
From Types to Sets in Isabelle/HOL
Extented Abstract

Ondřej Kunčar1 and Andrei Popescu1,2

1 Fakultät für Informatik, Technische Universität München, Germany
2 Institute of Mathematics Simion Stoilow of the Romanian Academy, Bucharest, Romania

Abstract. HOL types are naturally interpreted as nonempty sets—this intuition
is reflected in the type definition rule for the HOL-based systems (including Is-
abelle/HOL), where a new type can be defined whenever a nonempty set is ex-
hibited. However, in HOL this definition mechanism cannot be applied inside
proof contexts. We analyze some undesired consequences of this limitation and
propose a more expressive type-definition rule that addresses it. The new expres-
sive power opens the opportunity for a package that relativizes type-based state-
ments to more flexible set-based variants—to streamline this process, we further
implement a rule that transforms the implicit type-class constraints into explicit
assumptions. Moreover, our tool is an interesting use case of Lifting and Transfer.

1 Motivation

Recall that the Isabelle/HOL constant lists : α set→ α list set takes a set A and returns
the set of lists whose elements are in A. Let P : α list→ bool be a fixed constant (whose
definition is not important here). Consider the following HOL statements, where we
indicate explicitly the top quantification over types:

(1) ∀α. ∃xs : α list. P xs
(2) ∀α. ∀A : α set. A 6= /0→ (∃xs ∈ lists A. P xs)

(2) is a relativized form of (1), quantifying not only over all types α, but also over
all their nonempty subsets A, and correspondingly relativizing the quantification over
all lists to quantification over the lists from A. From the set-theoretic semantics point
of view, the two statements are obviously equivalent. However, from a theorem proving
perspective, they are quite different. While it is much easier to reason about “type-
based” statements such as (1), HOL users often need more flexible “set-based” state-
ments such as (2).

Ideally, the users would develop their theories in a type-based fashion, and then
export the main theorems as set-based statements. Unfortunately, the HOL systems cur-
rently do not allow for this—for example, assuming that (1) is a theorem, one cannot
prove (2)! Indeed, in a proof attempt of (2), one would fix a nonempty A and, to invoke
(1), one would need to define a new type corresponding to A, an action not currently
allowed inside a proof context.

This problem bites even stronger when it comes to package writing: for example,
the new (co)datatype package maintains a notion of bounded natural functor, which

in the unary case is a type constructor α F together with a functorial map function
Fmap : (α→ β)→ α F→ β F. For technical reasons, some key facts proved by the
package (e.g., those involving algebras and coalgebras for F) require the more flexible
set-based variant—this is done via an internalization of F to sets, Fin : α set→ α F set.3
The development would be dramatically simplified if one could focus on the type-based
counterparts for the intermediate lemmas, and only export the set-based version of the
main results at the end.

2 Proposal of a Logic Extension

To address the above, we propose extending the HOL logic with a new rule for type
definition having the following properties:

– It enables type definitions inside proofs while avoiding the introduction of depen-
dent types by a simple syntactic check

– It is natural and sound w.r.t. the HOL standard model

Recall that the current Isabelle/HOL type definition mechanism4 employs the con-
stant typedef : (α→ β)→ (β→ α)→ α set→ bool, with typedefα,β Abs Rep A stating
that Abs and Rep are forth and back bijections between the A subset of α and β. When
the user issues a command “typedef τ = S ” where S : σ set is a given subset of a
given type σ, the system introduces a new type τ and two constants Absτ : σ→ τ and
Repτ : τ→ σ and adds the following axiom: S 6= /0→ typedefσ,τ Abs Rep S . The user
is required to discharge the goal S 6= /0, after which the theorem typedefσ,τ Absτ Repτ S
is inferred.

Taking a purely semantic perspective and for a minute ignoring the rank-1 polymor-
phism restriction of HOL, the principle behind type definitions simply states that for all
types α and nonempty subsets A of them, there exists a type β isomorphic to A:

∀α. ∀A : α set. A 6= /0→ (∃β Abs Rep. typedefα,β Abs Rep A) (∗)

The “typedef” mechanism can be regarded as the result of applying a sequence of stan-
dard rules for connectives and quantifiers in a more expressive logic, with (∗) as an
eigenformula:

(1) ∀ elimination of α and A with given type σ and term S : σ (both provided by the
user), and implication elimination:

Γ ` S 6= /0 Γ, ∃β Abs Rep. typedefσ,β Abs Rep S ` ϕ
∀E , ∀E ,→E

Γ ` ϕ

(2) ∃ “left” rule5 for β, Abs and Rep, introducing some new/fresh τ, Absτ and Repτ:

3 Fin is to F what lists is to list.
4 We restrict the discussion to non-polymorphic types.
5 In Gentzen system jargon.

Γ ` S 6= /0
Γ, typedefσ,τ Absτ Repτ S ` ϕ

∃le f t, ∃le f t, ∃le f t
Γ, ∃β Abs Rep. typedefσ,β Abs Rep S ` ϕ

∀E , ∀E ,→E
Γ ` ϕ

The user further discharges Γ ` S 6= /0, and therefore the overall effect of this chain
is the sound addition of typedefσ,τ Absτ Repτ S as an extra assumption when trying to
prove an arbitrary fact ϕ—this shows that adding typedefσ,τ Absτ Repτ S is conserva-
tive, and therefore justifies this new “definition”.

What we propose is to use a variant of the above (with fewer instantiations) as an
actual rule:

– In step (1) we do not ask the user to provide concrete σ and S , but work with type
and term variables α and A : α set.

– In step (2), we only apply the left ∃ rule to the type β

We obtain:

Γ ` A 6= /0

Γ, ∃Abs Rep. typedefα,β Abs Rep A ` ϕ
[β fresh] ∃le f t

Γ, ∃β Abs Rep. typedefα,β Abs Rep A ` ϕ
∀E , ∀E ,→E

Γ ` ϕ

In a notation closer to Isabelle, the overall rule, written (LT) as in “Local Typedef”,
looks as follows:

Γ ` A 6= /0 Γ ` (∃Abs Rep. typedefα,β Abs Rep A) =⇒ ϕ
[β fresh for ϕ, Γ] (LT)

Γ ` ϕ

The above discussion shows why (LT) is morally correct—in fact, just like the existing
typedef rule, (LT) is sound for the standard set-theoretic semantics of HOL.

3 Applications and Further Extensions

The rule (LT) allows us to handle our motivating examples from Section 1. We as-
sume (1) is a theorem, and wish to prove (2). We fix α and A : α set and assume
A 6= /0. Applying (LT), we obtain a type β (represented by a fresh type variable) such
that ∃Abs Rep. typedefα,β Abs Rep A, from which we obtain Abs and Rep such that
typedefα,β Abs Rep A. From this, (1) with α instantiated to β, and the definition of lists,
we obtain ∃xs ∈ lists (UNIV : β set). P xs. Furthermore, using that Abs and Rep are
isomorphisms between UNIV : β and A, we obtain ∃xs ∈ lists A. P xs, as desired.

Of course, the above relativization process would only be really useful if automated.
This is a perfect application for Isabelle’s Lifting and Transfer packages [2], which can
both automatically synthesize the relativized statement (e.g., (2) from above) and prove
it from the original statement (e.g., (1) from above) along the emerging isomorphisms.

There is an Isabelle-specific complication though in the “isomorphic” journey be-
tween types and sets: the implicit assumptions on types given by the type classes. For
example, let us modify (1) to speak about types of class “finite”:

(1’) ∀α : finite. ∃xs : α list. P xs

In order to relativize (1’), we first need a version of it which internalizes the type class
assumptions:

(1”) ∀α. finite(α)→ (∃xs : α list. P xs)

Again, while morally equivalent to (1’), the statement (1”) cannot be proved from (1’)
in Isabelle/HOL. To cope with this, we propose a new rule, named (TCI) as in “type
classes internalization”.

Let us introduce some notation to formulate the rule. We assume that the system
maintains the following dependency relation. Whenever a new item (constant or type)
p is defined (or declared) in terms of another item p′, one stores the dependency of p
from p′. We write p p′ to mean that that p depends on p′ (directly or indirectly, via
transitivity and/or substitution).

Given two types σ and τ, we write σ ≤ τ to mean that σ is an instance of τ. We
extend ≤ to relate types with sets of types, i.e., σ ≤ T iff there exists τ ∈ T such that
σ ≤ τ. Let C be the set of all constants and, for each c ∈ C, let ∆c be the finite set of
types σ for which cσ already has an overloaded definition.

Given p being a constant or a type and ϕ a formula, p is said to appear in ϕ, written
p ∈∈ ϕ if p is a constant instance occurring in ϕ or a subexpression (subtype) of a type
occurring in ϕ. Now we can formulate our rule:

ϕ
[

p 6 cs for any p ∈∈ ϕ
β 6≤ ∆c for any c ∈ cs

]
(TCI)

∀c. Axrel
s (β, c)⇒ ϕ[β/β :: s, c/cs]

The assumption of the rule corresponds to (1’)—it is a formula ϕ that depends on a type
variable β of sort s and contains some of the constants cs associated to s.6 The conclu-
sion corresponds to (1”)—it quantifies universally over arbitrary variables c having the
same types as cs but free of the sort constraint s, assumes for c the type class axioms
Axrel

s (β, c), and concludes the modification of ϕ with the s-sort constraints removed and
with c substituted for cs.

We don’t introduce (TCI) as a new inference primitive in our system because of its
complexity. Instead, we introduce two simpler rules that together give us the rule (TCI).
This approach also coincides with the way Haskell-like type classes are implemented
in Isabelle. The implementation uses (a) a more primitive version of type classes—
axiomatic type classes—that a priori do not know about any operations and (b) a quite
flexible mechanism for overloading.

The sort internalization rule Our proposed rule follows Wenzel’s approach [3] to rep-
resenting type classes by internalizing them as predicates on types,7 i.e., constants of
type ∀α. bool. (Since this particular type is not allowed in Isabelle, Wenzel uses instead
α itself→ bool, where α itself is a singleton type.) The rule simply allows one to infer
the “internalized” formula Axs(β)⇒ ϕ[β/β :: s] (which takes the type-class axioms as
an assumption) from the original formula ϕ (which has its types constrained with sorts):

6 A sort is an intersection of type classes.
7 Our Axs(τ) from below coincides with the 〈τ : s〉 predicate from [3].

ϕ
(SI)

Axs(β)⇒ ϕ[β/β :: s]
Note that the converse of this rule already follows from the existing rules in Isabelle.

Conjecture 1. The sort internalization rule (SI) is conservative.
Proof idea. Follows from the semantics of sorts: the sort constrain τ :: s has the same
truth value as Axs(τ). (See also [3], where Axs(τ) is explicitly used to encode τ :: s.)

ut

The unoverloading rule This rule allows us to replace, in any formula ϕ, a constant
instance cσ by a fresh term variable xσ provided that (a) cσ has not been overloaded
yet and (b) ϕ contains no item p that depends on cσ.

ϕ
[p 6 cσ for any p ∈∈ ϕ; σ 6≤ ∆c] (UO)

∀xσ. ϕ[xσ/cσ]
Conjecture 2. The unoverloading rule (UO) preserves consistency.
Proof idea. Since cσ is unconstrained (hence uninterpreted), it behaves like a term vari-
able xσ. Moreover, the truth of a formula ϕ containing cσ should not be affected by any
existing definition of cτ with τ < σ. ut

A realization of (TCI) We achieve the effect of (TCI) by the following sequence of
steps:

1. We apply the (SI) rule.
2. We replace Axs(α) by its equivalent relativized version Axrel

s (α, cs).
3. If s defines n operations cs, we apply the rule (OU) n times, once for each c in cs.

With the new rules (LT) and (TCI) in place, the Lifting and Transfer machinery can
in principle be used to relativize arbitrary formulas.

4 Conclusion, Ongoing and Future Work

We are currently experimenting with a prototype implementation of the new rules and
their integration with the Lifting and Transfer packages—the implementation of the
rules Local Typedef and Sort Internalization is already available from [1]. We are also
working at a rigorous proof of the rules’ soundness, within a set-theoretic semantics of
Isabelle/HOL that also explains overloading. We believe that these rules, due to their
potential usefulness in serving the users, are good candidates for HOL citizenship.

Acknowledgment. We would like to thank Tobias Nipkow and Makarius Wenzel for
many encouraging and controversial discussions about this topic.

References
1. http://www21.in.tum.de/~kuncar/documents/new_rules.thy
2. Huffman, B., Kunčar, O.: Lifting and Transfer: A Modular Design for Quotients in Is-

abelle/HOL. In: Certified Programs and Proofs. Springer (2013)
3. Wenzel, M.: Type Classes and Overloading in Higher-Order Logic. In: Gunter, E.L., Felty,

A.P. (eds.) TPHOLs. Lecture Notes in Computer Science, Springer (1997)

