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Context and motivation

Process algebra: 
• SOS presentations: one-step behavior
• Process equivalence: weak bisimilarity: 

arbitrarily long sequences of silent (unobservable) 
actions

Consequence: Modular reasoning difficult
Put in other words: No modular denotational 

semantics transparent from the syntactic setting 



  

My contribution 

• Introduce a coalgebraic semantic domain 
for weak bisimilarity

• Define a modular fully-abstract denotational 
semantics for CCS under weak bisimilarity

• Construction  quite general – would work 
for many process algebras 



  

Weak bisimilarity recalled 

Labeled Transition System (LTS) over Act ∪ {τ}: 

∀ π, ρ ∈ Proc – processes
• a, b ∈ Act – “loud” (observable) actions 
• τ – silent (unobservable) action  
• α ∈ Act ∪ {τ}
• For each α,    −α→  ⊆  Proc × Proc
• Alternative view: coalgebra for the functor 
X  |→  ℘((Act ∪ {τ}) × X) 



  

Weak bisimilarity recalled

π and ρ weakly bisimilar iff: 

∀ π −τ→ π’  implies ρ −τ*→ ρ’ for some ρ’ such 
that π’ and ρ’ are weakly bisimilar

∀ π −τ*→ π’ −a→ π’’ −τ*→ π’’’ implies 
ρ −τ*→ ρ’ −a→ ρ’’ −τ*→ ρ’’’ for some 

ρ’, ρ’’, ρ’’’ s.t. π’’’ and ρ’’’ are weakly bisimilar
• And vice versa
• And so on, indefinitely



  

Coalgebraic semantic domain for 
weak bisimilarity

Why coalgebraic?
1. CALCO 
2. Alternative: domain theory: problem with 

infinite branching: breaks compactness – an 
infinite process/tree no longer determined by its 
finite subtrees

3. On the “good” side of losing compactness: no 
need for finiteness/guardedness conditions on 
syntax



  

Coalgebraic semantic domain for 
weak bisimilarity

• For strong bisimilarity: both syntax and semantics form 
coalgebras

• For weak bisimilarity: structural axioms added:  
τ absorbed 
• Aczel – Final universes of processes, 1993: τ-system: LTS 

on Act ∪ {τ} s.t., for all processes π, π’, π’’ and action α: 
� π −τ→ π 
� π −τ→ π’ −α→ π’’ implies π −α→ π’’ 
� π −α→ π’ −τ→ π’’ implies π −α→ π’’

• The final τ-system – semantic domain for processes under 
weak bisimilarity



  

Coalgebraic semantic domain II

Rephrasing: partial “concatenation” operation, on 
((Act ∪ {τ}) × {τ}) ∪ ({τ} × (Act ∪ {τ})), 
defined by     α τ = τ α = α 

τ-system: pair (A, → : (Act ∪ {τ}) ⇒ Rel(A)), 

with →:  
– compatible w.r.t. _ _  versus relation composition  
– super-commutes with the identity (i.e., maps τ to a 

superset of Diag(A) )



  

Coalgebraic semantic domain III

Problem with this domain: 
– describes process in single-step depth only 
– hence unnatural for accommodating operations (such as parallel 

composition) that need to explore processes in more depth 

Thus: to know where  π | ρ transits to silently (via τ-
transitions), need to know where π and ρ transit via 
arbitrarily long sequences of actions. E,g.:  

π −a→ π’ −b־ ’’             a־ ’ b→ ρ’’
----------------------------------------------------------

     π | ρ  −τ*→  π’’ | ρ’’ 



  

Coalgebraic semantic domain IV

Natural improvement of the domain: consider arbitrary 
sequences (while still absorbing τ), i.e.: 

• τ is now the empty sequence, an element of Act*
• τ-*-system: pair (A,→), with → : Act* ⇒ Rel(A) 

1. morphism of semigroups between (Act*, _ _) and (Rel(A), ;) 

2. again, super-commutes with the identity 

The categories of τ-systems and τ-*-systems (regarded as 
coalgebras) are isomorphic: → in a τ-*-system uniquely 
determined by its restriction to Act ∪ {τ} and condition 1



  

Coalgebraic semantic domain V

Spelling out the above: Act*-coalgebra s.t., 
for all π, π’, π’’ and u,v ∈ Act*:

� π −τ→ π 

� π −u→ π’ −v→ π’’ implies π −uv→ π’’ 

� π −uv→ π’’ implies 

∃π’.  π −u→ π’  ∧  π’ −v→ π’’ 



  

Application: denotational semantics 
for CCS

Syntax:
– a, b ∈ Act – loud actions 
– Act ⇒ Act involutive bijection : ־
– τ – silent action  
– α ∈ Act ∪ {τ}
– X ∈ Var, countable set of process variables
– P ∈ Proc, set of (process) terms: 
P  ::=   ...  |  X  |  P | Q  |  µ X. P 



  

Denotational semantics for CCS II

Transition system:

P −α→ P’                       Q −α→ Q’ 
--------------------            --------------------
P | Q −α→ P’ | Q           P | Q −α→ P | Q’

P −a→ P’    Q −a־ Q’        P[(µ X. P) / X] −α→ Q’
--------------------------------      -------------------------------

P | Q −τ→ P’ | Q’                µ X. P −α→ Q’



  

Denotational semantics for CCS III

First step: modify transition system to describe behavior 
along sequences of actions: 

P[(µ X. P) / X] −u→ Q’      P −u→ P’    Q −v→ Q’ 
-----------------------------      ----------------------------[w ∈ u | v] 
      µ X. P −u→ Q’                  P | Q −w→ P’ | Q’ 

with   | : Act* × Act* ⇒ ℘(Act*) defined recursively:    
– τ | τ  =  {τ}
– (a u) | (b v)  =  a (u | (b v)) ∪ b ((a u) | v)  
                             ∪  u | v,    if b = a־



  

Denotational semantics for CCS IV

Theorem: Weak bisimilarity of the original system 
coincides with strong bisimilarity of the sequence-
based system. 

Transformation seems to work not only for CCS, but 
for a general class of process algebras, as in 

van Glabbeek – On cool congruence formats for 
weak bisimulations, 2005 (building on previous 
work by B. Bloom)



  

Denotational semantics for CCS V

Second step: denotational semantics for the sequence-based 
system into our sequence-based domain (the final τ-*-
system)  

• Almost falls under general theory: 
– Rutten – Processes as terms: Non-well-founded models for 

bisimulation, 1992
– Turi, Plotkin – Towards a mathematical operational semantics, 

1997

• E.g., SOS rule for parallel composition transliterates into 
Unfold(π | ρ) = {(w, π’ | ρ’).  ∃ u, v.  (u, π’) ∈ Unfold(π)  ∧  (v, ρ’) 

∈ Unfold(ρ)   ∧  w ∈ u | v}



  

Denotational semantics for CCS VI

Recursion rule        P[(µ X. P) / X] −u→ Q’      
-----------------------------      

      µ X. P −u→ Q’    
Further modified into an equivalent “well-founded” rule:

P[P / X]   ⁿ −u→  Q’      
--------------------------------------------------[n ∈ N]     

µ X. P  −u→  Q’[(µ X. P) / X]
Corresponding second-order semantic operator on the final 
τ-*-system:    Rec : (Proc ⇒ Proc) ⇒ Proc, 
Unfold(Rec F) = {(u, G(Rec F)). 
                             ∃n≥1.∀π. (u, G π) ∈ Unfold(F  ⁿ π)}



  

Denotational semantics for CCS VII

• Thus: we have semantic operators corresponding to the 
syntactic constructs

• P |→ [[P]] denotes the standard interpretation of terms in 
the semantic domain via environments  

Theorem (Full abstraction): The following are equivalent: 
– [[P]]  =  [[Q]]
– P and Q are strongly bisimilar in the sequence-based 

system
– P and Q are weakly bisimilar in the original system



  

Denotational semantics for CCS 
(parenthesis) 

• Alternative to using numbers when defining semantic 
recursion: Peter Aczel’s approach from “Final universes of 
processes”: 
– no semantic operator for recursion
– instead: give recursion a special treatment, integrating it globally 

into the semantics

Theorem: There exists a unique “least non-deterministic” 
map 

[[ _ ]] from terms to processes such that:
– [[ _ ]] satisfies the transliterated semantic equations for all 

operators except µ 
– [[ µ X. P ]]  =  [[ P[(µ X. P) / X]  ]] 



  

Future work

• Employ the sequence-based semantics for weak 
bisimilarity in modular theorem proving: 
– knowledge of behavior along arbitrary traces necessary 

for knowledge about silent-step behavior, 
– thus having the former knowledge explicitly 

represented  seems helpful

• Prove, for systems in a general SOS format, also 
incorporating syntax with bindings / substitution
– soundness of the one-step to multi-step transformation
– the full abstraction theorem



  

Future work and more related work

Cover issues such as name-passing and scope extrusion (i.e., systems in 
the π-calculus family) 

• Much existing work on compositional semantics for π under strong 
bisimilarity:
– Domain-theoretic: Stark 1996; Fiore, Moggi, Sangiorgi 1996; Staton – 

Ph.D. thesis, 2007
– Coalgebraic: Honsell, Lenisa, Montanari, Pistore, 1998, Lenisa – Ph.D. 

thesis, 1998.  
• For weak bisimilarity: Popescu – Tech. report, 2009: employ the same 

technique as for CCS + parameterize parallel composition  with all the 
dynamic topological information: 
– semantics is compositional and fully abstract
– but technically too complicated, hence not very useful for modular 

reasoning  



  

Future work and more related work

More insightful approach for π-like calculi: 
• Shall be based on levels of information, as in, e.g., Stark 1996 and 

Fiore et al. 1996: a process at level n knows n channel names

• Challenge: define the appropriate categorical structure for an index-
free treatment
– Objects: natural numbers 
– “Vertical” morphisms: m −σ→ n – as before, σ map between m 

and n treated as finite sets (intuition: renaming)  
– “Horizontal” morphisms: n −w→ n + p iff the sequence of actions 

w increases the number of known channels from n to n + p
– Domain: Functor from this category into the category Rel, of sets 

and relations 
– Hopefully: Syntax – initial domain; semantics – final domain 



  

Thank you!
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