HOAS on top of FOAS

Andrei Popescu

Joint work with Elsa Gunter and Chris Osborn

University of Illinois at Urbana-Champaign
Motto (and excuse)

“When you try to convey an idea, do not aim at being complete. Rather, select from that idea scattered things you like most.”

~ Jorge Luis Borges
Overview

• Motivation: why (still) study syntax with bindings?

• HOAS recalled

• HOAS on top of FOAS

• Case study: a formal proof of strong normalization for System F in Isabelle/HOL
Overview

• Motivation: why (still) study syntax with bindings?

• HOAS recalled

• HOAS on top of FOAS

Omitted from the presentation:

• Case study: a formal proof of strong normalization for System F in Isabelle/HOL
Overview

• Motivation: why (still) study syntax with bindings?

• HOAS recalled

• HOAS on top of FOAS
Terms and alpha-equivalence

• Raw terms of λ-calculus:
 \[X ::= \text{Var } x \mid \text{App } X Y \mid \text{Lam } x X \]

• Let \equiv be the alpha- (naming-) equivalence relation on raw terms
Interpretation in semantic domains

• APP : D → D → D

• LAM : (D → D) → D

• env = (var → D)

• [[_]] _ : Term → Env → D, defined recursively on the first argument, by:
 – [[x]] ρ = ρ x
 – [[App X Y]] ρ = APP ([[X]] ρ) ([[Y]] ρ)
 – [[Lam x X]] ρ = LAM (λ d. X [[ρ (x := d)]])
Exercise

• It is “intuitively obvious” that:
 – Interpretation respects alpha:
 \[\forall X X'. X \equiv X' \implies [[X]] = [[X']] \]
 – The following “substitution lemma” holds:
 \[[[X [Y / y]]] \rho = [[X]] \rho (y := ([[Y]] \rho))) \]
Exercise

• It is “intuitively obvious” that:
 – Interpretation respects alpha:
 \[\forall X X'. X \equiv X' \text{ implies } [[X]] = [[X']] \]
 – The following “substitution lemma” holds:
 \[[[X [Y / y]]] \rho = [[X]] (\rho (y := ([[Y]] \rho))) \]

• Nobody wants to prove these 😊
Exercise

- It is “intuitively obvious” that:
 - Interpretation respects alpha:
 \[\forall X X'. X \equiv X' \text{ implies } [[X]] = [[X']] \]
 - The following “substitution lemma” holds:
 \[[[X [Y / y]]] \rho = [[X]] (\rho (y := ([[Y]] \rho))) \]

- Nobody wants to prove these

- But some have to 😞 (those who formalize)
Exercise

Please send me solution to uuomul@yahoo.com

• May use any (correct) definition of alpha-equivalence

• Or may assume alpha-equivalence (and also swapping, substitution, free variables, etc.) already defined

• May assume any basic property of these (e.g., anything in the equational theory of alpha)

• May consult any textbook or research paper

Overview

• Motivation: why (still) study syntax with bindings?

• HOAS recalled

• HOAS on top of FOAS
Higher-Order Abstract Syntax

- Represent object systems (e.g., logics, operational semantics of PL, etc.) in a fixed logical framework
- Object-level binding and inference mechanisms are captured by corresponding ones in the logical framework
Higher-Order Abstract Syntax

• Represent object system (e.g., logic, operational semantics of PL, etc.) in a fixed logical framework

• Object-level binding and inference mechanisms are captured by corresponding ones in the logical framework

• Why?
Higher-Order Abstract Syntax

• Represent object system (e.g., logic, operational semantics of PL, etc.) in a fixed logical framework
• Object-level binding and inference mechanisms are captured by corresponding ones in the logical framework
• Why?
• Formalize/implement tedious “details” once and for all, when defining the logical framework
HOAS and meta-reasoning

• Originally: for reasoning in the object systems Edinburgh LF, Generic Isabelle

• Later: meta-theory of the object systems too (i.e., reason about the object system) TWELF, Abella, Hybrid, Delphin, ATS, Beluga

• Subtle problems and challenges arise when combining HOAS with meta-reasoning
Running example: Syntax

First-order syntax (up to α):

- Curry-style: no type annotations
- Data variables x, y, z, data terms X, Y, Z, data abstractions A, B

$$X ::= \text{Var} \ x \mid \text{App} \ X \ Y \mid \text{Lam} \ A \quad A ::= x \ . \ X$$

- Type variables tx, ty, tz, type terms tX, tY, tZ, type abstractions tA, tB

$$tX ::= \text{Tvar} \ tx \mid \text{Arr} \ tX \ tY$$
Running example: \(\beta \)-reduction for untyped \(\lambda \)-calculus

\[
\text{App (Lam (x . Y)) X } \rightarrow \ Y [X / x] \quad \text{(Beta)}
\]

\[
Y \rightarrow Y' \quad \text{(Xi)}
\]

\[
\frac{}{\text{Lam (x . Y)} \rightarrow \text{Lam (x . Y')}} \quad \text{(Xi)}
\]

\[
X \rightarrow X' \quad \text{(App-Left)}
\]

\[
\text{App X Y } \rightarrow \text{App X' Y}
\]
Running example: Curry-style simple typing

\[
\begin{align*}
\Gamma, x : tX & \vdash x : tX \quad \text{(Asm)} \\
\Gamma, x : tX & \vdash Y : tY \quad \text{(Weak)} \\
\Gamma, x : tX & \vdash Y : tY \quad \text{[x fresh } \Gamma] \\
\Gamma & \vdash \text{Lam} \left(x . Y\right) : \text{Arr } tX tY \quad \text{(Arr-I)} \\
\Gamma & \vdash Z : \text{Arr } tX tY \quad \Gamma & \vdash X : tX \quad \text{(Arr-E)} \\
\Gamma & \vdash \text{App} Z X : tY
\end{align*}
\]
HOAS representation

• In pure intuitionistic HOL (similarly, in LF)
• Declare
 – An HOL type: tm
 – Constants
 app : tm → tm → tm
 lam : (tm → tm) → tm
 beta : tm → tm → bool
• State axioms, e.g.:
 beta (app (lam (λ x : tm. Y x)) X) (Y X)
For an “observer” from inside the logical framework:

- Object bindings are taken ad literam!
- E.g., the term Lam x . (Var x) is not “syntax”, but is actually the function \(\lambda X. X \).
For an “observer” from inside the logical framework:

- **Object bindings are taken ad literam!**
- E.g., the term $\text{Lam } x \cdot (\text{Var } x)$ is not “syntax”, but is actually the function $\lambda X. X$
- Well, almost: it is really $\text{lam} (\lambda X. X)$

(recall $\text{lam} : (\text{tm} \to \text{tm}) \to \text{tm}$)
Overview

• Motivation: why (still) study syntax with bindings?

• HOAS recalled

• HOAS on top of FOAS
HOAS on top of FOAS

- Stronger (meta-)logical-framework: strong enough to develop general mathematics (e.g., the logic of Isabelle/HOL)
- Terms are still “syntax” (defined in the standard way)
- HOAS comes not as a “representation”, but as a higher-order view of the same syntax
- Thus, e.g., Lam x x is both ``itself” (as a finite piece of syntax) and lam (\(\lambda X. X\))
HOAS view of syntax: Abstractions as functions

• FOAS definition/construction: \(A = (x \ . \ X) \)
• HOAS treatment: \(A _ Y = \text{“}A \text{ applied } Y\text{”}, \)
defined to be \(X [Y / x]\)
• May regard abstractions as forming a subspace of \(\text{tm} \rightarrow \text{tm} \)
• This view accommodates:
 – HOAS structural recursion principles (omitted from this presentation)
 – a certain way to represent inference relations
HOAS representation of β-reduction

\[
\text{App (Lam (x . Y)) X} \leadsto Y [X / x] \quad \text{(Beta-FOAS)}
\]

\[
\text{App (Lam A) X} \leadsto A _ X \quad \text{(Beta-HOAS)}
\]

\[
Y \leadsto Y' \quad \text{(Xi-FOAS)}
\]

\[
\forall X. A _ X \leadsto A' _ X \quad \text{(Xi-HOAS)}
\]

\[
\text{Lam} (x . Y) \leadsto \text{Lam} (x . Y')
\]

\[
\text{Lam} A \leadsto \text{Lam} A'
\]
HOAS representation of typing

\(\forall \Gamma - (\text{typing}) \) context, i.e., list of pairs
(data variable, type term):
\[x_1 : tX_1, \ldots, x_n : tX_n \]

\(\forall \Delta - \text{HOAS context}, \text{i.e., list of pairs} \)
(data term, type term):
\[X_1 : tX_1, \ldots, X_n : tX_n \]

- Note: we close under substitution
HOAS representation of typing

\[\Gamma, x : tX \vdash Y : tZ \]

\[\Delta, X : tX \vdash A _ X : tZ \quad (\text{Arr-I-FOAS}) \]

\[\forall X. \Delta \vdash \text{Lam} (x \cdot Y) : \text{Arr} tX tZ \quad (\text{Arr-I-HOAS}) \]
How HOAS is this?

- No more freshness side conditions ✓
- Object-level bindings pushed to the meta level ✓
- Meta-reasoning capabilities kept intact ✓
- Also push inference contexts to the meta level?
Parenthesis: pure HOAS representation

• In intuitionistic HOL:
 • Declare \(\text{tpOf} : \text{tm} \to \text{tp} \to \text{bool} \)
 • State axioms, such as:
 \[
 \forall X. \text{tpOf} X tX \Rightarrow \text{tpOf} (A X) tY
 \]

\[
\text{tpOf} (\text{Lam} A) (\text{Arr} tX tY)
\]
to capture

\[
\Gamma, x : tX \mid- Y : tZ
\]

\[
\Gamma \mid- \text{Lam} (x . Y) : \text{Arr} tX tZ \quad [x \text{ fresh } \Gamma] \quad (\text{Arr-I})
\]
“Context-free” induction principle for typing

If \(H : \text{tm} \rightarrow \text{tp} \rightarrow \text{bool} \) s.t.:

\[
\forall X. \; H \; X \; tX \; \Rightarrow \; H \; (A \; X) \; tZ
\]

\[---(\text{ArrI-H})\]

\(H \; (\text{Lam} \; A) \; (\text{Arr} \; tX \; tZ) \)

etc., then \(\forall X \; tX. \; [] \; ||- \; X : tX \; \Rightarrow \; H \; X \; tX \)

(Higher degree of HOAS – not only bindings and substitution, but also inference contexts are pushed to the meta-level)
Conclusions

• Worth still studying syntax with bindings

• HOAS:
 – Exterior view: capture object-level bindings by bindings in the logical framework
 – Inner view: syntactic bindings become true semantic bindings

• HOAS technique available atop of FOAS
HOAS on top of FOAS

- FOAS operators still available if needed
- Purely definitional development of HOAS
- General-purpose logical framework (standard mathematics)
- Adequacy statable and provable in the logical framework itself
Credits and very related work

• HOAS on top of FOAS ideas previously employed in the **Hybrid** logical framework
 (work by A. Momigliano, A. Felty, S. Ambler, R. L. Crole, and others)

• A quasi-HOAS proof of strong normalization for System F previously given in the **ATS** logical framework
 (work by C. Chen, H. Xi, K. Donnelly and others)
Thank you