

Weak Bisimilarity Coalgebraically

Andrei Popescu

Department of Computer Science

University of Illinois

Context and motivation

Process algebra:
• SOS presentations: one-step behavior
• Process equivalence: weak bisimilarity:

arbitrarily long sequences of silent (unobservable)
actions

Consequence: Modular reasoning difficult
Put in other words: No modular denotational

semantics transparent from the syntactic setting

My contribution

• Introduce a coalgebraic semantic domain
for weak bisimilarity

• Define a modular fully-abstract denotational
semantics for CCS under weak bisimilarity

• Construction quite general – would work
for many process algebras

Weak bisimilarity recalled

Labeled Transition System (LTS) over Act ∪ {τ}:

∀ π, ρ ∈ Proc – processes
• a, b ∈ Act – “loud” (observable) actions
• τ – silent (unobservable) action
• α ∈ Act ∪ {τ}
• For each α, −α→ ⊆ Proc × Proc
• Alternative view: coalgebra for the functor
X |→ ℘((Act ∪ {τ}) × X)

Weak bisimilarity recalled

π and ρ weakly bisimilar iff:

∀ π −τ→ π’ implies ρ −τ*→ ρ’ for some ρ’ such
that π’ and ρ’ are weakly bisimilar

∀ π −τ*→ π’ −a→ π’’ −τ*→ π’’’ implies
ρ −τ*→ ρ’ −a→ ρ’’ −τ*→ ρ’’’ for some

ρ’, ρ’’, ρ’’’ s.t. π’’’ and ρ’’’ are weakly bisimilar
• And vice versa
• And so on, indefinitely

Coalgebraic semantic domain for
weak bisimilarity

Why coalgebraic?
1. CALCO
2. Alternative: domain theory: problem with

infinite branching: breaks compactness – an
infinite process/tree no longer determined by its
finite subtrees

3. On the “good” side of losing compactness: no
need for finiteness/guardedness conditions on
syntax

Coalgebraic semantic domain for
weak bisimilarity

• For strong bisimilarity: both syntax and semantics form
coalgebras

• For weak bisimilarity: structural axioms added:
τ absorbed
• Aczel – Final universes of processes, 1993: τ-system: LTS

on Act ∪ {τ} s.t., for all processes π, π’, π’’ and action α:
� π −τ→ π
� π −τ→ π’ −α→ π’’ implies π −α→ π’’
� π −α→ π’ −τ→ π’’ implies π −α→ π’’

• The final τ-system – semantic domain for processes under
weak bisimilarity

Coalgebraic semantic domain II

Rephrasing: partial “concatenation” operation, on
((Act ∪ {τ}) × {τ}) ∪ ({τ} × (Act ∪ {τ})),
defined by α τ = τ α = α

τ-system: pair (A, → : (Act ∪ {τ}) ⇒ Rel(A)),

with →:
– compatible w.r.t. _ _ versus relation composition
– super-commutes with the identity (i.e., maps τ to a

superset of Diag(A))

Coalgebraic semantic domain III

Problem with this domain:
– describes process in single-step depth only
– hence unnatural for accommodating operations (such as parallel

composition) that need to explore processes in more depth

Thus: to know where π | ρ transits to silently (via τ-
transitions), need to know where π and ρ transit via
arbitrarily long sequences of actions. E,g.:

π −a→ π’ −b־ ’’ a־ ’ b→ ρ’’
--

 π | ρ −τ*→ π’’ | ρ’’

Coalgebraic semantic domain IV

Natural improvement of the domain: consider arbitrary
sequences (while still absorbing τ), i.e.:

• τ is now the empty sequence, an element of Act*
• τ-*-system: pair (A,→), with → : Act* ⇒ Rel(A)

1. morphism of semigroups between (Act*, _ _) and (Rel(A), ;)

2. again, super-commutes with the identity

The categories of τ-systems and τ-*-systems (regarded as
coalgebras) are isomorphic: → in a τ-*-system uniquely
determined by its restriction to Act ∪ {τ} and condition 1

Coalgebraic semantic domain V

Spelling out the above: Act*-coalgebra s.t.,
for all π, π’, π’’ and u,v ∈ Act*:

� π −τ→ π

� π −u→ π’ −v→ π’’ implies π −uv→ π’’

� π −uv→ π’’ implies

∃π’. π −u→ π’ ∧ π’ −v→ π’’

Application: denotational semantics
for CCS

Syntax:
– a, b ∈ Act – loud actions
– Act ⇒ Act involutive bijection : ־
– τ – silent action
– α ∈ Act ∪ {τ}
– X ∈ Var, countable set of process variables
– P ∈ Proc, set of (process) terms:
P ::= ... | X | P | Q | µ X. P

Denotational semantics for CCS II

Transition system:

P −α→ P’ Q −α→ Q’
-------------------- --------------------
P | Q −α→ P’ | Q P | Q −α→ P | Q’

P −a→ P’ Q −a־ Q’ P[(µ X. P) / X] −α→ Q’
-------------------------------- -------------------------------

P | Q −τ→ P’ | Q’ µ X. P −α→ Q’

Denotational semantics for CCS III

First step: modify transition system to describe behavior
along sequences of actions:

P[(µ X. P) / X] −u→ Q’ P −u→ P’ Q −v→ Q’
----------------------------- ----------------------------[w ∈ u | v]
 µ X. P −u→ Q’ P | Q −w→ P’ | Q’

with | : Act* × Act* ⇒ ℘(Act*) defined recursively:
– τ | τ = {τ}
– (a u) | (b v) = a (u | (b v)) ∪ b ((a u) | v)
 ∪ u | v, if b = a־

Denotational semantics for CCS IV

Theorem: Weak bisimilarity of the original system
coincides with strong bisimilarity of the sequence-
based system.

Transformation seems to work not only for CCS, but
for a general class of process algebras, as in

van Glabbeek – On cool congruence formats for
weak bisimulations, 2005 (building on previous
work by B. Bloom)

Denotational semantics for CCS V

Second step: denotational semantics for the sequence-based
system into our sequence-based domain (the final τ-*-
system)

• Almost falls under general theory:
– Rutten – Processes as terms: Non-well-founded models for

bisimulation, 1992
– Turi, Plotkin – Towards a mathematical operational semantics,

1997

• E.g., SOS rule for parallel composition transliterates into
Unfold(π | ρ) = {(w, π’ | ρ’). ∃ u, v. (u, π’) ∈ Unfold(π) ∧ (v, ρ’)

∈ Unfold(ρ) ∧ w ∈ u | v}

Denotational semantics for CCS VI

Recursion rule P[(µ X. P) / X] −u→ Q’

 µ X. P −u→ Q’
Further modified into an equivalent “well-founded” rule:

P[P / X] ⁿ −u→ Q’
--[n ∈ N]

µ X. P −u→ Q’[(µ X. P) / X]
Corresponding second-order semantic operator on the final
τ-*-system: Rec : (Proc ⇒ Proc) ⇒ Proc,
Unfold(Rec F) = {(u, G(Rec F)).
 ∃n≥1.∀π. (u, G π) ∈ Unfold(F ⁿ π)}

Denotational semantics for CCS VII

• Thus: we have semantic operators corresponding to the
syntactic constructs

• P |→ [[P]] denotes the standard interpretation of terms in
the semantic domain via environments

Theorem (Full abstraction): The following are equivalent:
– [[P]] = [[Q]]
– P and Q are strongly bisimilar in the sequence-based

system
– P and Q are weakly bisimilar in the original system

Denotational semantics for CCS
(parenthesis)

• Alternative to using numbers when defining semantic
recursion: Peter Aczel’s approach from “Final universes of
processes”:
– no semantic operator for recursion
– instead: give recursion a special treatment, integrating it globally

into the semantics

Theorem: There exists a unique “least non-deterministic”
map

[[_]] from terms to processes such that:
– [[_]] satisfies the transliterated semantic equations for all

operators except µ
– [[µ X. P]] = [[P[(µ X. P) / X]]]

Future work

• Employ the sequence-based semantics for weak
bisimilarity in modular theorem proving:
– knowledge of behavior along arbitrary traces necessary

for knowledge about silent-step behavior,
– thus having the former knowledge explicitly

represented seems helpful

• Prove, for systems in a general SOS format, also
incorporating syntax with bindings / substitution
– soundness of the one-step to multi-step transformation
– the full abstraction theorem

Future work and more related work

Cover issues such as name-passing and scope extrusion (i.e., systems in
the π-calculus family)

• Much existing work on compositional semantics for π under strong
bisimilarity:
– Domain-theoretic: Stark 1996; Fiore, Moggi, Sangiorgi 1996; Staton –

Ph.D. thesis, 2007
– Coalgebraic: Honsell, Lenisa, Montanari, Pistore, 1998, Lenisa – Ph.D.

thesis, 1998.
• For weak bisimilarity: Popescu – Tech. report, 2009: employ the same

technique as for CCS + parameterize parallel composition with all the
dynamic topological information:
– semantics is compositional and fully abstract
– but technically too complicated, hence not very useful for modular

reasoning

Future work and more related work

More insightful approach for π-like calculi:
• Shall be based on levels of information, as in, e.g., Stark 1996 and

Fiore et al. 1996: a process at level n knows n channel names

• Challenge: define the appropriate categorical structure for an index-
free treatment
– Objects: natural numbers
– “Vertical” morphisms: m −σ→ n – as before, σ map between m

and n treated as finite sets (intuition: renaming)
– “Horizontal” morphisms: n −w→ n + p iff the sequence of actions

w increases the number of known channels from n to n + p
– Domain: Functor from this category into the category Rel, of sets

and relations
– Hopefully: Syntax – initial domain; semantics – final domain

Thank you!

	Weak Bisimilarity Coalgebraically
	Context and motivation
	My contribution
	Weak bisimilarity recalled
	Weak bisimilarity recalled
	Coalgebraic semantic domain for weak bisimilarity
	Slide 7
	Coalgebraic semantic domain II
	Coalgebraic semantic domain III
	Coalgebraic semantic domain IV
	Coalgebraic semantic domain V
	Application: denotational semantics for CCS
	Denotational semantics for CCS II
	Denotational semantics for CCS III
	Denotational semantics for CCS IV
	Denotational semantics for CCS V
	Denotational semantics for CCS VI
	Denotational semantics for CCS VII
	Denotational semantics for CCS (parenthesis)
	Future work
	Future work and more related work
	Slide 22
	Thank you!

