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datatype atree = Node « (a tree list)

> Primitive type definitions

New type «

Existing type 8

Representing set
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The traditional approach
Melham 1989, Gunter 1994

» Fragment of ML (non-co)datatypes
» Fixed universe for recursive types
» Simulate nested recursion by mutual recursion
datatype alist = Nil | Cons a (« list)
datatype atree = Node a (a tree_list)
and atree list = Nil | Cons (a tree) (a tree_list)
» Implemented in Isabelle by Berghofer & Wenzel 1999
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datatype « list Nil | Cons « (« list)

Node « (a tree list)

codatatype « tree
» Pn=print n; fori =1tondoP (n+ 1i);
» evaluation tree for P 2
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datatype alist = Nil | Cons a («a list)
codatatype atree = Node a (a tree fset)

» Compositionality = no unfolding
» Need abstract interface
» What interface?



Type constructors are not just operators on types!
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The interface: bounded natural functor

type constructor F
functor

Fmap
Fset } natural transformation
Fbd } infinite cardinal

BNF = type constructor + polymorphic constrants + assumptions
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Type constructors are functors

Fmap: (¢« —»a') = (B—pF)— (a,B)F— (/. B)F

Fmap f g fap
fa1
gb
(.B)F (/.8 F
Fmapidid = id

Fmap fi hoFmapgi go = Fmap(fiogr) (hoge)
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Type constructors are containers

Fsety : (a,B) F — a set
Fsety : (@, B) F — B set

Fset; ‘
«a set

*
(a,B)F

B set

FsetyoFmap fy b = image f; o Fset;
FsetcoFmap fy b = image f oFsets
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Vx € Fsety 2. fr x = g1 x } = Fmapfifhz=Fmapg; g z
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Further BNF assumptions

Vx € Fsety 2. fi x = g1 x } = Fmapfifhz=Fmapg; g» 2

Vx €Fsetr z. b x=go X

Xo < Fbd
|Fsetiz] < Fbd
(@1, a2) F| < (Jan| + |ea] )™

(F, Fmap) preserves weak pullbacks
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What are bounded natural functors good for?

BNFs ...

>

>

>

cover basic type constructors (e.g. +, X, unit, and @ — g for fixed )
cover non-free type constructors (e.g. fset, cset)

are closed under composition

admit initial algebras (datatypes)

admit final coalgebras (codatatypes)

are closed under initial algebras and final coalgebras

make initial algebras and final coalgebras expressible in HOL
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From user specifications to (co)datatypes

Given
codatatype a llist = LNil | LCons « (« llist)
1. Abstractto 8 =unit+a x
2. Prove that (@, 8) F = unit+a x B is a BNF
3. Define F-coalgebras
4. Construct final coalgebra

(a llist, unf : a llist — unit+ @ x « llist)
5. Define coiterator
coiter : (8 — unit+a x a llist) — B — « llist

6. Prove characteristic theorems (e.g. coinduction)
7. Prove that llist is a BNF (enables nested corecursion)
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Induction

B =unit+a xp
» Given ¢ : @ IF — bool > Given ¢ : a list = bool
» Abstract induction principle » Case distinction on z
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Induction

B=unit+axp
» Given ¢ : @ IF — bool > Given ¢ : a list = bool
» Abstract induction principle » In constructor notation
 Nil
Vz. (Vx € Fsetr z. o x) = ¢ (fldz)  Vxxs. ¢xs = ¢ (Consx xs)

Vx. ¢ x VXs. ¢ xs



Induction & Coinduction
B=(a,p)F

» Given ¢ : « IF — bool » Given y : a JF — « JF — bool
» Abstract induction principle

Vz. (Vx € Fsetp z. ¢ x) = ¢ (fid 2)
Vx. ¢ x




Induction & Coinduction

B=(ap)F
» Given ¢ : « IF — bool » Given y : a JF — « JF — bool
» Abstract induction principle » Abstract coinduction principle

Vz. (Vx €Fseta z. ¢ x) = ¢ (fldz) Vxy. ¢ x y = Fpred Eqy (unf x) (unf y)

Vx. ¢ x VXy.yxy=x=y
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Example

codatatype a tree = Node (lab: @) (sub: a tree fset)

corec tmap : (@ — B) — « tree — Btree where

lab (tmap ft) = f(labt)
sub (tmap ft) = image (tmap f) (sub t)

Lemma tmap (fog) t =tmap f (tmap g t)
by (intro tree_coinduct[where y=A2At; t.3t. ty=tmap (fog) t A t,=tmap f (tmap g t)]) force+
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Type constructors act on sets

(A1, Ag) F= {Z ’ Fseti zC Ay AFsety z C Ag}

Ay aset Ao : B set

\Action of F /

(A1, A2) F: (a, B) F set

(Vie{1,2}. VxcFsetjz. ix=g;x) = Fmapf fbhbz=Fmapg gsz
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Type constructors are bounded
Fbd: infinite cardinal

(e, B) F Ay a set Ao : B set

()

Fset1/ \:SGtg \AC“O" of F /

O

a set B set
(A1, A2) F: (a,ﬁ) F set

Fbd
(1A1] +[Az| +2)"™

|Fset; z|
(A1, A2) F
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Algebras, Coalgebras & Morphisms

B=(a.p)F
(a, A)F A
§ F
A (a, A)F
Fmapid f
(0, A)F — P B F A f - B
SAJ {SB SAJ {SB
Fmapid f
A f . B (@, A)F — 2P0 B)F
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Initial Algebras & Final Coalgebras
B=(ap)F

weakly initial:  exists morphism to any other algebra

initial: exists unique morphism to any other algebra

weakly final:  exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra

> Product of all algebras is weakly initial > Sum of all coalgebras is weakly final

» Suffices to consider algebras over types > Suffices to consider coalgebras over
of certain cardinality types of certain cardinality

> Minimal subalgebra of weakly initial > Quotient of weakly final coalgebra to the
algebra is initial greatest bisimulation is final

» Construct minimal subalgebra from » Use concrete weakly final coalgebra
below by transfinite recursion (elements are tree-like structures)

= Have a bound for its cardinality = Have a bound for its cardinality

= (@ IF,fld: (o, @ IF) F — aIF) = (e JF,unf: @ JF — (@, a JF) F)
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lteration & Coiteration
B=(a,B)F

» Givens: (a,8)F—=p

» Obtain unigue morphism iter s
from (a IF, fld) to (Ug, s)

(a/, N IF) E Fmap id (iter s) (a/,,B) £

fld J S

o IF iter s ﬁ

» Givens:f— (a,B8)F

» Obtain unique morphism coiter s
from (Ug, s) to (a JF, unf)

coiter s
B

- a |IF

s{ unf

(a', ﬁ) £ Fmap id (coiter s) (a/’ o |F) E



Preservation of BNF Properties
B=(a.B)F

» IFmap f =iter (fld o Fmap fid)
» |Fset = iter collect, where

collect z=Fset; zU|_J Fset, z



Preservation of BNF Properties
B=(a.B)F

» IFmap f =iter (fld o Fmap fid)
» |Fset = iter collect, where

collect z=Fset; zU|_J Fset, z

Theorem
(IF, IFmap, IFset, 2F9) is a BNF



Preservation of BNF Properties
B=(a.B)F

» IFmap f =iter (fld o Fmap fid) » JFmap f = coiter (Fmap fid o unf)
» |Fset = iter collect, where » JFset x = |J collect; x, where
ieN
collect z=Fset; zU|_J Fset, z collecty x=0

collecti1 x=Fset; (unf x) U J collect; y
y€Fset, (unf x)

Theorem
(IF, IFmap, IFset, 2F9) is a BNF



Preservation of BNF Properties
B=(a.B)F

» IFmap f =iter (fld o Fmap fid) » JFmap f = coiter (Fmap fid o unf)
» |Fset = iter collect, where » JFset x = |J collect; x, where
ieN
collect z=Fset; zU|_J Fset, z collecty x=0

collecti1 x=Fset; (unf x) U J collect; y
y€Fset, (unf x)

Theorem Theorem
(IF, IFmap, IFset, 2M9) is a BNF (JF, JFmap, JFset, Fbd™) is a BNF
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