof
employing a form of secret-directed unwinding that shows
how this leak cannot be reproduced in the vanilla system.
Both the proof and disproof methods have been validated
on our example programs (§6).

The relative security framework, as well as the language
semantics and examples, have been mechanized in the
Isabelle/HOL prover [25] (§7). More details on our results
and proofs can be found in an extended technical report [8].

2. Defining Relative Security
This section motivates and introduces our notion of rela-

tive security. We start with example programs exhibiting var-
ious features we would like to cover (§2.1), after which we
develop the abstract framework: On top of system models
capturing the program semantics (§2.2), we introduce leak-
age models which allow us to express the essence of relative
security (§2.3). Then we instantiate these to more concrete
(state-wise) attacker models (§2.4, §2.5), where leaks are de-
fined from of secrets and attacker actions and observations.

2.1. Motivating examples

Next we discuss example C programs, including some
standard ones from the Spectre literature [5, 17]. In all exam-
ples, we assume that the attacker controls the inputs and sees
the outputs (unless specified otherwise), and can also infer
the locations accessed for reading (as in Spectre attacks).
The program in Listing 1 is vulnerable to a Spectre bounds-
check-bypass attack. If the value of x is greater than or equal
to N, under normal execution it is impossible for an attacker
to infer the value of a[x] (which is needed to load a value
from b into t). However, under the speculative execution

1 unsigned fun1(unsigned x) {
2 unsigned t = 0;
3 if (x < N) {
4 t = b[a[x] * 512]; }
5 return t; }

Listing 1: Spectre Bounds Check Bypass (BCB)

1 unsigned fun2(unsigned x) {
2 unsigned t = 0;
3 if (x < N) {
4 _mm_lfence();
5 t = b[a[x] * 512]; }
6 return t; }

Listing 2: Fix 1 for Spectre BCB

1 unsigned fun3(unsigned x) {
2 unsigned t = 0;
3 if (x < N) {
4 unsigned v = a[x];
5 _mm_lfence();
6 t = b[v * 512]; }
7 return t; }

Listing 3: Fix 2 for Spectre BCB

optimization, a branch misprediction enables this load to
occur, potentially allowing the attacker to later perform a
side-channel attack on the cache to infer the value of a[x].

A suboptimal fix to this particular function is straightfor-
ward. As shown in Listing 2, one can introduce a load fence
(_mm_lfence) instruction prior to loading from b and
thus calculating the value of a[x]. This effectively resolves
speculation by disallowing the processor from continuing
execution until it can be certain that the branch will be taken,
i.e., that x is indeed less than N.

A less obvious fix (given in Listing 3) is also possible.
This program seemingly suffers from a transient execution
vulnerability because speculative execution loads the value
of a[x] into the cache, whereas non-speculative execution
does not. However, since both x and the base address of a
are known (or inferrable) to the attacker, loading a[x] does
not leak any additional information under misprediction.

Now consider the program in Listing 4, discussed by
Cheang et al. [5]. The authors refer to it as being condition-
ally secure because its susceptibility to a transient execution
attack depends on the value of N. For N = 0, the program
is insecure because b[a[0] * 512] can be loaded into
the cache (thus leaking a[0]) only under misprediction.

Now suppose N = 2 (i.e., N is some value greater
than 0), and consider a trace in which the attacker calls
fun4(3), triggering a misprediction and loading the value
of a[0] into v. Should such an execution be ruled insecure?
Unlike the program in Listing 1, here the value leaked from
a is always from index 0. Thus, the leak through mispredic-
tion described above is also possible through a normal ex-
ecution, e.g., where the attacker chooses x = 1. Thus, the
program does not have a transient execution vulnerability.

These examples have certain features in common:
First, there are secrets to be protected—some parts of the

1 unsigned fun4(unsigned x) {
2 unsigned t = 0;
3 if (x < N) {
4 unsigned v = a[0];
5 t = b[v * 512]; }
6 return t; }

Listing 4: Conditionally secure BCB

1 void fun5() {
2 unsigned t = 0;
3 unsigned x = 1;
4 while (x != 0) {
5 scanf("%u", &x);
6 if (x < N) {
7 unsigned v = a[x];
8 _mm_lfence();
9 t = b[v * 512];

10 printf("%u", t); } } }

Listing 5: Secure interactive program

memory (inside or outside the bounds of array a). Second,
there are observations that an attacker can make—via
standard channels such as function return or side channels,
e.g., the affected cache. Finally, there are actions that an
(active) attacker can take to interact with, and influence the
execution of the program—via inputs to the functions.

While all the examples so far are only end-to-end in-
teractive, i.e., take an input at the beginning and return
an output at the end, this does not need to be the case.
For example, Listing 5 shows a (possibly nonterminating)
fully interactive program, which keeps inputting an integer
value (via the scanf function) and accessing the arrays
a and b based on it until the inputted value is 0. It also
outputs a (possibly infinite) stream of elements from the
array b (via the printf function). So here, depending
on the particular setting, one may wish to assume that the
attacker/observer continuously interacts with the program
via both observations (printed values) and actions (scanned
inputs)—and the Listing 5 program is still Spectre-secure
under these assumptions.

Thus, actions and observations can take place not only
at the execution’s beginning and end respectively, but fully
interactively, and possibly in(de)finitely. In some cases, this
could also be true about secrets: One may wish to protect
not only the initial memory, but also inputs that are under
the control of trusted parties. Listing 6 shows a contrived
example illustrating this: Now the program reads from both
an untrusted and a trusted source, and one may wish to
ensure that the input from the trusted source is not leaked.
The call to a procedure named writeOnSecretFile
illustrates the potential processing of some trusted input
stored in y (here, together with that of untrusted input stored
in x), which could influence a file on the disk; in this
example, such an influence is harmless, since that file is
assumed unobservable by the attacker.

In conclusion, we want to model fully interactive (both
acting and observing) attackers and fully interactive secret

2

1 void fun6() {
2 unsigned t = 0;
3 unsigned x = 1;
4 while (x != 0) {
5 x = getUntrustedInput();
6 unsigned y = getTrustedInput();
7 if (x < N) {
8 unsigned v = a[x];
9 writeOnSecretFile(x,y);

10 _mm_lfence();
11 t = b[v * 512];
12 printf("%u", t); } } }

Listing 6: Secure secret-interactive program

uploading, while also allowing interaction to take place
in(de)finitely, i.e., factoring in infinite executions.

2.2. System models

For a set A, a sequence over A is an item in Seq(A) =
A∗ ∪AN, i.e., a finite or infinite list of elements from A.

A system model is a triple SM = (State, istate,⇒),
consisting of: 1) a set State of states, ranged over by s, 2)
a predicate istate : State → Bool that describes the initial
states, and 3) a binary relation ⇒ : State × State → Bool
on states called the transition relation.

The next concepts are relative to a system model
SM = (State, istate,⇒). We say that a state s ∈ State
is final, written final(s), when there is no transition
out of s, i.e, ¬ ∃s′. s ⇒ s′. An (execution) trace is a
nonempty (finite or infinite) maximal sequence of states
s0 s1 . . . ∈ Seq(State) such that istate(s0) holds and
si ⇒ si+1 for all i. Maximality refers to the suffix relation;
it is equivalent to saying that, if the sequence is finite then
its last state is final. We let Trace ⊆ Seq(State), ranged
over by π, ρ, be the set of traces, Tracefin be the subset of
Trace consisting of the finite traces only.

2.3. Very abstract relative security: leakage models

We fix two system models SMvan = (Statevan,
istatevan,⇒van) and SMopt = (Stateopt, istateopt,⇒opt)
such as Statevan ⊆ Stateopt. We will call SMvan the vanilla
system model, and refer to its states, transition relation etc.
as vanilla states, vanilla transition etc. Its set of traces is de-
noted by Tracevan. The vanilla system model represents the
plain system, featuring no optimization—which will act as
reference for our (relative) notion of security. Moreover, we
will call SMopt the optimization-enhanced system model,
since it will stand for the system that has been optimized in
various ways, e.g., with speculative or out-of-order execu-
tions. Its set of traces is denoted by Traceopt. We will use
the following short names: “vtrace” for “vanilla trace” (i.e.,
an element of Tracevan), and “otrace” for “optimization-
enhanced trace” (i.e., an element of Traceopt).

We are interested in expressing the information-flow
security of SMopt relative to that of SMvan, in order to
assess whether the optimizations have introduced further
vulnerabilities (as is the case with Spectre). However, we

do not just want to check the implication “if SMvan does
not leak then SMopt does not leak either”, because that
would be too coarse: We wish to allow SMvan to have
some (presumably acceptable, or at least known) leaks, and
to check that SMopt has no additional leaks.

What we seem to need for this is the ability to talk leak-
wise, i.e., to express not just the absence of any leak (as done
by traditional notions such as noninterference), but explicitly
the very notion of a leak. To this end, we introduce leakage
models: Given any system model SM = (State, istate,⇒),
a leakage model for SM is a pair (Leak, leakVia), where
Leak, ranged over by l, is a set of entities called leaks, and
leakVia is a predicate in Trace×Trace× Leak→ Bool. We
think of leakVia(π1, π2, l) as expressing that the traces π1
and π2 exhibit the leak l. Indeed, it is well known [6] that
whatever the leaks are, one requires two traces (i.e., two
alternative executions) rather than just one to exhibit a leak.

Note that we work very abstractly, gradually instantiat-
ing our concepts. For now, we leave the notion of a leak
unspecified. In the next subsection, §2.4, we will get more
concrete, taking leaks to be pairs of sequences of secrets pro-
duced by alternative execution traces—which, for suitable
choices of the notion of secret, recovers what is typically
taken to constitute a leak in a language-based setting [28].
In §3, when we have at our disposal some concrete system
models given by a programming language semantics, we
further instantiate the secrets to be the initial memories and
inputs and outputs over certain trusted channels.

We now have all the ingredients for an abstract, leak-
centric definition of relative security:

Def. 1 Let LMvan = (Leak, leakViavan) and LMopt =
(Leak, leakViaopt) be leakage models for SMvan and
SMopt respectively (having the same set of leaks Leak).
We say that (SMopt, LMopt) satisfies relative security
w.r.t. (SMvan, LMvan), written (SMopt, LMopt) ≥
(SMvan, LMvan), when the following holds:

∀l ∈ Leakopt. ∀π1, π2 ∈ Traceopt. leakViaopt(π1, π2, l)

−→ ∃π̂1, π̂2 ∈ Tracevan. leakViavan(π̂1, π̂2, l)

We say that (SMopt, LMopt) satisfies finitary relative
security w.r.t. (SMvan, LMvan), written (SMopt, LMopt)
≥fin (SMvan, LMvan), when the above property holds
when restricted to finite traces, i.e., replacing Traceopt with
Tracefin

opt and Tracevan with Tracefin
van.

This definition expresses that, for the given notion of
leak, the optimization-enhanced system SMopt does not ex-
hibit any leaks besides those already exhibited by the vanilla
system SMvan. (Thinking of as expressing security, the
notation ≥ suggests an “at least as secure as” reading.)
The notations π̂1 and π̂2 for vanilla traces remind of their
dependency on the otraces π1 and π2—with the caveat that
each of the two vtraces may depend on both π1 and π2.

We believe the finitary (i.e., termination-conditioned)
variant of relative security ≥fin is of interest for both
historic reasons (since often the discussion in the literature
is restricted to finite traces, e.g., [13]) and pragmatic reasons

3

(since, as we shall see, finitary security is amenable to a
simpler unwinding proof method). ≥fin is the same as ≥
for terminating programs such as the ones in §2.1’s Listings
1–4, but ≥ is more suitable for possibly nonterminating
interactive programs as in our Listings 5 and 6.

2.4. Less abstract relative security: attacker models

Our current definition of relative security is
parameterized by leaks. But still, what is a leak more
concretely? To give a plausible answer, remember the
key ingredients identified in our examples (§2.1): secret
uploading and observer interaction, and our desire to capture
fully interactive versions of these. These lead us to the next
definition. Given a system model (State, istate,⇒), an at-
tacker model for it is a tuple (Sec, S, Obs, O, Act, A) where:
• Sec, Obs and Act are sets of items called secrets, obser-

vations and actions respectively;
• S : Trace → Seq(Sec), O : Trace → Seq(Obs) and

A : Trace → Seq(Act) are functions called the secrecy,
observation and action functions, respectively.

Thus, attacker models indicate what needs protection (the se-
crets) and what attacker actions / observations are available.

The functions S, O and A provide a natural notion
of leak. We take Leak to be Seq(Sec) × Seq(Sec) and
leakVia(π1, π2, (σ1, σ2)) to be S(π1) = σ1 ∧ S(π2) =
σ2 ∧ A(π1) = A(π2) ∧ O(π1) 6= O(π2), which means:
• π1 and π2 have the sequences of secrets σ1 and σ2;
• the attacker took the same actions during π1 and π2 . . .
• which led to the attacker making different observations.

leakVia(π1, π2, (σ1, σ2)) therefore says that, via π1 and
π2, the attacker can observationally distinguish between σ1
and σ2. Note that it was crucial to require that the distinction
be made while the attacker takes the same actions—
otherwise it would not tell us anything about the secrets (as
it could simply be a consequence of the different actions).

Thus, any attacker model for SM induces a leakage
model for SM. It is worth spelling out what the definition
of relative security becomes in this more concrete setting:

Def. 2 LetAMvan = (Sec, Svan, Obsvan, Ovan, Actvan, Avan)
and AMopt = (Sec, Sopt, Obsopt, Oopt, Actopt, Aopt) be
attacker models for SMvan and SMopt respectively (with
same set of secrets Sec). We say that (SMopt,AMopt)
satisfies relative security w.r.t. (SMvan,AMvan), written
(SMopt,AMopt) ≥ (SMvan,AMvan), when:

∀σ1, σ2 ∈ Seq(Sec). ∀π1, π2 ∈ Traceopt.
Sopt(π1) = σ1 ∧ Sopt(π2) = σ2 ∧
Aopt(π1) = Aopt(π2) ∧ Oopt(π1) 6= Oopt(π2)
−→
∃π̂1, π̂2 ∈ Tracevan. Svan(π̂1) = σ1 ∧ Svan(π̂2) = σ2 ∧

Avan(π̂1) = Avan(π̂2) ∧ Ovan(π̂1) 6= Ovan(π̂2)

Finitary relative security, (SMopt,AMopt) ≥fin (AMvan,
LMvan), is again defined by restricting to finite traces.

The above just expands the aforementioned construction
of leakage models from attacker models, so Def. 2 is a

. . .

. . .

. . .

. . .

∀

−→

∃

π2

π1

π̂2

π̂1

sam
e

secrets

same actions/different observations

same actions/different observations

Fig. 1: Visualizing relative security

particular case of Def. 1. Its conclusion can be reformulated
without explicitly quantifying over secrets as follows:

∀π1, π2 ∈ Traceopt.
Aopt(π1) = Aopt(π2) ∧ Oopt(π1) 6= Oopt(π2)
−→ (F)
∃π̂1, π̂2 ∈ Tracevan.

Svan(π̂1) = Svan(π1) ∧ Svan(π̂2) = Svan(π2) ∧
Avan(π̂1) = Avan(π̂2) ∧ Ovan(π̂1) 6= Ovan(π̂2)

The (F) formulation, which is the one we will prefer,
facilitates an intuitive reading of relative security, as visu-
alized in Fig. 1: Provided the otraces π1 and π2 have the
same actions and different observations, the vtraces π̂1, π̂2
must be proved to exist such that they have the same secrets
as π1 and π2 respectively, and also have between each other
the same actions and different observations.

In line with our aforementioned gradual instantiation
approach, for now we have left S, A and O unspecified.
In the next section, §2.5, we make these more concrete by
assuming they operate “state-wise”, i.e., the secrets, actions
and observations are produced locally from each state of
a traces. (Another natural choice would be to assume they
operate transition-wise rather than state-wise; these two
choices are equivalent, since states can also encode transi-
tion information.) For our §2.1 motivating examples, when
applied to a trace: S will give the initial memory, as well as
any potential secrets received or sent during the execution
(e.g., on the trusted input channel in Listing 6); moreover,
A will give any inputs on untrusted channels; finally, O will
give any returned or printed values via untrusted channels,
and the memory locations accessed for reading—see §3.3.

2.5. State-wise attacker models

Next, we will consider an assumption on attacker mod-
els that makes them even less abstract (thus bringing us
closer to considering concrete examples). Given a sys-
tem model SM = (State, istate,⇒), an attacker model
AM = (Sec, S, Obs, O, Act, A) for it is said to be state-
wise when there exist the predicates and functions isSec :
State→ Bool, getSec : State→ Sec, isInt : State→ Bool,
getObs : State → Obs, and getAct : State → Act that
define the functions S, O and A state-wise as follows. For
any trace π = s0 s1 . . . :

4

• Let si0si1 . . . for i0 < i1 < . . . be its subsequence
consisting of states where isSec holds. We define S(π)
as getSec(si0) getSec(si1) . . .

• Let sj0sj1 . . . for j0 < j1 < . . . be its subsequence
consisting of the states where isInt holds. We define
O(π) as getObs(sj0) getObs(sj1) . . . and A(π) as
getAct(sj0) getAct(sj1) . . .

What is being required above is that the trace functions
S, O and A are defined by “filtermap”, filtering with a
predicate and mapping with a getter function.

We think of the predicates isSec and isInt as determining
whether (the next transition from) a state uploads a secret,
and is a point of interaction (observation or action),
respectively. For example, in our concrete programming
language models, the program counter stored in the state
will determine the next statement to be executed, and
therefore isSec and isInt will check whether this next
statement is secret-uploading or interaction-producing. (We
do not require isSec and isInt to be disjoint, although for
some systems this can be a reasonable assumption for a
priori excluding obvious leaks.) Moreover, we think of the
functions getSec, getObs and getAct as actually extracting
that particular secret, observation or action.

3. Language-Based Instantiation
Next we describe a concrete instance of relative security

(§3.3), via a programming language with speculative execu-
tion (§3.1) that can express our running examples (§3.2).

3.1. The IMP Language with Speculative Semantics

We introduce IMP, a simple language that exhibits
interesting security aspects stemming from speculative exe-
cution. Its speculative semantics follows the ideas of Cheang
et al. [5], maintaining runtime configurations for nested
speculative executions—and only for those that result from
misprediction, since they are the only security-relevant ones.

Syntax. The set Lit of literals, ranged over by i, j etc., is
taken to be N. Var, the set of (scalar-)variables, ranged
over by x, y, z etc., is a fixed countably infinite set; and so
is AVar, the set of array-variables, ranged over by a. Op is
the set of binary arithmetic operators, e.g., +, ∗, etc; COp,
that of binary comparison operators, e.g., <,==, etc; and
BOp that of binary boolean operators, e.g., ∧, ∨, etc. ICh,
ranged over by ich , and OCh, ranged over by och , are sets
of input and output channels, respectively.

The sets of (arithmetic) expressions, boolean expressions
and commands are defined by the grammar:

Exp ::= Lit | Var | AVar[Exp] | Exp Op Exp
BExp ::= true | false | Exp COp Exp |

not BExp | BExp BOp BExp
Com ::= Start | InputICh Var | OutputOCh Exp |

Fence | Var = Exp | AVar[Exp] = Exp |
Jump N | IfJump BExp N N

We let e range over Exp, b over BExp, and c over Com.

STARTORFENCEOROUTPUT
cpc ∈ {Start, Fence} ∪ {Outputoch e | e ∈ Exp}

((pc, µ), inp)⇒B ((pc + 1, µ), inp)

VARASSIGN
cpc = (x = e)

((pc, µ), inp)⇒B ((pc + 1, µ[x← JeK(µ)]), inp)

AVARASSIGN
cpc = (a[e] = e′)

((pc, µ), inp)⇒B ((pc + 1, µ[(a, JeK(µ))← Je′K(µ)]), inp)

INPUT
cpc = (Inputich x) inpich = i · is ′

((pc, µ), inp)⇒B ((pc + 1, µ[x← i]), inp[ich ← is ′])

JUMP
cpc = (Jump pc′)

((pc, µ), inp)⇒B ((pc′, µ), inp)

IFJUMP
cpc = (IfJump b pc1 pc2)

pc′ = (if JbK(µ) then pc1 else pc2)

((pc, µ), inp)⇒B ((pc′, µ), inp)

Fig. 2: Basic semantics for program P = c0; . . . ; cn. We
implicitly assume pc ≤ n as a condition in each rule.

Thus, IMP has the standard basic mechanisms for ma-
nipulating scalar and array variables, and (un)conditional
jumps, Jump and IfJump, as control structures. It is also
an I/O interactive language, accepting inputs on input chan-
nels and producing outputs on output channels. A program
P = c0; c1; . . . ; cn is a nonempty list of commands where
c0 = Start. Prog denotes the set of programs.

The set Val of values, ranged over by v, w etc., is N.
Loc, the set of locations, ranged over by l, is also N.

Basic semantics. Fig. 2 shows the basic (small-step) seman-
tics, denoted ⇒B , parameterized by a fixed program P =
c0; . . . ; cn. It maintains input streams and memories, which
are consumed and respectively updated while the program
counter moves through the program’s list of commands.

In detail,⇒B is a relation between pairs (cfg , inp) where
inp : ICh→ Seq(Val) is an input-channel indexed family of
input streams, and cfg is a configuration, i.e., a pair (pc, µ):
• pc ∈ N is the program counter (PC), pointing to the
pc’th statement in the program, cpc .

• µ is a memory, i.e., a triple (vs, avs, hp) where vs :
Var → Val is a variable store assigning values to
the (scalar) variables, avs : AVar → Loc × N is a
array-variable store assigning to each array-variable
its starting location in the heap and its size, and
hp : Loc→ Val is a heap assigning values to locations.

If cfg = (pc, (vs, avs, hp)), we let pcOf(cfg) = pc.
We use standard notation for updates, e.g., µ[x ← v], and
expression evaluation. JeK(µ). A⊥ denotes the extension of

5

STANDARD
(cfg , inp)⇒B (cfg ′, inp′)

(cfg , inp, L)⇒N (cfg ′, inp′, L ∪ readLocs(cfg))

Fig. 3: Normal semantics for program P = c0; . . . ; cn. We
implicitly assume pc ≤ n.

IFJUMPMISPRED
cpc = (IfJump b pc1 pc2)

pc′ = (if JbK(µ) then pc2 else pc1)

((pc, µ), inp)⇒M ((pc′, µ), inp)

STANDARD
¬ isCond(cfgk) ∨ ¬mispred(ps, pcs)

(k > 0 −→ ¬ isIOorFence(cfgk) ∧ ¬ resolve(ps, pcs))
(cfgk, inp)⇒B (cfg ′, inp′)

C ′ = cfg0 · . . . · cfgk−1 · cfg
′ L′ = L ∪ readLocs(cfgk)

(ps, cfg0 · . . . · cfgk, inp, L)⇒S (ps, C ′, inp′, L′)

MISPRED
isCond(cfgk) mispred(ps, pcs)

(cfgk, inp)⇒B (cfg ′, inp′) (cfgk, inp)⇒M (cfg ′′, inp′′)
C ′ = cfg0 · . . . · cfgk−1 · cfg

′ · cfg ′′ L′ = L ∪ readLocs(cfgk)

(ps, cfg0 · . . . · cfgk, inp, L)⇒S (update(ps, pcs), C ′, inp′, L′)

RESOLVE
k > 0 resolve(ps, pcs) C ′ = cfg0 · . . . · cfgk−1

(ps, cfg0 · . . . · cfgk, inp, L)⇒S (update(ps, pcs), C ′, inp, L)

FENCE
k > 0 ¬ resolve(ps, pcs) isFence(cfgk)

(ps, cfg0 · . . . · cfgk, inp, L)⇒S (pcs, cfg0, inp, L)

Fig. 4: Speculative semantics for program P = c0; . . . ;
cn under misprediction oracle (PState,mispred, resolve,
update). Each time, we implicitly assume pc ≤ n and pcs =
pc0 · . . . · pck where pci = pcOf(cfg i) for i ∈ {0, . . . , k}.

a set A with an “undefined” element ⊥. The output of a con-
figuration, outOf(pc, µ) ∈ (OCh × Val)⊥, is (och, JeK(µ))
if cpc has the form Outputoch e, and ⊥ otherwise.

The read location. For modeling Spectre vulnerabilities, we
will record memory reads (as in [5]). We let readLocs(pc, µ)
be the (possibly empty) set of locations that are read by the
current command cpc—computed from all sub-expressions
of cpc of the form a[e]. For example, if cpc is the assignment
x = a[b[3]], then readLocs returns two locations: counting
from 0, the 3rd location of b and the b[3]’th location of a.

Normal semantics. Fig. 3 shows the “normal” semantics
⇒N , which is the basic semantics extended to accumulate
the read locations, hence account for cache side-channels.

Speculative semantics. Finally, Fig. 4 shows the speculative
semantics⇒S , which augments normal semantics with spec-
ulative steps that go wrong, along a misprediction (taking the
wrong branch). In addition to the program P = c0; . . . ; cn,
⇒S is parameterized by a misprediction oracle, i.e., a tuple
(PState,mispred, resolve, update) where: PState is a set of
predictor states ranged over by ps , mispred : PState ×

{0, . . . , n}∗ → Bool, resolve : PState × {0, . . . , n}∗ →
Bool, and update : PState× {0, . . . , n}∗ → PState.

The oracle decides for when misprediction occurs thus
triggering a new speculation (the mispred predicate), and for
when a speculation is being resolved (the resolve predicate).
Both occurrence and resolution depend on the predictor state
(which evolves via the function update) and on the list of
PCs of the nested speculations, an element of {0, . . . , n}∗.
Indeed, the semantics allows for nested speculation: The
runtime environment can mispredict thus taking a wrong
branch, and while running on that wrong branch it can
mispredict again, and so on. Resolution, i.e., the act of the
runtime environment figuring out that the prediction was
wrong and reverting the corresponding speculative execu-
tion, occurs when the oracle dictates that, via resolve.

The speculative semantics ⇒S operates on (multi-
speculative) states, i.e., tuples s = (ps, cfgs, inp, L) where
ps ∈ PState is the current predictor state, cfgs is a non-
empty list of configurations. inp is a family of input streams
and L is the set of locations read so far. We think of cfgs
as a stack of configurations, one for each speculation level
in a nested speculative execution. At level 0 we have the
configuration cfg0 for normal, non-speculative execution.

At each moment, only the top of the configuration
stack, cfgk, is active. One type of transitions that cfgk can
take is standard transitions, shown in the rule STANDARD.
These occur only when (1) the misprediction option is not
on the table (either because the command of cfgk is not
a conditional, or because the oracle does not demand a
misprediction at this time) and (2) if in speculation mode,
i.e., k > 0, no other blocking factors occur.

If the command of cfgk is a conditional and the
oracle demands misprediction, then a new mispredicting
speculation is launched—as shown in the rule MISPRED.
In this case, cfgk takes a normal execution step on the
correct branch (yielding the configuration cfg ′) while at the
same time cfgk takes a step on the wrong branch (yielding
the configuration cfg ′′ at speculation level k + 1, which
becomes the active configuration). The step on the wrong
branch is achieved using a dual of the ⇒B transition for
conditional commands, denoted ⇒M (where M stands for
“misprediction”)—also shown in Fig. 4, as the rule IFJUMP-
MISPRED. The fact that, in the semantics, the new specula-
tion execution moves on the wrong branch at the same time
with execution one level below moving on the correct branch
is a succinct way of expressing that the new speculation
involves misprediction (as opposed to correct prediction).

When in speculative mode (k > 0) and the oracle
demands it, a resolution occurs: The k-level speculation is
reverted, i.e., the configuration cfgk is dropped and cfgk−1
re-becomes the active configuration —as shown by the rule
RESOLVE. Finally, when in speculative mode and encounter-
ing a Fence command, the entire stack of nested speculations
is reverted, leaving only the configuration at level 0 (for
normal execution)—as shown by the rule FENCE.

6

3.2. Representing the running examples in IMP
We assume ICh = OCh = {T, U}, where T and U repre-

sent a trusted and an untrusted channel, respectively. More-
over, we assume a binary operation F ∈ Op whose semantics
is some (fixed but) unspecified function in Val2 → Val.

Our motivating examples from §2.1 are expressed in
IMP as depicted in Fig. 5. Expectedly, the if statements
are modeled by IfJump, and the while loops by IfJump in
conjunction with unconditional Jump, In fun1–fun5 we use
only the untrusted channel U for inputs and outputs—thus
matching our §2.1’s assumption that the attacker controls the
inputs and sees the outputs. In fun6 we use both the trusted
and untrusted channels, matching our assumption that the
attacker controls only specific inputs and outputs. Since
our language lacks procedures, we use OutputT (F(x, y))
to encode the writeOnSecretFile(x,y) procedure of fun6.

3.3. Instantiating relative security to IMP
We fix an IMP program P = c0; . . . ; cn, and some

initial memory µ0, inputs inp0 and predictor state ps0. We
first instantiate the system models SMvan and SMopt :
• Statevan consists of non-speculative states, i.e., triples

(cfg , inp, L); ⇒van is the normal semantics, ⇒N ; and
istatevan(cfg , inp, L) says that cfg = (0, µ0), inp =
inp0 and L = ∅.

• Stateopt consist of the (multi-speculative) states; ⇒opt

is ⇒S ; and istateopt(s) for s = (ps, cfgs, inp, L) says
that ps = ps0, inp = inp0, L = ∅ and cfgs is a
(singleton) list consisting of one configuration, (0, µ0).

Thus, both systems start with the specified initial memory
and input stream, and no read locations or speculation.

For instantiating the state-wise attacker models AMopt

and AMvan, we note that the non-speculative states
in Statevan can be seen as particular cases of (multi-
speculative) states in Stateopt. Therefore, agreeing to take
the operators for AMvan as the restrictions of those for
AMopt, we will allow ourselves to only define the latter,
while also omitting the subscript opt.

To determine isInt and getInt, we ask what the attacker’s
capabilities are. Of course, the attacker controls/observes
untrusted inputs/outputs. Moreover, we assume a strong
attacker observing execution time and control flow,
following the leakage model of constant-time security [4].
Finally, we assume the attacker observes the read locations
(e.g., via probing the cache)—another usual assumption of
constant-time security. We thus define isInt(s) = ¬ final(s)
and getInt(s) = (getAct(s), getObs(s)) where, if s = (ps,
cfg0 · . . . · cfgk, inp, L), we have:

getAct(s) =

{
head(inpU), if k = 0 and isInputU(cfg0)
⊥, otherwise

getObs(s) =

 (outOf(cfg0), L), if k = 0 and
isOutputU(cfg0)

⊥, otherwise
As shown by the definition of isInt, interaction happens

everywhere except for the final states (where the system

is idle)—this pervasiveness of interaction means that the
attacker can observe the execution time. For most interaction
points, getInt (which pairs actions via getAct with obser-
vations via getObs) reveals nothing beyond the fact that an
execution step has been taken, i.e., returns (⊥,⊥); excep-
tions are when the current command is an untrusted input or
output command (which we expressed by the isInputU and
isOutputU predicates). Note also that inputs and outputs can
only take place non-speculatively, i.e., at speculation level 0.

The second question, which will determine isSec and
getSec, is what the sensitive data, i.e., the secrets, are. For
the bulk of our examples, fun1–fun5, we take isSec(s) to say
that s is initial and getSec(s) to return the memory part of
this initial state (namely µ0). In short, here the entire initial
memory constitutes the secrets.

For fun6, we change isSec and getSec to account for the
interactive nature of the secrets, entered in the system as
trusted inputs and produced as trusted outputs. Thus, isSec
now says that the state is not final and not speculating and,
for a state s = (ps, cfgs, inp, L), getSec(s) now returns
triples (A, B, C) where:
• A is (as before) the memory part of s provided s is

initial, and ⊥ otherwise;
• B is head(inpT) if the command of cfgs0 is an InputT

(trusted input) command, and ⊥ otherwise;
• C is either the (trusted) output produced if the

command of cfgs0 is an OutputT one, and ⊥ otherwise.
In short, the secrets are now three-fold: memory if in initial
state, trusted input if any, and trusted output if any.

With this instantiation, one can check that the intuitive
(in)security of these examples discussed in §2.1 corresponds
to their (not) satisfying relative security. For example, fun1
is not relatively secure essentially because the attacker can
use the InputU x command to pass an input x ≥ N , which
leaks a[x] (part of the initial memory) via the read-locations
component of the observation (L). Indeed, the value of a[x]
is collected by the semantics among the read locations while
executing line 4 in the speculative semantics at speculation
level 1; but not under normal semantics, under which line
4 is not executed because x < N . This violation of relative
security is impossible for fun2 and fun3, where the fences
stop speculation via the FENCE rule in Fig. 4 before the
location a[x] can be collected. In fact, fun2–fun6 are all rel-
atively secure, like our informal analysis in §2.1 concluded.
But actual proofs for these will be based on the unwinding
proof method we introduce in §5, and will be sketched in §6.

4. Connections with notions from the literature

Of the vast literature on Spectre and Meltdown [3], we
will only discuss formal modeling and verification aspects.

The contract/policy pattern. Most of the approaches focus
on protecting the secrecy of (aspects of) the initial state,
expressed as an indistinguishability relation ' on State,
and on explicitly modeling only the attacker’s observations
(our function O) and not the attacker’s actions (our function

7

0 : Start ;
1 : InputU x ;
2 : t = 0 ;
3 : IfJump (x < N) 4 5 ;
4 : t = b[a[x] ∗ 512] ;
5 : OutputU t

0 : Start ;
1 : InputU x ;
2 : t = 0 ;
3 : IfJump (x < N) 4 6 ;
4 : Fence ;
5 : t = b[a[x] ∗ 512] ;
6 : OutputU t

0 : Start ;
1 : InputU x ;
2 : t = 0 ;
3 : IfJump (x < N) 4 7 ;
4 : v = a[x] ;
5 : Fence ;
6 : t = b[v ∗ 512] ;
7 : OutputU t

0 : Start ;
1 : InputU x ;
2 : t = 0 ;
3 : IfJump (x < N) 4 6 ;
4 : v = a[0] ;
5 : t = b[v ∗ 512] ;
6 : OutputU t

fun1 fun2 fun3 fun4

0 : Start ;
1 : t = 0 ;
2 : x = 1 ;
3 : IfJump (not (x == 0)) 4 11 ;
4 : InputU x ;
5 : IfJump (x < N) 6 10 ;
6 : v = a[x] ;
7 : Fence ;
8 : t = b[v ∗ 512] ;
9 : OutputU t ;

10 : Jump 3 ;
11 : OutputU 0 ;

0 : Start ;
1 : t = 0 ;
2 : x = 1 ;
3 : IfJump (not (x == 0)) 4 13 ;
4 : Input x ;
5 : InputT y ;
6 : IfJump (x < N) 7 12 ;
7 : v = a[x] ;
8 : OutputT (F(x, y)) ;
9 : Fence ;

10 : t = b[v ∗ 512] ;
11 : OutputU t ;
12 : Jump 3 ;
13 : OutputU 0 ;

fun5 fun6

Fig. 5: Our six motivating examples from §2.1 written in IMP

A). Notably, this is the case of Guanciale et al.’s condi-
tional non-interference [12], an extension of noninterference
[10, 27] used to build a detailed formal model of Spectre
vulnerabilities in the presence of speculative and out-of-
order execution; and of Guarnieri et al.’s speculative non-
interference [13] (which forms the basis of Spectator, an
automatic tool for proving security against Spectre).

These and several other approaches are surveyed in a
recent SoK paper by Cauligi et al. [4], which, borrow-
ing concepts and terminology from Guarnieri et al. [14],
describes these approaches uniformly under the following
contract/policy pattern, characterized by three parameters: 1)
an execution model α, indicating the states explored during
executions, 2) a leakage model l, indicating the observations
that are possible along executions, and 3) a (secrecy) policy
p, indicating the secrets stored in the initial state, via an
indistinguishability relation on states 'p.

An execution model α corresponds to an operational
semantics (our system models SM = (State, istate,⇒)).
The combination between a leakage and an execution model,
called a contract, determines a state-observation function
J·Kαl : State → Seq(Obs). Given execution and leakage
models α and l and a policy p, direct noninterference states
that the observation function cannot detect any secret,
in that ∀s1, s2 ∈ State. s1 'p s2 −→ Js1Kαl = Js2Kαl .
Relative noninterference generalizes this to two contracts,
namely (in our terminology) a vanilla one (α, l) and an
optimization-enhanced one (α′, l′), and a common policy
p, stating that any secrets that are leaked by (α′, l′) are
also leaked by (α, l), in that ∀s1, s2 ∈ State. s1 'p
s2 ∧ Js1Kα

′

l′ = Js2Kα
′

l′ −→ Js1Kαl = Js2Kαl .

Assuming that the state-observation function stems from
a trace observation function (which seems true in all inter-
esting cases), the contract/policy pattern is an instance of our
relative security by instantiating our attacker models: S(π)
as a singleton sequence, namely the 'p-equivalence class
of the trace’s starting state, O(π) as the trace observation
function underlying J·Kαl , and A(π) as the empty sequence.

The attacker actions A playing no role in the above
models and the secrets being restricted to the initial state
means that such models, while easily capturing examples
like the ones in our Listings 1–4, are not directly suitable
for more interactive examples as in Listings 5 and 6. While
interaction features are not completely out of scope for
these models, we believe our approach to allow interaction
natively in the abstract models can simplify reasoning.

TPOD. Cheang et al.’s TPOD (trace-property dependent
observational nondeterminism) [5] is an exception to
the above rule, in that it explicitly captures both active
attackers and interactive uploading of the secrets. TPOD
is an extension of observational determinism [33] from a
two-trace to a four-trace property. It is parameterized by a
notion of low-equivalence ≡low on states, which describes
what an attacker cannot distinguish, and by low and high
operations taken at each transition between states: oplow(s)
and ophigh(s) are the high and low operations applied when
transiting from state s to the next state. Low equivalence
and the high and low operations are extended from states
to traces componentwise. Finally, rather than considering
two distinct system models, (in our terminology) a vanilla
one and an optimization-enhanced one, TPOD uses a single
system for both and instead uses a set T of (what we call)

8

vtraces. With these parameters fixed, TPOD is expressed
as follows (where π0

i denotes the starting state of πi):
∀π1, π2 ∈ Trace r T. ∀ π̂1, π̂2 ∈ T.

oplow(π̂1) = oplow(π̂2) = oplow(π2) = oplow(π1) ∧
ophigh(π̂1) = ophigh(π1) ∧ ophigh(π̂2) = ophigh(π2) ∧
π̂1 ≡low π̂2 ∧ π0

1 ≡low π
0
2

−→ π1 ≡low π2
We can parse TPOD in terms of our relative security

ingredients: 1) the sequence of low-equivalence classes
s0/≡ low

s1/≡ low
. . . of a trace π = s0 s1 . . . form the observa-

tions O(π); 2) the low operations oplow(π) form the actions
A(π); 3) the high operations ophigh(π) form the secrets S(π).

However, TPOD is not a particular case of our relative
security because of two reasons, highlighted in the above
formula. First, as shown by the highlighted equality, the
TPOD formula constrains the vtraces π̂1 and π̂2 to have the
same low operations (in our terminology, the same actions)
not only with each other, but also with their counterpart
otraces π1 and π2; this (over)constrains any leak exhibited
by the optimization-enhanced system to be reproduced by
the vtraces under the same attacker actions, which in our
opinion is not justified. Indeed, our design of relative se-
curity suggests that the similarities between the vtraces and
the otraces should refer to the underlying secrets, not to the
attacker-taken actions; this is because the standard assump-
tion is that the attacker is free to take any actions to exhibit
a leak. Interestingly, this overconstraining problem with
TPOD is illustrated by an example in the TPOD paper itself
[5], namely the conditionally vulnerable program we showed
in Listing 4 (Fig. 3(c) in [5]): Assuming N > 0, under the
interpretation of low actions as the inputs to the function
fun4 (which is natural, and is the one endorsed in [5]),
TPOD requires that the vtraces reproduce the leak with the
same input—which is impossible because, as we explained
in §2.1 (following a discussion from [5]), reproducing the
leak in the vanilla semantics requires a specific input smaller
than N which is different from the one in the otraces, e.g.,
if N = 2 then we need the vanilla input to be 0 or 1. Thus,
contrary to the authors’ suggestion, Listing 4’s example does
not satisfy TPOD; though it satisfies relative security.

The other difference between relative security and TPOD
is shown in the highlighted quantifier: Because it quantifies
universally rather than existentially over the vtraces π̂1 and
π̂2, the TPOD formula asks that any leak of π1 and π2 is
reproduced not just by some pair of vtraces π̂1 and π̂2 (which
seems natural), but rather, more demandingly, by all pairs of
vtraces that happen to have the same secrets with π1 and π2.

In summary, TPOD is a strong property that mischarac-
terizes intuitively secure programs that our relative security
characterizes correctly. However, it is the TPOD strength
that enables successful automatic verification which deems
secure several interesting programs (as elaborated in [5]).

5. (Dis)Proof Methods for Relative Security
This section develops incremental proof and disproof

methods for relative security, which can be enabled provided
the secrets, observations and actions of attacker models are

themselves defined incrementally on traces (§2.5). After
discussing design challenges stemming from the four-trace
constraint system specific to relative security (§5.1), we
converge to a definition of unwinding relation (§5.2); we dis-
tinguish between the finite-trace case and the general case,
the former allowing for simpler conditions. Our discussion
culminates with the formal statement that unwinding indeed
ensures relative security (§5.3). We also introduce a compo-
sitional variant of unwinding (§5.4). Finally, we look into the
dual problem, of incrementally disproving relative security,
which leads to a proof method that we call secret-directed
unwinding because it is a form of unwinding that shows the
impossibility of saturating given sequences of secrets (§5.5).

We fix two system models SMvan = (Statevan,
istatevan,⇒van) and SMopt = (Stateopt, istateopt,⇒opt)
such that Statevan ⊆ Stateopt, and state-wise attacker mod-
els for them, AMvan = (Sec, Svan, Obsvan, Ovan, Actvan,
Avan) and AMopt = (Sec, Sopt, Obsopt, Oopt, Actopt, Aopt)
(having the same set of secrets Sec). Recall from §2.5 that
the attacker models being state-wise means the existence of
the predicates isSecu : Stateu → Bool, getSecu : Stateu →
Sec, isIntu : Stateu → Bool, getObsu : Stateu → Obsu,
and getActu : Stateu → Actu that define the functions Su,
Ou and Au state-wise, where u ∈ {opt, van}.

We will describe methods for (dis)proving (SMopt,
AMopt) ≥ (SMvan,AMvan) and (SMopt,AMopt) ≥fin

(SMvan,AMvan). We will only use the subscripts van and
opt for the state-set components, e.g., Statevan and Stateopt,
and omit them for the other componentsm, e.g., ⇒.

5.1. Design aspects

Unwinding is a (bi)simulation-like [30] method special-
ized in proving noninterference and related two-trace prop-
erties [11, 20]. It exhibits a winning strategy for a two-player
game that incrementally follows a trace π1 controlled by an
antagonist, while constructing a similar trace π2 controlled
by a protagonist while “countering” any possible leak.

For relative security, there are additional challenges
when designing an unwinding-like proof method since we
must cope with not two but four traces π1, π2, π̂1, π̂2, as
depicted in Fig. 1. Here, the otraces π1 and π2 on the one
hand, and also their counterpart vtraces π̂1 and π̂2 on the
other, both pairs correspond to the pair of traces from tradi-
tional unwinding. However, there are different requirements
on π1, π2 (which are allowed to exhibit a leak) and π̂1, π̂2
(which must reproduce the leak exhibited by π1, π2).

We are after a mechanism for building the vtraces π̂1 and
π̂2 incrementally from the otraces π1 and π2 in such a way
that they create the same leak, i.e., take the same actions and
generate the same secrets yet produce different observations.
During the build process, we will have to simultaneously
maintain the following relationships between these traces:
(R1) the otraces π1 and π2 have the same actions but

different observations;
(R2) the vtraces π̂1 and π̂2 have the same actions but

different observations;

9

(R3) the otrace πi and its vtrace counterpart π̂i have the
same secrets for i ∈ {1, 2}.

We must also factor in the polarities of these rela-
tionships. First, as the traces evolve during the unwinding
game, relationship (R1) will be assumed, whereas relation-
ships (R2) and (R3) must be guaranteed. Moreover, assum-
ing/guaranteeing that two generated sequences stay equal
(like for the sequences of actions in relationships (R1)–(R3))
has a different flavour from assuming/guaranteeing that two
generated sequences become different (like for the sequences
of observations in relationships (R1) and (R2))—roughly, we
are talking about a safety versus a liveness property.

To capture these nuances, we will maintain the status
of the observations’ divergence at (R1) and (R2), by
remembering whether π1 and π2 have (already) differed
in their observations (meaning the status is “diff”) or not
(yet), meaning the status is “eq” (and similarly for π̂1 and
π̂2). Thus, we can guarantee (R2) when assuming (R1) by:
• starting with the status of π1 vs. π2, as well as that of π̂1

vs. π̂2, set to eq;
• making sure the status of π̂1 vs. π̂2 changes (from eq to

diff) as soon as the status for π1 vs. π2 changes.
The vtraces π̂1 and π̂2 will grow as π1 and π2 grow,

using one of the following transition-matching mechanisms:
• π̂i takes a step to match a step by πi; or
• both π̂1 and π̂2 take a synchronized step to match a

synchronized step by π1 and π2; or
• π̂1 and/or π̂2 ignore the step taken either separately or

synchronously by π1 and/or π2.
These matching patterns are the most natural choices for
the reactive growth of π̂i’s based on that of the πi’s. But for
extra flexibility in proofs we will also allow variations of
these patterns—e.g., π̂1 alone taking a step in response to
a synchronized step by π1 and π2, or conversely π̂1 and π̂2
taking a synchronized step in response to a step by π1. The
side-conditions when applying these matching mechanisms
ensure that we maintain “(R1) implies (R2) and (R3)”.

In what follows, we will refer to the conditions (R1)–
(R3) more casually and intuitively, as:
• an interaction contract, corresponding to “(R1) implies

(R2)”, about the actions of π̂1 and π̂2 being the same
and the observations being (eventually) different (the
latter provided this is the case for π1 and π2);

• a secrecy contract, corresponding to “((R1) implies)
(R2)”, about the produced secrets being the same
between π̂i and πi.

In addition to the above discussed reactive growth of the
π̂i’s, we will also allow their proactive growth. This will en-
sure further flexibility in proofs by enabling the π̂i’s to take
“independent” moves, i.e., moves not triggered by moves
of the πi’s. However, to ensure soundness we will need to
restrict proactive growth using timers (as we will explain).

5.2. Definition of unwinding
Below is the formal definition. We let Status =

{eq, diff}, where eq signifies equality and diff difference/ di-

vergence, and N∞ = N∪{∞}, the set of natural numbers ex-
tended with ∞—these will be our timer parameters. We let
SStateu

.
= Stateu×Stateu×Status, where u ∈ {opt, van}.

Def. 3 A relation ∆ : N∞ → (N∞ × N∞)→SStateopt →
SStatevan → Bool is an unwinding when, for all v ∈ N∞,
v1, v2 ∈ N∞ , s1, s2 ∈ Stateopt, ŝ1, ŝ2 ∈ Statevan and

st , ŝt ∈ Status, if ∆ v (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt) then:
• st = eq implies isInt(s1) ←→ isInt(s2);
• final(s1) ←→ final(s2) ←→ final(ŝ1) ←→ final(ŝ2);
• either react(∆) (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt),

or ∃w < v. proact(∆) w (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt).

The predicates react(∆) and proact(∆), covering
the aforementioned reactive and proactive components
of unwinding, are defined in Figs. 6 and 7, respectively.
The definitions in these figures use the parameters of
relative security either directly (e.g., isSec and isInt) or via
the following auxiliary functions newStat, eqSec and eqAct:

eqSec(s, s′)
.
= (isSec(s) ←→ isSec(s′)) ∧

(isSec(s) −→ getSec(s) = getSec(s′))
eqAct(s, s′)

.
= (isInt(s) ←→ isInt(s′)) ∧

(isInt(s) −→ getAct(s) = getAct(s′))

newStat(st , s, s′)
.
=

diff if isInt(s) ∧ isInt(s′) ∧

getObs(s) 6= getObs(s′)

st otherwise
Thus, the predicate eqSec(s, s′) holds when the states s
and s′ have equal secrets, if any; and similarly for eqAct
concerning actions. The function newStat(st , s, s′) tracks
any change to the status st , from eq to diff, that may have
occurred due to the observations in s and s′.

Def. 4 A relation ∆ : N∞ → SStateopt → SStatevan →
Bool is said to be a finitary unwinding if the condition
from Def. 3 holds when ignoring the two N∞ arguments
highlighted in gray (including in Figs. 6 and 7).

Discussion on finitary unwinding. We first focus on
finitary unwinding (Def. 4), ignoring everything highlighted
in gray—this will be enough for finitary relative security.
A finitary unwinding relation ∆ encodes the current states
of the otraces, s1 and s2, and their observation divergence
status st (call them “ostates" and “ostatus"), along with the
current states ŝ1 and ŝ2 and status ŝt of the vtraces which are
being constructed (“vstates” and “vstatus”), together with
a timer parameter v ∈ N∞ (for bounding proactive growth,
explained later) expressed as ∆ v (s1, s2, st) (ŝ1, ŝ2, ŝt).
Def. 4 ensures that ∆ can support the secure growth of the
vtraces, reactively or proactively.

A note on notation: In Figs. 6 and 7, we use superscripts
to indicate which subset of the two ostates take transitions,
and subscripts to indicate which of the two vstates are
reacting. For example, match1,2

2 (∆) means that s1 and s2
both take transitions, and ŝ2 takes a matching transition
in reaction. Superscripts refer to demonic nondeterminism:
we must consider all three cases; and indeed, react(∆) is
defined as the conjunction of match1(∆), match2(∆) and

10

react(∆) (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt)
.
= match1(∆) (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt) ∧

match2(∆) (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt) ∧
match1,2(∆) (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt)

match1(∆) (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt)
.
=

¬ isInt(s1) −→
(∀s′1. s1 ⇒ s′1 −→

(∃(w1, w2) < (v1, v2). ¬ isSec(s1) ∧ ∆∞(w1, w2)(s′1, s2, st) (ŝ1, ŝ2, ŝt)) ∨
(∃w2 < v2. eqSec(s1, ŝ1) ∧ ¬ isInt(ŝ1) ∧ match1

1(∆) (∞, w2)(s′1, s2, st) (ŝ1, ŝ2, ŝt)) ∨
(eqSec(s1, ŝ1) ∧ eqAct(ŝ1, ŝ2) ∧ ¬ isSec(ŝ2) ∧ match1

1,2(∆)(∞,∞) (s′1, s2, st) (ŝ1, ŝ2, ŝt)))

match2(∆) (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt)
.
=

¬ isInt(s2) −→
(∀s′2. s2 ⇒ s′2 −→

(∃(w1, w2) < (v1, v2). ¬ isSec s2 ∧ ∆∞(w1, w2)(s1, s
′
2, st) (ŝ1, ŝ2, ŝt)) ∨

(∃w1 < v1. eqSec(s2, ŝ2) ∧ ¬ isInt(ŝ2) ∧ match2
2(∆) (w1,∞)(s1, s

′
2, st) (ŝ1, ŝ2, ŝt)) ∨

(eqSec(s2, ŝ2) ∧ eqAct(ŝ1, ŝ2) ∧ ¬ isSec ŝ1 ∧ match2
1,2(∆) (∞,∞)(s1, s

′
2, st) (ŝ1, ŝ2, ŝt)))

match1,2(∆) (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt)
.
=

let st ′ = newStat(st , s1, s2) in
isInt(s1) ∧ isInt(s2) ∧ eqAct(s1, s2) −→
(∀s′1, s′2. s1 ⇒ s′1 ∧ s2 ⇒ s′2 −→

(∃(w1, w2) < (v1, v2). ¬ isSec(s1) ∧ ¬ isSec(s2) ∧ (st ′ = st ∨ ŝt = diff) ∧ ∆∞ (w1, w2)(s′1, s
′
2, st

′) (ŝ1, ŝ2, ŝt)) ∨
(∃w2 < v2. eqSec(s1, ŝ1) ∧ ¬ isSec(s2) ∧ ¬ isInt(ŝ1) ∧ (st ′ = st ∨ ŝt = diff) ∧ match1,2

1 (∆) (∞, w2)(s′1, s
′
2, st

′) (ŝ1, ŝ2, ŝt)) ∨
(∃w1 < v1. ¬ isSec(s1) ∧ eqSec(s2, ŝ2) ∧ ¬ isInt(ŝ2) ∧ (st ′ = st ∨ ŝt = diff) ∧ match1,2

2 (∆) (w1,∞)(s′1, s
′
2, st

′) (ŝ1, ŝ2, ŝt)) ∨
(eqSec(s1, ŝ1) ∧ eqSec(s2, ŝ2) ∧ eqAct(ŝ1, ŝ2) ∧ match1,2

1,2(∆) (∞,∞)(s′1, s
′
2, st

′) (ŝ1, ŝ2, ŝt))

match1
1(∆) (v1, v2)(s′1, s2, st) (ŝ1, ŝ2, ŝt)

.
= ∃ŝ ′1 ∈ Statevan. ŝ1 ⇒ ŝ ′1 ∧ ∆∞ (v1, v2)(s′1, s2, st) (ŝ ′1, ŝ2, ŝt)

match1
1,2(∆) (v1, v2)(s′1, s2, st) (ŝ1, ŝ2, ŝt)

.
= ∃ŝ ′1, ŝ ′2 ∈ Statevan. ŝ1 ⇒ ŝ ′1 ∧ ŝ2 ⇒ ŝ ′2 ∧ ∆∞ (v1, v2)(s′1, s2, st) (ŝ ′1, ŝ

′
2, ŝt)

match2
2(∆) (v1, v2)(s1, s

′
2, st) (ŝ1, ŝ2, ŝt)

.
= ∃ŝ ′2 ∈ Statevan. ŝ2 ⇒ ŝ ′2 ∧ ∆∞ (v1, v2)(s1, s

′
2, st) (ŝ1, ŝ

′
2, ŝt)

match2
1,2(∆) (v1, v2)(s1, s

′
2, st) (ŝ1, ŝ2, ŝt)

.
= ∃ŝ ′1, ŝ ′2 ∈ Statevan. ŝ1 ⇒ ŝ ′1 ∧ ŝ2 ⇒ ŝ ′2 ∧ ∆∞ (v1, v2)(s1, s

′
2, st) (ŝ ′1, ŝ

′
2, ŝt)

match1,2
1 (∆) (v1, v2)(s′1, s

′
2, st

′) (ŝ1, ŝ2, ŝt)
.
= ∃ŝ ′1 ∈ Statevan. ŝ1 ⇒ ŝ ′1 ∧ ∆∞ (v1, v2)(s′1, s

′
2, st

′) (ŝ ′1, ŝ2, ŝt)

match1,2
2 (∆) (v1, v2)(s′1, s

′
2, st

′) (ŝ1, ŝ2, ŝt)
.
= ∃ŝ ′2 ∈ Statevan. ŝ2 ⇒ ŝ ′2 ∧ ∆∞ (v1, v2)(s′1, s

′
2, st

′) (ŝ1, ŝ
′
2, ŝt)

match1,2
1,2(∆) (v1, v2)(s′1, s

′
2, st

′) (ŝ1, ŝ2, ŝt)
.
=

let ŝt ′ = newStat(ŝt , ŝ1, ŝ2) in
∃ŝ ′1, ŝ ′2 ∈ Statevan. ŝ1 ⇒ ŝ ′1 ∧ ŝ2 ⇒ ŝ ′2 ∧ (st ′ = diff −→ ŝt

′
= diff) ∧ ∆∞ (v1, v2)(s′1, s

′
2, st

′) (ŝ ′1, ŝ2, ŝt
′
)

Fig. 6: Definition of react(∆) – the reactive component of unwinding

proact(∆) v (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt)
.
=

¬ isSec(s1) ∧ ¬ isInt(s1) ∧ imove1(∆) v (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt) ∨
¬ isSec(s1) ∧ ¬ isInt(s1) ∧ imove2(∆) v (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt) ∨
¬ isSec(s1) ∧ ¬ isSec(s2) ∧ eqAct(s1, s2) ∧ imove1,2(∆) v (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt)

imove1(∆) v (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt)
.
= ∃ŝ ′1 ∈ Statevan. ŝ1 ⇒ ŝ ′1 ∧ ∆ v (v1, v2)(s1, s2, st) (ŝ ′1, ŝ2, ŝt)

imove2(∆) v (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt)
.
= ∃ŝ ′2 ∈ Statevan. ŝ2 ⇒ ŝ ′2 ∧ ∆ v (v1, v2)(s1, s2, st) (ŝ1, ŝ

′
2, ŝt)

imove1,2(∆) v (v1, v2)(s1, s2, st) (ŝ1, ŝ2, ŝt)
.
= let ŝt ′ = newStat(ŝt , ŝ1, ŝ2) in

∃ŝ ′1, ŝ ′2 ∈ Statevan. ŝ1 ⇒ ŝ ′1 ∧ ŝ2 ⇒ ŝ ′2 ∧ ∆ v (v1, v2)(s1, s2, st) (ŝ ′1, ŝ
′
2, ŝt

′
)

Fig. 7: Definition of proact(∆) – the proactive component of unwinding

11

match1,2(∆). By contrast, subscripts refer to angelic nonde-
terminism: we are free to choose between different ways to
react: either ignore, or match with one counterpart, or match
with both counterparts; and indeed, e.g., match1,2(∆) is
defined as a disjunction (with side conditions) involving
match1,2

1 (∆), match1,2
2 (∆) and match1,2

1,2(∆).

Reactive growth. Predicate react(∆) (see Fig. 6) describes
how the vstates ŝ1 and ŝ2 can transit by matching transitions
of the ostates s1 and s2:
• either separately, via predicates match1(∆) or

match2(∆), in case one of the ostates transits without
any interaction (i.e., ¬ isInt(s1) or ¬ isInt(s2)),

• or synchronously, via match1,2(∆), in case both ostates
transit interactively (i.e., isInt(s1) and isInt(s2)).

There is ample flexibility when choosing the matching
transitions. For example, let us detail the case of match1(∆);
those of match2(∆) and match1,2(∆) are similar. In the
definition of match1(∆), we are free to match a transition
s1 ⇒ s′1 in one of three ways, as reflected by the disjunct
on the righthand side of the implication from s1 ⇒ s′1 :
1) either ignoring the transition, but this only provided no

secret is produced by the target (¬ isSec(s1))—otherwise
the vtrace would have been forced to also produce a
secret to avoid breaching the secrecy contract;

2) or giving a matching transition by the counterpart
vtrace, ŝ1 ⇒ ŝ ′1, via match1

1(∆), provided the same
secret (if any) is produced (i.e., eqSec(s1, ŝ1)), and no
vtrace interaction happens (i.e., ¬ isInt(ŝ1))—to ensure
that the vtrace does not breach the interaction contract;

3) or giving matching transitions by both vtraces, ŝ1 ⇒ ŝ ′1
and ŝ2 ⇒ ŝ ′2, via match1

1,2(∆), provided ŝ1 respects
the secrecy contract towards its counterpart (i.e.,
eqSec(s1, ŝ1)), ŝ1 and ŝ2 respect the interaction contract
towards each other (i.e., eqAct(ŝ1, ŝ2)), and ŝ2 doesn’t
produce a secret (not to breach the secrecy contract).
The predicate match1,2 is different from match1 and

match2 in that it allows interaction (isInt(s1) and isInt(s2)),
which can lead to a change of the observation divergence
status (st ′ = newStat(st , s1, s2)), meaning that the otraces
might right now diverge observationally. In this case, relative
security requires that the vtraces also produce different
observations, which is reflected in our unwinding condition.
Indeed, according to the definition of match1,2(∆), if the
status has not changed, or divergence had already been
recorded before in the vtraces (i.e., st ′ = st ∨ ŝt = diff),
then one is allowed to react by either ignoring the transition
or matching it with only one of the vtraces. However, if the
status has changed then one must react with both vtraces
transitioning, i.e., take the fourth, match1,2

1,2(∆) option, and
make sure that that vtrace divergence status has become diff
in case the otraces status has (st ′ = diff −→ ŝt

′
= diff)—

as seen in the definition of match1,2
1,2(∆).

Proactive growth. Predicate proact(∆) (see Fig. 7) allows
the vtraces to take transitions independently. Thus, proactive
moves represent “extra help” when proving relative security.
They have similar conditions as the reactive moves, but

simpler since they involve only the vstates, not the ostates.
Proactive, “independent” moves can be taken either by one
vstate (imove1(∆) or imove2(∆)), or by both (imove1,2(∆)),
subject to restrictions of not producing secrets (to avoid
breaching the secrecy contract) and producing the same ac-
tion if any (or not at all if moving separately). In the case of
mutual independent moves, imove1,2(∆), a possible change
of observation status can occur—which is being recorded
because, in a presumptive proof of unwinding, it is helpful
to know if the vtrace observations have already diverged, so
that in the future the proof no longer has to be “on watch”
for the otraces to diverge (so to have the vtraces diverge at
the same time, as discussed above for match1,2

1,2(∆)).
Another aspect that distinguishes proactive moves from

reactive moves is that the former do not advance the otraces,
which means that they should not be allowed to proceed
indefinitely thus “filibustering” the unwinding game. Indeed,
in that case, unwinding would fail to ensure relative security,
because the otraces may end up not being entirely processed,
rendering the secrecy-contract conditions S(π̂i) = S(πi)
uncertain. For this reason, we carry an additional timer
parameter v ∈ N∞ that 1) is forced to decrease each time
we take a proactive move (as seen in Def. 3 when passing to
proact(∆) a value w < v) and 2) is reset to∞ when we take
a reactive move, and stays ∞ during reactive moves. This
ensures that the proactive moves cannot be taken continu-
ously and infinitely, but eventually yield to reactive moves.

Upgrading to general unwinding. In the presence of in-
finite traces, there are more opportunities for “filibuster-
ing” in addition to the above discussed one coming from
unbounded proactive moves (by the vtraces), namely from
the unbalanced reactive moves where one of the vtraces π̂i
grows indefinitely and “starves” the other one. This would
allow us to successfully play the unwinding game without
proving relative security, more precisely without proving
that the constructed π̂1 and π̂2 have the same observations.
To counter this, we must ensure that either vtrace always
eventually yields to the other one when taking reactive
moves (unless that other one has terminated). This is the
purpose of the additional timers v1 and v2 highlighted in
Def. 3 and Figs. 6 and 7. Namely, we think of vi as counting
the time until π̂i will make progress in a reactive move, via
matching—indeed, in Fig. 6 we see how vi is decreased
each time a matching action is taken without ŝi taking a
transition, and is reset to ∞ as soon as ŝi takes a transition.

5.3. Soundness of the unwinding proof method
Unwinding seeks to provide sufficient local (state-based)

conditions ensuring relative security. This is indeed the case:

Thm. 5 (The Proof Unwinding Theorem) Assume that:
• ∆ is a (finitary) unwinding relation.
• ∆∞ (∞,∞) (resp. ∆∞) covers the initial states, i.e.:

for all s1, s2 ∈ Stateopt such that istate(s1) and
istate(s2), there exist ŝ1, ŝ2 ∈ State such that istate(ŝ1)
and ∆∞ (∞,∞) (s1, s2, eq) (ŝ1, ŝ2, eq) (resp. ∆∞ (s1,
s2, eq) (ŝ1, ŝ2, eq)).

12

Then (finitary) relative security holds, i.e., (SMopt,
AMopt) ≥ (SMvan,AMvan) (resp. (SMopt,AMopt)
≥fin(SMvan,AMvan)).

The sound proof method enabled by Thm. 5 is the
following: To prove that relative security holds, it suffices to
provide an unwinding relation that covers the initial states.

Whereas relative security and finitary relative security
are incomparable (neither implies the other), general (non-
finitary) unwinding implies finitary unwinding (by ignoring
the vi timers). So the general unwinding proof method
ensures both relative security and finitary relative security.

5.4. Compositional, distributed unwinding
In practice, one might prefer to not define a single un-

winding relation, i.e., a relation ∆ shown to “unwind into it-
self”, but a network of relations that unwind into each other:

Def. 6 An unwinding network is a tuple (n, next, Init,∆)
where n ∈ N, Init ⊆ {0, . . . , n} next : {0, . . . , n} →
P({0, . . . , n}) and ∆ = (∆i)i∈{0,. . .,n} are such that, for
all i ∈ {0, . . . , n} and v, v1, v2, s1, s2, st , ŝ1, ŝ2, ŝt , if
∆i v (v1, v2) (s1, s2, st) (ŝ1, ŝ2, ŝt) holds, then the condi-
tions from Def. 3 hold but for ∆ replaced with

∨
j∈next(i)∆j .

This definition generalizes Def. 3 by allowing each ∆i

to take reactive and proactive steps unwinding into any ∆j

to which ∆i is connected, as described by the next operator.
Init stands for set of the initial nodes in this network.

Thm. 7 (The Proof Distributed-Unwinding Theorem)
Assume that (n, next,∆, M) is an unwinding network and⋃
i∈Init(∆i∞) covers the initial states (as in Thm. 5). Then

(SMopt,AMopt) ≥ (SMvan,AMvan).

(And a similar generalization holds for finitary unwinding.)
Thm. 7 was useful in our verification case studies (to

be described in §6), where different unwinding components
turned out to naturally correspond to the different phases
that the considered programs’ executions go through.

5.5. Disproof Method for Relative Security
A counterexample for relative security requires 1) a con-

crete step, providing a pair (π1, π2) of otraces that have the
same actions and different observations, and 2) an abstract
reasoning step, showing that there is no similarly related pair
(π̂1, π̂2) of vtraces producing the same secrets as (π1, π2).
For handling step 2, we can again use an unwinding-like
technique. After collecting the sequences of secrets (σ1, σ2)
of (π1, π2), we make sure that no suitable vtraces (π̂1, π̂2)
can cover these secrets. This is done by maintaining a
four-place unwinding relation containing pairs (s1, σ1) and
(s2, σ2), where each si is the state currently reached by the
presumptive trace π̂i and σi is the sequence of secrets still
left to be covered by π̂i. We will state unwinding conditions
ensuring that no vtraces starting in s1 and s2 can achieve
both same actions and different observations if they are to
stay on track, i.e., cover the given secrets σ1 and σ2—in
this sense, our unwinding relations will be secret-directed.

Def. 8 A relation Γ : (Statevan× Seq(Sec))→ (Statevan×
Seq(Sec)) → Bool is a secret-directed (SD) unwinding
when for all s1, σ1, s2, σ2, if Γ (s1, σ1) (s2, σ2) then:
• isInt(s1) ←→ isInt(s2)
• ¬ isInt(s1) −→

move1(Γ) (s1, σ1) (s2, σ2) ∧ move2(Γ) (s1, σ1) (s2, σ2)
• isInt(s1) ∧ getAct(s1) = getAct(s2) −→

getObs(s1) = getObs(s2) ∧ move1,2(Γ) (s1, σ1) (s2, σ2)

The predicates move1(Γ), move2(Γ) and move1,2(Γ) are
defined in Fig. 8. They are based on the secret-directed
transition relation ⇒getSec

isSec , also defined in Fig. 8.

As seen in the above bullet points, an SD unwind-
ing guarantees that the two states s1 and s2 (reached by
the presumptive vtraces) always have the same interaction
status, and equal observations if equal actions; also, the
secret-directed transition relation ⇒getSec

isSec shown in Fig. 8
makes sure that the states s1 and s2 can evolve (i.e., the
vtraces can grow) only by respecting the remaining se-
quences of secrets—i.e., only producing the next secret in
the corresponding sequence, if at all producing a secret. And
indeed, maintaining an SD unwinding while starting with the
sequences of secrets (S(π1), S(π2)) given by two concrete
otraces (π1, π2), constitutes a sound disproof method:

Thm. 9 (The Disproof Unwinding Theorem) Assuming:
• π1, π2 ∈ Traceopt, A(π1) = A(π2) and O(π1) 6= O(π2).
• Γ is an SD unwinding.
• Γ covers the initial states w.r.t. (S(π1), S(π2)), in that

Γ (s1, S(π1)) (s2, S(π2)) holds for all s1, s2 ∈ Statevan

such that istate(s1) and istate(s2).
Then relative security fails, i.e., (SMopt,AMopt) 6≥
(AMvan, LMvan). And if π1, π2 ∈ Tracefin, then
finitary relative security also fails, i.e., (SMopt,AMopt)
6≥fin(SMvan,AMvan).

6. Unwinding (Dis)Proofs for our Examples
Unwinding proofs. We deployed the distributed unwinding
method (Thm. 7) to prove the relative security of (§3.2’s
IMP representations of) fun2–fun6. The proofs turn the
informal intuition for why these programs are (relatively)
secure into an unwinding argument involving ostates s1 and
s2 (those reached by two otraces π1 and π2) and vstates ŝ1
and ŝ2 (those reached by two vtraces π̂1 and π̂2).

In all the proofs, the two ostates s1 and s2 always
have the same PC (i.e., execute the statements lock-step
synchronously) at all levels; and the two vstates ŝ1 and
ŝ2 always have the same PC too. Moreover, often (but
not always) the vstates have the same PC with the level-
0 PC of the ostates. Since interaction is pervasive, the
match1 and match2 predicates are vacuously true, and when
checking match1,2 we only choose “ignore” (first disjunct)
or the match1,2

1,2 (fourth disjunct) options—this is because
of the aforementioned lock-step synchronization. Another
common aspect will be that s1 and s2 always have the same
value for the input variable x, and we also make sure that
ŝ1 and ŝ2 have the same value for x—this is to respect

13

(s, σ)⇒getSec
isSec (s′, σ′)

.
= s⇒ s′ ∧ ((¬isSec(s) ∧ σ = σ′) ∨ (isSec(s) ∧ σ = getSec(s) · σ′))

move1(Γ) (s1, σ1) (s2, σ2)
.
= ∀s′1, σ′

1. (s1, σ1)⇒getSec
isSec (s′1, σ

′
1) −→ Γ (s′1, σ

′
1) (s2, σ2)

move2(Γ) (s1, σ1) (s2, σ2)
.
= ∀s′2, σ′

2. (s2, σ2)⇒getSec
isSec (s′2, σ

′
2) −→ Γ (s1, σ1) (s′2, σ

′
2)

move1,2(Γ) (s1, σ1) (s2, σ2)
.
= ∀s′1, σ′

1, s
′
2, σ

′
2. (s1, σ1)⇒getSec

isSec (s′1, σ
′
1) ∧ (s2, σ2)⇒getSec

isSec (s′2, σ
′
2) −→ Γ (s′1, σ

′
1) (s′2, σ

′
2)

Fig. 8: The defining predicates for SD unwinding

the interaction contract, namely the “action” part of this
contract, which assumes that A(π1) = A(π2) and guarantees
A(π̂1) = A(π̂2). Often (but not always) this value of x is
the same across the board, i.e., the same for ŝi as for si.

Note that s1 and s2 are allowed to differ in the initial
secrets, i.e., in the values stored in the arrays a and b.
According to the secrecy contract, we always keep ŝ1 have
the same values in a and b as s1, and similarly for ŝ2 versus
s2. Our unwinding relations (unwindings for short) need to
ensure that, whenever an output statement gets executed, if
the outputted value or the set of read locations differs for
s1 versus s2 then it must also differ for ŝ1 versus ŝ2—this
is here the observation part of the interaction contract.

fun2 is secure essentially because the early fence
on line 4 immediately inhibits any (mis)speculation that
goes on the “then” branch of the “if” conditional. This is
reflected by our unwindings keeping all PCs synchronized
and all values of x the same, which means that the
interaction contract is maintained straightforwardly.

fun3’s proof is slightly more subtle: In the only
interesting scenario, speculation incorrectly takes the
“then” branch, and now the otraces access locations that
the vtraces cannot access, namely the x’th location of a.
But since s1 and s2 have the same value for x, the otraces
access the same locations (among each other), so they
are not observationally “more different” than the vtraces
are—and this is the invariant we keep in our unwindings,
which again validates the interaction contract.

For fun4, assuming N > 0, we must use two unwind-
ing strategies depending on whether the value of the input is
< N or not. The first case is not problematic, because there
otraces can only diverge from vtraces in an immediately
harmless way, i.e., by (mis)speculating on the “else” branch.
For the second case, of x ≥ N , (mis)speculation can go on
the “then” branch and cause observational “damage” to the
otraces, which access different locations from b depending
on the value of a[0], on which they may differ. To counter
this, we choose a different input for the vtraces, namely
0. This means that the vtraces also take the “then” branch,
keeping thier PCs synchronized with the level-1 PCs of the
otraces. At some point, speculation will be abandoned and
the otraces will go back to the correct branch, reaching the
output statement (i.e., s1 and s2 will be back at speculation
level 0 and PC the one of the output statement). This is the
moment when, in our unwinding, ŝ1 and ŝ2 will take one or
two proactive actions (depending on where the PCs were on
the “then” branch when the speculation was abandoned by
s1 and s2), using the proact option of the unwinding with
the imove1,2 option to also finish the “then” branch and
reach the output statement. After this, the ostates are again

PC-synchronized with the vstates, and the output statement
can be taken in lockstep—while, importantly, ŝ1 and ŝ2
differ observationally at least as much as s1 and s2 do.

Implicit above is that we use networks of unwindings
(as in Thm. 7) instead of single unwindings. We have
one unwinding component for each phase in the program
execution (e.g., “before entering the if branch”, or “at the
fence”) and we transit between components upon relevant
events (e.g., “the if branch is taken”, or “speculation starts”).

Since fun5 is essentially the while-iteration of fun3
(where input statements are replaced by scanf and return
statements by printf), its proof is obtained from that of fun5
by adding corresponding cycles in the unwinding network
that proves fun4, and additionally handling the speculation
on the outer loop. This shows the potential of unwinding
proofs following compositionally the syntactic structure.

Finally, the difference between fun6 and fun5 is
that, in addition to the untrusted input x, fun6 also
takes a trusted input y which is considered to be secret.
Our unwinding proof for fun5 can be adapted to fun6,
noticing that the required secrecy contract (enforced via
the unwinding’s eqSec predicate) still holds because, in
the unwinding strategy, the InputT y statement is always
executed synchronously by the otraces and vtraces.

A note on unwinding timer parameters: The “v”
timer (which bounds proactive moves) stays in the range
{∞, 2, 1, 0} since we never need to take more than 3
proactive moves in a row (and this is only when vtraces
must “catch-up” with mispredicting otraces by finishing
their branch). As for the “v1, v2” timers (which bound idle
reactive moves), the same range suffices, since the only time
this is needed is when mispredicting moves are ignored.

SD unwinding disproof. The intuitive reason why fun1
is insecure is that, for x ≥ N , speculation can access
the (a[x] ∗ 512)’th location of b whereas normal execution
cannot. With our disproof method, this argument is formal-
ized by choosing a value i ≥ N (as input for x) and two
initial arrays a that differ on a[i] but nowhere else. These
give two (singleton) sequences of secrets (the S(π1) and
S(π2) in Thm. 9), and two otraces π1 and π2 that produce
these secrets (i.e., start in memories with the respective
arrays). Then we show that any two vtraces that produce
these secrets (i.e., start in the two given memories) must be
observationally equal (i.e., output the same value) provided
they are action-equal (i.e., input the same value x). Indeed,
here a trivial secret-directed unwinding keeps the two po-
tential vtraces completely synchronized; they can only take
the “then” branch if x is smaller than N , which means that
x is different from i, which further means that what the two
vtraces print cannot depend on a[i] hence must be equal.

14

7. Isabelle Mechanization
We used the Isabelle/HOL theorem prover [25] to mech-

anize the relative security framework and the examples [7].

Theory structure and sizes. The theory structure of the
entire mechanization is shown in Fig. 9. The theories formal-
izing the abstract framework are shown in the middle-right
part of the figure, e.g., Relative_Security, Unwinding etc.
The suffix “fin” refers to the finitary (finite-trace) version
of the concepts. These theories consist of 11K LOC, with
the largest part (7.5K LOC) taken by infinitary unwinding—
which also required some substantial preparations (part of
Trivia, 2.6K LOC) dedicated to extending the coinductive
(lazy) list library with custom support for the inductive-
coinductive mixture of reasoning called for by the timers.

The theories Syntax, Step_Basic, Step_Normal and
Step_Spec, taking 1.5K LOC, formalize IMP’s syntax and
semantics straightforwardly, via datatypes and inductive
predicates. The instantiation of relative security to IMP, tak-
ing 0.6K LOC, is formalized in theory Instance_Common,
covering the interaction infrastructure (which is common
to all examples), and theories Instance_Secret_IMem
and Instance_Secret_IMem_Inp, covering the two secrecy
infrastructures: one with secrets as the initial memories (for
fun1–fun5), and one with additional secrets as trusted inputs
and outputs (for fun6). We used finitary unwinding and SD-
unwinding for verifying the programs that are known to be
terminating, and used the heavier infinitary unwinding only
for the possibly nonterminating fun5 and fun6. Verifying the
(in)security of fun1–fun6 took an average of 2K LOC per
example, which splits into 0.7K LOC for simplification-
rules boilerplate (theories named fun〈i〉) and 1.3 LOC
for the distributed unwinding proof (theories named
fun〈i〉(in)secure). These large proof sizes, clearly unfeasible
in practice, are due partly to the boilerplate needed to make
up for Isabelle not being a program logic, and partly to the
heaviness of unwinding itself. In the future, this could be
alleviated via custom tactics for automating the boilerplate.

Locale structure. Our mechanization relies heavily on Is-
abelle’s locales [16]. A locale fixes types, constants and
assumptions, allowing one to perform definitions and proofs
relative to these. A locale L can be interpreted at the top
level of an Isabelle theory by instantiating its types and
constants, and verifying its assumptions. It can also be
interpreted relatively to another (more concrete) locale L′
by establishing a sublocale relationship L′ ≤ L.

We used (sub)locales to formalize our gradual move
from abstract to concrete. We have a locale System_Mod
for system models, extended by a locale Leakage_Mod that
adds a type Leak and a predicate leakVia. Moreover, we
have the locales Statewise_Attacker_Mod and Attacker_Mod
forming an abstract-towards-concrete sublocale hierarchy
Leakage_Mod < Attacker_Mod < Statewise_Attacker_Mod.

Relative security is first defined abstractly by importing
two (disjoint) copies of Leakage_Mod (labeled “Van” and
“Opt”) and then made more concrete along the above
hierarchy, leading to the locale Rel_Sec which imports two

Filtermap

Instance_Common

Instance_Secret_IMem Instance_Secret_IMem_Inp

Prelim

Relative_Security

Relative_Security_fin

SD_Unwinding_fin

Step_Basic

Step_Normal Step_Spec

Syntax Transition_System

Trivia

Unwinding Unwinding_fin

[Coinductive]

[HOL-Library]

[HOL]

[Pure]

[Tools]

fun1

fun1_insecure

fun2

fun2_secure

fun3

fun3_secure

fun4

fun4_secure

fun5

fun5_secure

fun6

fun6_secure

Fig. 9: Theory structure of our Isabelle mechanization

copies of Statewise_Attacker_Mod. It is in Rel_Sec where
§5’s unwinding (dis)proof methods are proved sound,
following the ideas described in §5.1, §5.2, §5.5 when
motivating (the soundness of) our unwinding conditions.

The instantiation of the locale Rel_Sec, to IMP
programs was performed by a sublocale relationship
Prog_Mispred_Init < Rel_Sec, where Prog_Mispred_Init is
a locale that fixes a misprediction oracle (like in §3.1), a
program and some initial memory, inputs and predictor state
(like in §3.3). Finally, Prog_Mispred_Init is instantiated (via
locale interpretation) to the fun1–fun6 examples; this makes
available the unwinding (dis)proof methods from Rel_Sec
(via Prog_Mispred_Init), and the relative (in)security of
these examples is proved along the lines sketched in §6.

8. Further Related Work

Our framework’s innovation compared to previous work
is in regarding leaks as first-class citizens and allowing
fully interactive attackers and dynamic secrets (see §4).
Proof-theoretically, the framework generalizes the unwind-
ing method [11], which was widely deployed in the security
literature [20, 21, 24, 26, 27]. Our work is the first to develop
an unwinding method not for proving the (absolute) security
of a system, but for comparing the security of two systems
(necessarily a four-trace property), and to propose unwind-
ing for disproofs as well. This unwinding-based foundation

15

could underpin automatic and compositional analysis/verifi-
cation methods, such as type systems [2, 29, 31, 32].

Due to the need to consider alternative execution traces,
proving information-flow security properties has similarities
with proving program equivalence, where techniques involv-
ing symbolic execution and bisimulation have been pro-
posed [1, 9, 15]. Relative security seems related to Morgan’s
refinement order for noninterference [22, 23]; working out
the formal connection between the two notions could lead
to more insights into compositional proofs for our notion.

Acknowledgments

We thank the reviewers for their excellent suggestions
for improvement, and for catching several technical ty-
pos. We gratefully acknowledge support from the EPSRC
grants EP/X015114/1 and EP/X015149/1, titled "Safe and
secure COncurrent programming for adVancEd aRchiTec-
tures (COVERT)”.

References

[1] G. Barthe, J. M. Crespo, and C. Kunz, “Relational ver-
ification using product programs,” in FM, ser. LNCS,
vol. 6664, 2011, pp. 200–214.

[2] G. Boudol and I. Castellani, “Noninterference for con-
current programs and thread systems,” Theor. Comp.
Sci., vol. 281, no. 1-2, pp. 109–130, 2002.

[3] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von
Berg, P. Ortner, F. Piessens, D. Evtyushkin, and
D. Gruss, “A systematic evaluation of transient exe-
cution attacks and defenses,” in USENIX Sec., 2019,
pp. 249–266.

[4] S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe,
and D. Stefan, “Sok: Practical foundations for software
spectre defenses,” in SP. IEEE, 2022, pp. 666–680.

[5] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Sub-
ramanyan, “A formal approach to secure speculation,”
in CSF. IEEE, 2019, pp. 288–303.

[6] M. R. Clarkson and F. B. Schneider, “Hyperproper-
ties,” J.Com.Sec., vol. 18, no. 6, pp. 1157–1210, 2010.

[7] B. Dongol, M. Griffin, A. Popescu, and J. Wright,
“Isabelle mechanization of relative security,” https:
//www.andreipopescu.uk/RelSec.zip.

[8] B. Dongol, M. Griffin, A. Popescu, and J. Wright,
“Relative security: Formally modeling and (dis)proving
resilience against semantic optimization vulnerabili-
ties,” Extended technical report. TODO: URL.

[9] B. Godlin and O. Strichman, “Regression verification:
proving the equivalence of similar programs,” Softw.
Test. Verif. Reliab., vol. 23, no. 3, pp. 241–258, 2013.

[10] J. A. Goguen and J. Meseguer, “Security policies and
security models,” in SP, 1982, pp. 11–20.

[11] J. A. Goguen and J. Meseguer, “Unwinding and infer-
ence control,” in SP, 1984, pp. 75–87.

[12] R. Guanciale, M. Balliu, and M. Dam, “Inspectre:
Breaking and fixing microarchitectural vulnerabilities
by formal analysis,” in CCS, 2020, pp. 1853–1869.

[13] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke,
and A. Sánchez, “Spectector: Principled detection of
speculative information flows,” in SP. IEEE, 2020,
pp. 1–19.

[14] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila,
“Hardware-software contracts for secure speculation,”
in SP. IEEE, 2021, pp. 1868–1883.

[15] C. Hur, G. Neis, D. Dreyer, and V. Vafeiadis, “The
power of parameterization in coinductive proof,” in
POPL. ACM, 2013, pp. 193–206.

[16] F. Kammüller, M. Wenzel, and L. C. Paulson,
“Locales—a sectioning concept for Isabelle,” in
TPHOLs, 1999, pp. 149–166.

[17] P. Kocher, “Spectre mitigations in Microsoft’s
C/C++ compiler,” 2018, https://www.paulkocher.com/
doc/MicrosoftCompilerSpectreMitigation.html.

[18] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre at-
tacks: Exploiting speculative execution,” in SP. IEEE,
2019, pp. 1–19.

[19] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading ker-
nel memory from user space,” in USENIX Sec., 2018.

[20] H. Mantel, “A uniform framework for the formal spec-
ification and verification of information flow security,”
Ph.D. dissertation, University of Saarbrücken, 2003.

[21] J. McLean, “A general theory of composition for trace
sets closed under selective interleaving functions,” in
SP, 1994, pp. 79–93.

[22] C. Morgan, “The shadow knows: Refinement and se-
curity in sequential programs,” Sci. Comput. Program.,
vol. 74, no. 8, pp. 629–653, 2009.

[23] C. Morgan, “Compositional noninterference from first
principles,” Form. Asp. Comput., vol. 24, no. 1, pp.
3–26, 2012.

[24] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie,
and G. Klein, “Noninterference for operating system
kernels,” in CPP, 2012, pp. 126–142.

[25] T. Nipkow, L. C. Paulson, and M. Wenzel, Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic.
Springer, 2002.

[26] A. Popescu, P. Lammich, and T. Bauereiss, “Cocon:
A confidentiality-verified conference management sys-
tem,” Arch. Formal Proofs, 2021.

[27] J. Rushby, “Noninterference, transitivity, and channel-
control security policies,” SRI, Tech. Rep., Dec 1992,
http://www.csl.sri.com/papers/csl-92-2/.

[28] A. Sabelfeld and A. C. Myers, “Language-based
information-flow security,” IEEE Journal on Sel. Areas
in Comm., vol. 21, no. 1, pp. 5–19, 2003.

[29] A. Sabelfeld and D. Sands, “Probabilistic noninterfer-
ence for multi-threaded programs,” in IEEE Computer
Security Foundations Workshop, 2000, pp. 200–214.

[30] D. Sangiorgi, “On the bisimulation proof method,”
Math.Struc.Com.Sci., vol. 8, no. 5, pp. 447–479, 1998.

16

https://www.andreipopescu.uk/RelSec.zip
https://www.andreipopescu.uk/RelSec.zip
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
http://www.csl.sri.com/papers/csl-92-2/

[31] B. A. Shivakumar, G. Barthe, B. Grégoire, V. Laporte,
T. Oliveira, S. Priya, P. Schwabe, and L. Tabary-
Maujean, “Typing high-speed cryptography against
spectre v1,” in SP. IEEE, 2023, pp. 1094–1111.

[32] D. Volpano and G. Smith, “Probabilistic noninterfer-
ence in a concurrent language,” Journal of Computer

Security, vol. 7, no. 2,3, pp. 231–253, 1999.
[33] S. Zdancewic and A. C. Myers, “Observational deter-

minism for concurrent program security,” in IEEE CSF
Workshop, 2003, pp. 29–43.

17

	1 Introduction
	2 Defining Relative Security
	2.1 Motivating examples
	2.2 System models
	2.3 Very abstract relative security: leakage models
	2.4 Less abstract relative security: attacker models
	2.5 State-wise attacker models

	3 Language-Based Instantiation
	3.1 The IMP Language with Speculative Semantics
	3.2 Representing the running examples in IMP
	3.3 Instantiating relative security to IMP

	4 Connections with notions from the literature
	5 (Dis)Proof Methods for Relative Security
	5.1 Design aspects
	5.2 Definition of unwinding
	5.3 Soundness of the unwinding proof method
	5.4 Compositional, distributed unwinding
	5.5 Disproof Method for Relative Security

	6 Unwinding (Dis)Proofs for our Examples
	7 Isabelle Mechanization
	8 Further Related Work

