Foundational, Compositional (Co)datatypes for Higher-Order Logic

Category Theory Applied to Theorem Proving

Dmitriy Traytel Andrei Popescu Jasmin Blanchette

Outline

Datatypes in HOL—State of the Art

Bounded Natural Functors

(Co)datatypes

(Co)nclusion

Outline

Datatypes in HOL—State of the Art

Bounded Natural Functors

(Co)datatypes

(Co)nclusion

► LCF philosophy

► LCF philosophy

Small inference kernel

- ► LCF philosophy

 Small inference kernel
- Foundational approach

- ► LCF philosophy

 Small inference kernel
- ► Foundational approach

 Reduce high-level specifications to primitive mechanisms

- LCF philosophy Small inference kernel
- Foundational approach
 Reduce high-level specifications to primitive mechanisms
- ► HOL = simply typed set theory with ML-style polymorphism

- LCF philosophy Small inference kernel
- ► Foundational approach

 Reduce high-level specifications to primitive mechanisms
- ► HOL = simply typed set theory with ML-style polymorphism Restrictive logic

- LCF philosophy Small inference kernel
- ► Foundational approach

 Reduce high-level specifications to primitive mechanisms
- HOL = simply typed set theory with ML-style polymorphism Restrictive logic Weaker than ZF

- LCF philosophy Small inference kernel
- ► Foundational approach

 Reduce high-level specifications to primitive mechanisms
- ► HOL = simply typed set theory with ML-style polymorphism

 Restrictive logic

 Weaker than ZF

Datatype specification

$$\begin{array}{lll} \text{datatype } \alpha \text{ list} &=& \text{Nil} \mid \text{Cons } \alpha \left(\alpha \text{ list} \right) \\ \text{datatype } \alpha \text{ tree} &=& \text{Node } \alpha \left(\alpha \text{ tree list} \right) \end{array}$$

Datatype specification

$$\begin{array}{lll} \text{datatype } \alpha \text{ list} & = & \text{Nil} \mid \text{Cons } \alpha \left(\alpha \text{ list} \right) \\ \text{datatype } \alpha \text{ tree} & = & \text{Node } \alpha \left(\alpha \text{ tree list} \right) \end{array}$$

Primitive type definitions

Melham 1989, Gunter 1994

► Fragment of ML (non-co)datatypes

Melham 1989, Gunter 1994

- Fragment of ML (non-co)datatypes
- Fixed universe for recursive types

Melham 1989, Gunter 1994

- Fragment of ML (non-co)datatypes
- Fixed universe for recursive types
- Simulate nested recursion by mutual recursion

```
\begin{array}{lll} \text{datatype } \alpha \text{ list} & = & \text{Nil} \mid \text{Cons } \alpha \left( \alpha \text{ list} \right) \\ \text{datatype } \alpha \text{ tree} & = & \text{Node } \alpha \left( \alpha \text{ tree list} \right) \end{array}
```

Melham 1989, Gunter 1994

- Fragment of ML (non-co)datatypes
- Fixed universe for recursive types
- Simulate nested recursion by mutual recursion

```
\begin{array}{lll} \text{datatype } \alpha \text{ list} &=& \text{Nil} \mid \text{Cons } \alpha \ (\alpha \text{ list}) \\ \text{datatype } \alpha \text{ tree} &=& \text{Node } \alpha \ (\alpha \text{ tree\_list}) \\ \text{and} && \alpha \text{ tree\_list} &=& \text{Nil} \mid \text{Cons} \ (\alpha \text{ tree}) \ (\alpha \text{ tree\_list}) \end{array}
```

Melham 1989, Gunter 1994

- Fragment of ML (non-co)datatypes
- Fixed universe for recursive types
- Simulate nested recursion by mutual recursion

```
\begin{array}{lll} \text{datatype } \alpha \text{ list} &=& \text{Nil} \mid \text{Cons } \alpha \left( \alpha \text{ list} \right) \\ \text{datatype } \alpha \text{ tree} &=& \text{Node } \alpha \left( \alpha \text{ tree\_list} \right) \\ \text{and} && \alpha \text{ tree\_list} &=& \text{Nil} \mid \text{Cons} \left( \alpha \text{ tree} \right) \left( \alpha \text{ tree\_list} \right) \end{array}
```

Implemented in Isabelle by Berghofer & Wenzel 1999

Berghofer & Wenzel 1999

- 1. noncompositionality
- 2. no codatatypes
- 3. no non-free structures

LICS 2012

- 1. noncompositionality
- 2. no codatatypes
- 3. no non-free structures

LICS 2012

1. noncompositionality

/

- 2. no codatatypes
- 3. no non-free structures

LICS 2012

1. noncompositionality

/

2. no codatatypes

3. no non-free structures

LICS 2012

1.	noncompo	ositior	nality

2. no codatatypes

3. no non-free structures

Outline

Datatypes in HOL—State of the Art

Bounded Natural Functors

(Co)datatypes

(Co)nclusion

 $\begin{array}{lll} \operatorname{datatype} \, \alpha \, \operatorname{list} & = & \operatorname{Nil} \, | \, \operatorname{Cons} \, \alpha \, \big(\alpha \, \operatorname{list} \big) \\ \operatorname{codatatype} \, \alpha \, \operatorname{tree} & = & \operatorname{Node} \, \alpha \, \big(\alpha \, \operatorname{tree} \, \operatorname{list} \big) \end{array}$

 $\begin{array}{lll} \text{datatype } \alpha \text{ list} &=& \text{Nil} \mid \text{Cons } \alpha \left(\alpha \text{ list} \right) \\ \text{codatatype } \alpha \text{ tree} &=& \text{Node } \alpha \left(\alpha \text{ tree list} \right) \end{array}$

▶ P n = print n; for i = 1 to n do P (n + i);

datatype
$$\alpha$$
 list = Nil | Cons α (α list)
codatatype α tree = Node α (α tree list)

- ▶ P n = print n; for i = 1 to n do P (n + i);
- evaluation tree for P 2

$$\begin{array}{lcl} \operatorname{datatype} \, \alpha \, \operatorname{list} & = & \operatorname{Nil} \, | \, \operatorname{Cons} \, \alpha \, \big(\alpha \, \operatorname{list} \big) \\ \operatorname{codatatype} \, \alpha \, \operatorname{tree} & = & \operatorname{Node} \, \alpha \, \big(\alpha \, \operatorname{tree} \, \operatorname{list} \big) \end{array}$$

Compositionality = no unfolding

$$\begin{array}{lll} \operatorname{datatype} \alpha \operatorname{list} & = & \operatorname{Nil} \mid \operatorname{Cons} \alpha \left(\alpha \operatorname{list} \right) \\ \operatorname{codatatype} \alpha \operatorname{tree} & = & \operatorname{Node} \alpha \left(\alpha \operatorname{tree} \operatorname{fset} \right) \end{array}$$

- Compositionality = no unfolding
- Need abstract interface

$$\begin{array}{lll} \operatorname{datatype} \alpha \operatorname{list} & = & \operatorname{Nil} \mid \operatorname{Cons} \alpha \left(\alpha \operatorname{list} \right) \\ \operatorname{codatatype} \alpha \operatorname{tree} & = & \operatorname{Node} \alpha \left(\alpha \operatorname{tree} \operatorname{fset} \right) \end{array}$$

- Compositionality = no unfolding
- Need abstract interface
- ▶ What interface?

Type constructors are not just operators on types!

type constructor F

```
\left. \begin{array}{c} \text{type constructor F} \\ \text{Fmap} \end{array} \right\} \text{functor}
```

BNF = type constructor + polymorphic constrants + assumptions

Type constructors are functors

$$\mathsf{Fmap} : (\alpha \to \alpha') \to (\beta \to \beta') \to (\alpha, \beta) \; \mathsf{F} \to (\alpha', \beta') \; \mathsf{F}$$

Type constructors are functors

$$\mathsf{Fmap} : (\alpha \to \alpha') \to (\beta \to \beta') \to (\alpha, \beta) \; \mathsf{F} \to (\alpha', \beta') \; \mathsf{F}$$

Fmap id id = id
Fmap
$$f_1 f_2 \circ$$
 Fmap $g_1 g_2$ = Fmap $(f_1 \circ g_1) (f_2 \circ g_2)$

Type constructors are containers

Type constructors are containers

Fset₁: (α, β) F $\rightarrow \alpha$ set Fset₂: (α, β) F $\rightarrow \beta$ set

$$Fset_1 \circ Fmap \ f_1 \ f_2 = image \ f_1 \circ Fset_1$$

 $Fset_2 \circ Fmap \ f_1 \ f_2 = image \ f_2 \circ Fset_2$

$$\forall x \in \mathsf{Fset}_1 \ z. \ f_1 \ x = g_1 \ x$$

$$\forall x \in \mathsf{Fset}_2 \ z. \ f_2 \ x = g_2 \ x$$

$$\Rightarrow \mathsf{Fmap} \ f_1 \ f_2 \ z = \mathsf{Fmap} \ g_1 \ g_2 \ z$$

BNFs ...

▶ cover basic type constructors (e.g. +, \times , unit, and $\alpha \rightarrow \beta$ for fixed α)

- ▶ cover basic type constructors (e.g. +, \times , unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)

- ▶ cover basic type constructors (e.g. +, \times , unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition

- ▶ cover basic type constructors (e.g. +, \times , unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition
- admit initial algebras (datatypes)

- cover basic type constructors (e.g. +, \times , unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition
- admit initial algebras (datatypes)
- admit final coalgebras (codatatypes)

- ▶ cover basic type constructors (e.g. +, \times , unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition
- admit initial algebras (datatypes)
- admit final coalgebras (codatatypes)
- are closed under initial algebras and final coalgebras

- cover basic type constructors (e.g. +, \times , unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition
- admit initial algebras (datatypes)
- admit final coalgebras (codatatypes)
- are closed under initial algebras and final coalgebras
- make initial algebras and final coalgebras expressible in HOL

Outline

Datatypes in HOL—State of the Art

Bounded Natural Functors

(Co)datatypes

(Co)nclusion

Given

datatype α list = Nil | Cons α (α list)

Given

datatype
$$\alpha$$
 list = Nil | Cons α (α list)

1. Abstract to $\beta = \text{unit} + \alpha \times \beta$

Given

datatype
$$\alpha$$
 list = Nil | Cons α (α list)

- 1. Abstract to $\beta = \text{unit} + \alpha \times \beta$
- 2. Prove that (α, β) F = unit + $\alpha \times \beta$ is a BNF

Given

datatype
$$\alpha$$
 list = Nil | Cons α (α list)

- 1. Abstract to $\beta = \text{unit} + \alpha \times \beta$
- 2. Prove that (α, β) F = unit + $\alpha \times \beta$ is a BNF
- 3. Define F-algebras

Given

datatype
$$\alpha$$
 list = Nil | Cons α (α list)

- 1. Abstract to $\beta = \text{unit} + \alpha \times \beta$
- 2. Prove that (α, β) F = unit + $\alpha \times \beta$ is a BNF
- 3. Define F-algebras
- 4. Construct initial algebra

$$(\alpha \text{ list, fld} : \text{unit} + \alpha \times \alpha \text{ list} \rightarrow \alpha \text{ list})$$

Given

datatype
$$\alpha$$
 list = Nil | Cons α (α list)

- 1. Abstract to $\beta = \text{unit} + \alpha \times \beta$
- 2. Prove that (α, β) F = unit + $\alpha \times \beta$ is a BNF
- 3. Define F-algebras
- 4. Construct initial algebra

$$(\alpha \text{ list, fld : unit} + \alpha \times \alpha \text{ list} \rightarrow \alpha \text{ list})$$

Define iterator

iter :
$$(\text{unit} + \alpha \times \alpha \text{ list} \rightarrow \beta) \rightarrow \alpha \text{ list} \rightarrow \beta$$

Given

datatype
$$\alpha$$
 list = Nil | Cons α (α list)

- 1. Abstract to $\beta = \text{unit} + \alpha \times \beta$
- 2. Prove that (α, β) F = unit + $\alpha \times \beta$ is a BNF
- 3. Define F-algebras
- 4. Construct initial algebra

$$(\alpha \text{ list, fld : unit} + \alpha \times \alpha \text{ list} \rightarrow \alpha \text{ list})$$

Define iterator

iter :
$$(\text{unit} + \alpha \times \alpha \text{ list} \rightarrow \beta) \rightarrow \alpha \text{ list} \rightarrow \beta$$

6. Prove characteristic theorems (e.g. induction)

Given

datatype
$$\alpha$$
 list = Nil | Cons α (α list)

- 1. Abstract to $\beta = \text{unit} + \alpha \times \beta$
- 2. Prove that (α, β) F = unit + $\alpha \times \beta$ is a BNF
- 3. Define F-algebras
- 4. Construct initial algebra

(
$$\alpha$$
 list, fld : unit + $\alpha \times \alpha$ list $\rightarrow \alpha$ list)

5. Define iterator

iter : (unit
$$+\alpha \times \alpha$$
 list $\to \beta$) $\to \alpha$ list $\to \beta$

- 6. Prove characteristic theorems (e.g. induction)
- 7. Prove that list is a BNF

Given

datatype
$$\alpha$$
 list = Nil | Cons α (α list)

- 1. Abstract to $\beta = \text{unit} + \alpha \times \beta$
- 2. Prove that (α, β) F = unit + $\alpha \times \beta$ is a BNF
- 3. Define F-algebras
- 4. Construct initial algebra

(
$$\alpha$$
 list, fld : unit + $\alpha \times \alpha$ list $\rightarrow \alpha$ list)

5. Define iterator

iter :
$$(\text{unit} + \alpha \times \alpha \text{ list} \rightarrow \beta) \rightarrow \alpha \text{ list} \rightarrow \beta$$

- 6. Prove characteristic theorems (e.g. induction)
- 7. Prove that list is a BNF (enables nested recursion)

Given

codatatype
$$\alpha$$
 llist = LNil | LCons α (α llist)

- 1. Abstract to $\beta = \text{unit} + \alpha \times \beta$
- 2. Prove that (α, β) F = unit + $\alpha \times \beta$ is a BNF
- 3. Define F-coalgebras
- 4. Construct final coalgebra

(
$$\alpha$$
 llist, unf : α llist \rightarrow unit $+ \alpha \times \alpha$ llist)

Define coiterator

coiter :
$$(\beta \rightarrow \text{unit} + \alpha \times \alpha \text{ llist}) \rightarrow \beta \rightarrow \alpha \text{ llist}$$

- 6. Prove characteristic theorems (e.g. coinduction)
- 7. Prove that llist is a BNF (enables nested corecursion)

$$\beta = (\alpha, \beta) F$$

▶ Given φ : α IF \rightarrow bool

$$\beta = (\alpha, \beta) F$$

- ▶ Given φ : α IF \rightarrow bool
- Abstract induction principle

$$\frac{\forall z. \ (\forall x \in \mathsf{Fset}_2 \ z. \ \varphi \ x) \Rightarrow \varphi \ (\mathsf{fld} \ z)}{\forall x. \ \varphi \ x}$$

$$\beta = \text{unit} + \alpha \times \beta$$

- ▶ Given φ : α IF \rightarrow bool
- Abstract induction principle

- ▶ Given φ : α list \rightarrow bool
- Case distinction on z

$$\frac{\forall z. \ (\forall x \in \mathsf{Fset}_2 \ z. \ \varphi \ x) \Rightarrow \varphi \ (\mathsf{fld} \ z)}{\forall x. \ \varphi \ x}$$

 $\frac{(\forall ys \in \emptyset. \ \varphi \ ys) \Rightarrow \varphi \ (\mathsf{fld} \ (\mathsf{Inl} \ ()))}{\forall x \ xs. \ (\forall ys \in \{xs\}. \ \varphi \ ys) \Rightarrow \varphi \ (\mathsf{fld} \ (\mathsf{Inr} \ (x, xs)))}{\forall xs. \ \varphi \ xs}$

$$\beta = \text{unit} + \alpha \times \beta$$

- ▶ Given φ : α IF \rightarrow bool
- Abstract induction principle

- ▶ Given φ : α list \rightarrow bool
- Concrete induction principle

$$\frac{\forall z. \ (\forall x \in \mathsf{Fset}_2 \ z. \ \varphi \ x) \Rightarrow \varphi \ (\mathsf{fld} \ z)}{\forall x. \ \varphi \ x}$$

∀x xs.

φх

 $\varphi \left(\text{fld} \left(\text{Inl} \left(\right) \right) \right)$ $\varphi xs \Rightarrow \varphi \left(\text{fld} \left(\text{Inr} \left(x, xs \right) \right) \right)$

 $\forall xs. \ \varphi \ xs$

$$\beta = \text{unit} + \alpha \times \beta$$

- ▶ Given φ : α IF \rightarrow bool
- Abstract induction principle

- ▶ Given φ : α list \rightarrow bool
- In constructor notation

$$\frac{\forall z. \ (\forall x \in \mathsf{Fset}_2 \ z. \ \varphi \ x) \Rightarrow \varphi \ (\mathsf{fld} \ z)}{\forall x. \ \varphi \ x}$$

∀x xs.

 $\varphi \text{ Nil}$ $\varphi xs \Rightarrow \varphi (\text{Cons } x xs)$

 \forall xs. φ xs

Induction & Coinduction

$$\beta = (\alpha, \beta) F$$

- ▶ Given φ : α IF \rightarrow bool
- Abstract induction principle

▶ Given ψ : α JF $\rightarrow \alpha$ JF \rightarrow bool

$$\frac{\forall z. \ (\forall x \in \mathsf{Fset}_2 \ z. \ \varphi \ x) \Rightarrow \varphi \ (\mathsf{fld} \ z)}{\forall x. \ \varphi \ x}$$

Induction & Coinduction

$$\beta = (\alpha, \beta) F$$

- ▶ Given φ : α IF \rightarrow bool
- Abstract induction principle

- ▶ Given ψ : α JF $\rightarrow \alpha$ JF \rightarrow bool
- Abstract coinduction principle

$$\frac{\forall z. \ (\forall x \in \mathsf{Fset}_2 \ z. \ \varphi \ x) \Rightarrow \varphi \ (\mathsf{fld} \ z)}{\forall x. \ \varphi \ x}$$

$$\frac{\forall z. \ (\forall x \in \mathsf{Fset}_2 \ z. \ \varphi \ x) \Rightarrow \varphi \ (\mathsf{fld} \ z)}{\forall x. \ \varphi \ x} \quad \frac{\forall x \ y. \ \psi \ x \ y \Rightarrow \mathsf{Fpred} \ \mathsf{Eq} \ \psi \ (\mathsf{unf} \ x) \ (\mathsf{unf} \ y)}{\forall x \ y. \ \psi \ x \ y \Rightarrow x = y}$$

Example

codatatype α tree = Node (lab: α) (sub: α tree fset)

Example

```
codatatype \alpha tree = Node (lab: \alpha) (sub: \alpha tree fset) \operatorname{corec\ tmap}: (\alpha \to \beta) \to \alpha \operatorname{tree} \to \beta \operatorname{tree\ where} lab (tmap f(t) = f(\operatorname{lab} t) sub (tmap f(t) = \operatorname{image} (\operatorname{tmap} f) (sub t)
```

Example

```
codatatype \alpha tree = Node (lab: \alpha) (sub: \alpha tree fset)

corec tmap: (\alpha \to \beta) \to \alpha tree \to \beta tree where lab (tmap f(t) = f(\text{lab }t) sub (tmap f(t) = \text{image (tmap }f)) (sub t)
```

lemma tmap $(f \circ g) t = \operatorname{tmap} f (\operatorname{tmap} g t)$

Example

```
corec \operatorname{tmap}: (\alpha \to \beta) \to \alpha \operatorname{tree} \to \beta \operatorname{tree} where \operatorname{lab}(\operatorname{tmap} f t) = f(\operatorname{lab} t) \operatorname{sub}(\operatorname{tmap} f t) = \operatorname{image}(\operatorname{tmap} f)(\operatorname{sub} t) \operatorname{lemma} \operatorname{tmap}(f \circ g) t = \operatorname{tmap} f(\operatorname{tmap} g t) by \operatorname{(intro tree\_coinduct[where <math>\psi = \lambda t_1 \ \xi_2 \exists t. \ t_1 = \operatorname{tmap}(f \circ g) \ t \land \xi_2 = \operatorname{tmap} f(\operatorname{tmap} g t)]) force+
```

codatatype α tree = Node (lab: α) (sub: α tree fset)

Outline

Datatypes in HOL—State of the Art

Bounded Natural Functors

(Co)datatypes

(Co)nclusion

Category Theory Applied to Theorem Proving

► Framework for defining types in HOL

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms
- Mutual and nested combinations of (co)datatypes and custom BNFs

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms
- Mutual and nested combinations of (co)datatypes and custom BNFs
- Adapt insights from category theory to HOL's restrictive type system

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms
- Mutual and nested combinations of (co)datatypes and custom BNFs
- Adapt insights from category theory to HOL's restrictive type system
- Formalized & implemented in Isabelle/HOL

Category Theory Applied to Theorem Proving

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms
- Mutual and nested combinations of (co)datatypes and custom BNFs
- Adapt insights from category theory to HOL's restrictive type system
- Formalized & implemented in Isabelle/HOL

Thank you for your attention!

Category Theory Applied to Theorem Proving

Dmitriy Traytel Andrei Popescu Jasmin Blanchette

Outline

Backup slides

Type constructors act on sets

$$(A_1, A_2) \mathsf{F} = \{ z \mid \mathsf{Fset}_1 \ z \subseteq A_1 \land \mathsf{Fset}_2 \ z \subseteq A_2 \}$$

Type constructors act on sets

$$(A_1,A_2) \mathsf{\,F} = \{ z \mid \mathsf{Fset}_1 \ z \subseteq A_1 \land \mathsf{Fset}_2 \ z \subseteq A_2 \}$$

 $\left(\forall i \in \{1,2\}. \ \forall x \in \mathsf{Fset}_i \ z. \ f_i \ x = g_i \ x\right) \ \Rightarrow \ \mathsf{Fmap} \ f_1 \ f_2 \ z = \mathsf{Fmap} \ g_1 \ g_2 \ z$

Fbd: infinite cardinal

Fbd: infinite cardinal

$$|\mathsf{Fset}_i z| \leq \mathsf{Fbd}$$

Fbd: infinite cardinal

Fbd: infinite cardinal

Algebras, Coalgebras & Morphisms

$$\beta = (\alpha, \beta) F$$

Algebras, Coalgebras & Morphisms $\beta = (\alpha, \beta)$ F

$$(\alpha, A) F$$

$$\downarrow s$$
 A

$$(\alpha, A) \vdash \xrightarrow{\mathsf{Fmap} \mathsf{id} f} (\alpha, B) \vdash \\ s_A \downarrow \qquad \qquad \downarrow s_B \\ A \xrightarrow{f} B$$

Algebras, Coalgebras & Morphisms $\beta = (\alpha, \beta)$ F

$$(\alpha, A) F$$
 $\downarrow s$
 A
 (α, A)

$$(\alpha, A) \vdash \xrightarrow{\mathsf{Fmap} \mathsf{id} f} (\alpha, B) \vdash \mathsf{s}_{B}$$

$$A \xrightarrow{f} B$$

Algebras, Coalgebras & Morphisms

$$\beta = (\alpha, \beta) F$$

$$\beta = (\alpha, \beta) F$$

weakly initial: exists morphism to any other algebra

initial: exists *unique* morphism to any other algebra weakly final: exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra

$$\beta = (\alpha, \beta) F$$

weakly initial: exists morphism to any other algebra

initial: exists *unique* morphism to any other algebra weakly final: exists morphism from any other coalgebra

final: exists *unique* morphism from any other coalgebra

Product of all algebras is weakly initial

- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial

$$\beta = (\alpha, \beta) F$$

weakly initial: exists morphism to any other algebra

initial: exists *unique* morphism to any other algebra weakly final: exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra

Product of all algebras is weakly initial

- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial
- Construct minimal subalgebra from below by transfinite recursion
- ⇒ Have a bound for its cardinality

$$\Rightarrow$$
 (α IF, fld : (α , α IF) F \rightarrow α IF)

$$\beta = (\alpha, \beta) F$$

weakly initial: exists morphism to any other algebra

initial: exists *unique* morphism to any other algebra weakly final: exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra

- Product of all algebras is weakly initial
- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial
- Construct minimal subalgebra from below by transfinite recursion
- ⇒ Have a bound for its cardinality

$$\Rightarrow$$
 (α IF, fld : (α , α IF) F $\rightarrow \alpha$ IF)

- Sum of all coalgebras is weakly final
- Suffices to consider coalgebras over types of certain cardinality
- Quotient of weakly final coalgebra to the greatest bisimulation is final

$$\beta = (\alpha, \beta) F$$

weakly initial: exists morphism to any other algebra

initial: exists *unique* morphism to any other algebra weakly final: exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra

- Product of all algebras is weakly initial
- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial
- Construct minimal subalgebra from below by transfinite recursion
- ⇒ Have a bound for its cardinality

$$\Rightarrow$$
 (α IF, fld : (α , α IF) F $\rightarrow \alpha$ IF)

- Sum of all coalgebras is weakly final
- Suffices to consider coalgebras over types of certain cardinality
- Quotient of weakly final coalgebra to the greatest bisimulation is final
- Use concrete weakly final coalgebra (elements are tree-like structures)
- ⇒ Have a bound for its cardinality
- \Rightarrow (α JF, unf : α JF \rightarrow (α , α JF) F)

Iteration & Coiteration $\beta = (\alpha, \beta)$ F

• Given
$$s:(\alpha,\beta) \vdash F \rightarrow \beta$$

Iteration & Coiteration

$$\beta = (\alpha, \beta) F$$

- Given $s:(\alpha,\beta) \to \beta$
- Obtain unique morphism iter s from (α IF, fld) to (U_β, s)

$$(\alpha, \alpha | \mathsf{F}) \mathsf{F} \xrightarrow{\mathsf{Fmap id (liter s)}} (\alpha, \beta) \mathsf{I}$$

$$\downarrow \mathsf{fld} \qquad \qquad \downarrow \mathsf{s}$$

$$\alpha | \mathsf{F} \xrightarrow{\mathsf{iter s}} \beta$$

Iteration & Coiteration

$$\beta = (\alpha, \beta) F$$

- ▶ Given $s:(\alpha,\beta) \vdash F \rightarrow \beta$
- Obtain unique morphism iter s from (α IF, fld) to (U_β, s)

$$(\alpha, \alpha | \mathsf{F}) \mathsf{F} \xrightarrow{\mathsf{Fmap id (iter s)}} (\alpha, \beta) \mathsf{F}$$

$$\downarrow \mathsf{s}$$

$$\alpha | \mathsf{F} \xrightarrow{\mathsf{iter s}} \beta$$

▶ Given $s: \beta \rightarrow (\alpha, \beta)$ F

Iteration & Coiteration

$$\beta = (\alpha, \beta) F$$

- ▶ Given $s:(\alpha,\beta) \vdash F \rightarrow \beta$
- ▶ Obtain unique morphism iter s from $(\alpha \text{ IF, fld})$ to (U_{β}, s)

- ▶ Given $s: \beta \rightarrow (\alpha, \beta)$ F
- Obtain unique morphism coiter s from (U_{β}, s) to $(\alpha JF, unf)$

$$\beta = (\alpha, \beta) F$$

- ▶ IFmap f = iter (fld \circ Fmap f id)
- ▶ IFset = iter collect, where

collect
$$z$$
=Fset₁ $z \cup \bigcup$ Fset₂ z

$$\beta = (\alpha, \beta) F$$

- ▶ IFmap f = iter (fld \circ Fmap f id)
- ▶ IFset = iter collect, where

collect
$$z = \text{Fset}_1 z \cup \bigcup \text{Fset}_2 z$$

Theorem

(IF, IFmap, IFset, 2^{Fbd}) is a BNF

$$\beta = (\alpha, \beta) F$$

- ▶ IFmap f = iter (fld \circ Fmap f id)
- ▶ IFset = iter collect, where

collect
$$z$$
=Fset₁ $z \cup \bigcup$ Fset₂ z

- ▶ JFmap f = coiter (Fmap f id \circ unf)
- ▶ JFset $x = \bigcup_{i \in \mathbb{N}} \text{collect}_i x$, where

collect₀ $x=\emptyset$ collect_{i+1} $x=\text{Fset}_1 (\text{unf } x) \cup \bigcup_{y \in \text{Fset}_2 (\text{unf } x)} \text{collect}_i y$

Theorem

(IF, IFmap, IFset, 2^{Fbd}) is a BNF

$$\beta = (\alpha, \beta) F$$

- ▶ IFmap $f = \text{iter (fld} \circ \text{Fmap } f \text{ id)}$
- ► IFset = iter collect, where

collect
$$z$$
=Fset₁ $z \cup \bigcup$ Fset₂ z

▶ JFmap f = coiter (Fmap f id \circ unf)

▶ JFset $x = \bigcup_{i \in \mathbb{N}} \text{collect}_i x$, where

 $collect_0 x = \emptyset$

 $collect_{i+1} x = Fset_1 (unf x) \cup \bigcup_{y \in Fset_2 (unf x)} collect_i y$

Theorem

(IF, IFmap, IFset, 2^{Fbd}) is a BNF

Theorem

 $(JF, JFmap, JFset, Fbd^{Fbd})$ is a BNF