Foundational, Compositional (Co)datatypes for
Higher-Order Logic
Category Theory Applied to Theorem Proving

Dmitriy Traytel ~Andrei Popescu Jasmin Blanchette

Technische Universitat Minchen

Outline

Datatypes in HOL—State of the Art

Bounded Natural Functors

(Co)datatypes

(Co)nclusion

Outline

Datatypes in HOL—State of the Art

Isabelle/HOL

» LCF philosophy

Isabelle/HOL

» LCF philosophy
Small inference kernel

Isabelle/HOL

» LCF philosophy
Small inference kernel

» Foundational approach

Isabelle/HOL

» LCF philosophy
Small inference kernel

» Foundational approach
Reduce high-level specifications to primitive mechanisms

Isabelle/HOL

» LCF philosophy
Small inference kernel

» Foundational approach
Reduce high-level specifications to primitive mechanisms

» HOL = simply typed set theory with ML-style polymorphism

Isabelle/HOL

» LCF philosophy
Small inference kernel
» Foundational approach
Reduce high-level specifications to primitive mechanisms
» HOL = simply typed set theory with ML-style polymorphism
Restrictive logic

Isabelle/HOL

» LCF philosophy
Small inference kernel
» Foundational approach
Reduce high-level specifications to primitive mechanisms
» HOL = simply typed set theory with ML-style polymorphism
Restrictive logic
Weaker than ZF

Isabelle/HOL

» LCF philosophy
Small inference kernel
» Foundational approach
Reduce high-level specifications to primitive mechanisms
» HOL = simply typed set theory with ML-style polymorphism
Restrictive logic
Weaker than ZF

» Datatype specification

datatype alist = Nil | Cons @ (« list)
datatype atree = Node « (a tree list)

» Datatype specification
datatype alist = Nil | Cons @ (« list)

datatype atree = Node « (a tree list)

> Primitive type definitions

New type «

Existing type 8

Representing set

The traditional approach
Melham 1989, Gunter 1994

» Fragment of ML (non-co)datatypes

The traditional approach
Melham 1989, Gunter 1994

» Fragment of ML (non-co)datatypes
» Fixed universe for recursive types

The traditional approach
Melham 1989, Gunter 1994

» Fragment of ML (non-co)datatypes
» Fixed universe for recursive types
» Simulate nested recursion by mutual recursion

datatype alist = Nil | Cons a (« list)
datatype atree = Node a (a tree list)

The traditional approach
Melham 1989, Gunter 1994

» Fragment of ML (non-co)datatypes
» Fixed universe for recursive types
» Simulate nested recursion by mutual recursion

datatype alist = Nil | Cons a (« list)
datatype atree = Node a (a tree_list)
and atree list = Nil | Cons (a tree) (a tree_list)

The traditional approach
Melham 1989, Gunter 1994

» Fragment of ML (non-co)datatypes
» Fixed universe for recursive types
» Simulate nested recursion by mutual recursion
datatype alist = Nil | Cons a (« list)
datatype atree = Node a (a tree_list)
and atree list = Nil | Cons (a tree) (a tree_list)
» Implemented in Isabelle by Berghofer & Wenzel 1999

Limitations
Berghofer & Wenzel 1999

1. noncompositionality
2. no codatatypes
3. no non-free structures

Limitat

LICS 2012

1. noncompositionality
2. no codatatypes
3. no non-free structures

Limitat

LICS 2012

1. nencompositionality
2. no codatatypes
3. no non-free structures

Limitat

LICS 2012

1. nencompositionality
2. ne codatatypes
3. no non-free structures

A AN

Limitat

LICS 2012

1. nencompositionality
2. ne codatatypes
3. ne non-free structures

NN\~

Outline

Bounded Natural Functors

datatype alist = Nil | Cons a («a list)
codatatype atree = Node « (a tree list)

datatype alist = Nil | Cons a («a list)
codatatype atree = Node « (a tree list)

» Pn=print n; fori =1tondoP (n+ 1i);

datatype « list Nil | Cons « (« list)

Node « (a tree list)

codatatype « tree
» Pn=print n; fori =1tondoP (n+ 1i);
» evaluation tree for P 2

2]

[3.4]

]/ ™~

[4,5,6 [5,6,7,8]

] AN

[5.6,7.8] [6.7.8,9,10] [7.8,9,10,11,12]

NN

datatype alist = Nil | Cons a («a list)
codatatype atree = Node a (« tree list)

» Compositionality = no unfolding

datatype alist = Nil | Cons a («a list)
codatatype atree = Node a (a tree fset)

» Compositionality = no unfolding
» Need abstract interface

datatype alist = Nil | Cons a («a list)
codatatype atree = Node a (a tree fset)

» Compositionality = no unfolding
» Need abstract interface
» What interface?

Type constructors are not just operators on types!

The interface: bounded natural functor

type constructor F

The interface: bounded natural functor

type constructor F
functor
Fmap

The interface: bounded natural functor

type constructor F
functor
Fmap

Fset } natural transformation

The interface: bounded natural functor

type constructor F
functor
Fmap

Fset } natural transformation
Fbd } infinite cardinal

The interface: bounded natural functor

type constructor F
functor

Fmap
Fset } natural transformation
Fbd } infinite cardinal

BNF = type constructor + polymorphic constrants + assumptions

Type constructors are functors

Fmap: (¢« —»a') = (B—pF)— (a,B)F— (/. B)F

Fmap f g fao

Type constructors are functors

Fmap: (¢« —»a') = (B—pF)— (a,B)F— (/. B)F

Fmap f g fap
fa1
gb
(.B)F (/.8 F
Fmapidid = id

Fmap fi hoFmapgi go = Fmap(fiogr) (hoge)

Type constructors are containers

Fsety : (a,B) F — a set
Fsety : (@, B) F — B set

Fset1 ‘
«a set

x
(a,B)F

B set

Type constructors are containers

Fsety : (a,B) F — a set
Fsety : (@, B) F — B set

Fset; ‘
«a set

*
(a,B)F

B set

FsetyoFmap fy b = image f; o Fset;
FsetcoFmap fy b = image f oFsets

Further BNF assumptions

Vx € Fsety z. fH x = g4 X

F fifbhz=F
VXEFsetgz.fzx:ggx} = Fmapfi iz z=Fmapgs g2

Further BNF assumptions

Vx € Fsety z. fH x = g4 X

F fifbhz=F
VXEFsetgz.fzx:ggx} = Fmapfi iz z=Fmapgs g2

Xo < Fbd

Further BNF assumptions

Vx € Fsety 2. fr x = g1 x } = Fmapfifhz=Fmapg; g z

Vx €Fsetr z. b x=go X

No

IN

Fbd

|Fset;z| < Fbd

Further BNF assumptions

Vx € Fsety 2. fr x = g1 x } = Fmapfifhz=Fmapg; g z

Vx €Fsetr z. b x=go X

Xo < Fbd
|Fsetiz] < Fbd
(@1, a2) F| < (Jan| + |ea])™

Further BNF assumptions

Vx € Fsety 2. fi x = g1 x } = Fmapfifhz=Fmapg; g» 2

Vx €Fsetr z. b x=go X

Xo < Fbd
|Fsetiz] < Fbd
(@1, a2) F| < (Jan| + |ea])™

(F, Fmap) preserves weak pullbacks

What are bounded natural functors good for?

BNFs ...

What are bounded natural functors good for?

BNFs ...
> cover basic type constructors (e.g. +, X, unit, and o — g for fixed @)

What are bounded natural functors good for?

BNFs ...
> cover basic type constructors (e.g. +, X, unit, and @ — S for fixed)
» cover non-free type constructors (e.g. fset, cset)

What are bounded natural functors good for?

BNFs ...
> cover basic type constructors (e.g. +, X, unit, and @ — S for fixed)
» cover non-free type constructors (e.g. fset, cset)

» are closed under composition

What are bounded natural functors good for?

BNFs ...
> cover basic type constructors (e.g. +, X, unit, and @ — S for fixed)
» cover non-free type constructors (e.g. fset, cset)

» are closed under composition

v

admit initial algebras (datatypes)

What are bounded natural functors good for?

BNFs ...

>

>

>

cover basic type constructors (e.g. +, X, unit, and @ — g for fixed)
cover non-free type constructors (e.g. fset, cset)

are closed under composition

admit initial algebras (datatypes)

admit final coalgebras (codatatypes)

What are bounded natural functors good for?

BNFs ...

>

>

>

cover basic type constructors (e.g. +, X, unit, and @ — g for fixed)
cover non-free type constructors (e.g. fset, cset)

are closed under composition

admit initial algebras (datatypes)

admit final coalgebras (codatatypes)

are closed under initial algebras and final coalgebras

What are bounded natural functors good for?

BNFs ...

>

>

>

cover basic type constructors (e.g. +, X, unit, and @ — g for fixed)
cover non-free type constructors (e.g. fset, cset)

are closed under composition

admit initial algebras (datatypes)

admit final coalgebras (codatatypes)

are closed under initial algebras and final coalgebras

make initial algebras and final coalgebras expressible in HOL

Outline

(Co)datatypes

From user specifications to (co)datatypes

Given

datatype alist = Nil | Cons « (« list)

From user specifications to (co)datatypes

Given

datatype alist = Nil | Cons « (« list)

1. Abstractto 8 =unit+a x

From user specifications to (co)datatypes

Given

datatype alist = Nil | Cons « (« list)

1. Abstractto 8 =unit+a x
2. Prove that (@, 8) F = unit+a x B is a BNF

From user specifications to (co)datatypes

Given

datatype alist = Nil | Cons « (« list)

1. Abstractto 8 =unit+a x
2. Prove that (@, 8) F = unit+a x B is a BNF
3. Define F-algebras

From user specifications to (co)datatypes

Given
datatype alist = Nil | Cons « (« list)
1. Abstractto 8 =unit+a x
2. Prove that (@, 8) F = unit+a x B is a BNF
3. Define F-algebras
4. Construct initial algebra

(alist, fld : unit+a x a list — « list)

From user specifications to (co)datatypes

Given
datatype alist = Nil | Cons « (« list)
1. Abstractto 8 =unit+a x
2. Prove that (@, 8) F = unit+a x B is a BNF
3. Define F-algebras
4. Construct initial algebra

(alist, fld : unit+a x a list — « list)

Define iterator

iter : (unit+a x a list — B) — a list — B

From user specifications to (co)datatypes

Given
datatype alist = Nil | Cons « (« list)
1. Abstractto 8 =unit+a x
2. Prove that (e, 8) F = unit+a x B is a BNF
3. Define F-algebras
4. Construct initial algebra

(alist, fld : unit+a x a list — « list)
Define iterator
iter : (unit+a x a list — B) — a list — B

Prove characteristic theorems (e.g. induction)

From user specifications to (co)datatypes

Given
datatype alist = Nil | Cons « (« list)
1. Abstractto 8 =unit+a x
2. Prove that (@, 8) F = unit+a x B is a BNF
3. Define F-algebras
4. Construct initial algebra

(alist, fld : unit+a x a list — « list)

Define iterator

iter : (unit+a x a list — B) — a list — B

6. Prove characteristic theorems (e.g. induction)
7. Prove that list is a BNF

From user specifications to (co)datatypes

Given
datatype alist = Nil | Cons « (« list)
1. Abstractto 8 =unit+a x
2. Prove that (@, 8) F = unit+a x B is a BNF
3. Define F-algebras
4. Construct initial algebra

(alist, fld : unit+a x a list — « list)

Define iterator

iter : (unit+a x a list — B) — a list — B

6. Prove characteristic theorems (e.g. induction)

7. Prove that list is a BNF (enables nested recursion)

From user specifications to (co)datatypes

Given
codatatype a llist = LNil | LCons « (« llist)
1. Abstractto 8 =unit+a x
2. Prove that (@, 8) F = unit+a x B is a BNF
3. Define F-coalgebras
4. Construct final coalgebra

(a llist, unf : a llist — unit+ @ x « llist)
5. Define coiterator
coiter : (8 — unit+a x a llist) — B — « llist

6. Prove characteristic theorems (e.g. coinduction)
7. Prove that llist is a BNF (enables nested corecursion)

Induction
B=(a.p)F

» Given ¢ : a IF — bool

Induction
B=(a.p)F

» Given ¢ : « IF — bool
» Abstract induction principle

Vz. (Vx € Fsetp z. ¢ x) = ¢ (fid 2)

VX. ¢ x

Induction

B =unit+a xp
» Given ¢ : @ IF — bool > Given ¢ : a list = bool
» Abstract induction principle » Case distinction on z

(Vys€0. ¢ ys) = ¢ (fid (Inl ()))
Vz. (Vx € Fsetp z. ¢ x) = ¢ (fld z) Vxxs.(Vys € {xs}. ¢ ys) = ¢ (fid (Inr (x, xs)))

Vx. ¢ x Vxs. ¢ xs

Induction

B=unit+axp
» Given ¢ : @ IF — bool > Given ¢ : a list = bool
» Abstract induction principle » Concrete induction principle
¢ (fid (inl ()))
Vz. (Vx EFseta z. ¢ x) = ¢ (fld z) Vxxs. ¢exs = ¢ (fld (Inr (x, xs)))

Vx. ¢ x Vxs. ¢ xs

Induction

B=unit+axp
» Given ¢ : @ IF — bool > Given ¢ : a list = bool
» Abstract induction principle » In constructor notation
 Nil
Vz. (Vx € Fsetr z. o x) = ¢ (fldz) Vxxs. ¢xs = ¢ (Consx xs)

Vx. ¢ x VXs. ¢ xs

Induction & Coinduction
B=(a,p)F

» Given ¢ : « IF — bool » Given y : a JF — « JF — bool
» Abstract induction principle

Vz. (Vx € Fsetp z. ¢ x) = ¢ (fid 2)
Vx. ¢ x

Induction & Coinduction

B=(ap)F
» Given ¢ : « IF — bool » Given y : a JF — « JF — bool
» Abstract induction principle » Abstract coinduction principle

Vz. (Vx €Fseta z. ¢ x) = ¢ (fldz) Vxy. ¢ x y = Fpred Eqy (unf x) (unf y)

Vx. ¢ x VXy.yxy=x=y

Example

codatatype a tree = Node (lab: @) (sub: a tree fset)

Example

codatatype a tree = Node (lab: @) (sub: a tree fset)

corec tmap : (@ — B) — « tree — Btree where

lab (tmap ft) = f(labt)
sub (tmap ft) = image (tmap f) (sub t)

Example

codatatype a tree = Node (lab: @) (sub: a tree fset)

corec tmap : (@ — B) — « tree — Btree where

lab (tmap ft) = f(labt)
sub (tmap ft) = image (tmap f) (sub t)

lemma tmap (fog) t =tmap f (tmap g t)

Example

codatatype a tree = Node (lab: @) (sub: a tree fset)

corec tmap : (@ — B) — « tree — Btree where

lab (tmap ft) = f(labt)
sub (tmap ft) = image (tmap f) (sub t)

Lemma tmap (fog) t =tmap f (tmap g t)
by (intro tree_coinduct[where y=A2At; t.3t. ty=tmap (fog) t A t,=tmap f (tmap g t)]) force+

Outline

(Co)nclusion

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

» Framework for defining types in HOL

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

» Framework for defining types in HOL
» Characteristic theorems are derived, not stated as axioms

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

» Framework for defining types in HOL
» Characteristic theorems are derived, not stated as axioms
» Mutual and nested combinations of (co)datatypes and custom BNFs

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

v

Framework for defining types in HOL
Characteristic theorems are derived, not stated as axioms

v

v

Mutual and nested combinations of (co)datatypes and custom BNFs

v

Adapt insights from category theory to HOLs restrictive type system

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

v

Framework for defining types in HOL

Characteristic theorems are derived, not stated as axioms

Mutual and nested combinations of (co)datatypes and custom BNFs
Adapt insights from category theory to HOLs restrictive type system

v

v

v

v

Formalized & implemented in Isabelle/HOL

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

v

Framework for defining types in HOL

Characteristic theorems are derived, not stated as axioms

Mutual and nested combinations of (co)datatypes and custom BNFs
Adapt insights from category theory to HOLs restrictive type system

v

v

v

v

Formalized & implemented in Isabelle/HOL

Foundational, Compositional (Co)datatypes for
Higher-Order Logic
Category Theory Applied to Theorem Proving

Dmitriy Traytel ~Andrei Popescu Jasmin Blanchette

Technische Universitat Minchen

Outline

Backup slides

Type constructors act on sets

(A1, Ag) F= {Z ’ Fseti zC Ay AFsety z C Ag}

Ay aset Ao : B set

() (9

\Acnozw /

A

(A1, A2) F: (a, B) F set

Type constructors act on sets

(A1, Ag) F= {Z ’ Fseti zC Ay AFsety z C Ag}

Ay aset Ao : B set

\Action of F /

(A1, A2) F: (a, B) F set

(Vie{1,2}. VxcFsetjz. ix=g;x) = Fmapf fbhbz=Fmapg gsz

Type constructors are bounded

Fbd: infinite cardinal

(.B)F

Fset/ \:setz

a set B set

Type constructors are bounded

Fbd: infinite cardinal

(.B)F

Fset/ \:setz

a set B set

|Fsetj z] < Fbd

Type constructors are bounded
Fbd: infinite cardinal

(e, B) F Ay a set Ao : B set

()

Fset1/ \:SGtg \Action of F /

O

a set B set

|Fset; z| < Fbd

Type constructors are bounded
Fbd: infinite cardinal

(e, B) F Ay a set Ao : B set

()

Fset1/ \:SGtg \AC“O" of F /

O

a set B set
(A1, A2) F: (a,ﬁ) F set

Fbd
(1A1] +[Az| +2)"™

|Fset; z|
(A1, A2) F

Algebras, Coalgebras & Morphisms
B=(a.p)F

(a, A)F

Algebras, Coalgebras & Morphisms
B=(a.p)F

Algebras, Coalgebras & Morphisms
B=(a.B)F

Algebras, Coalgebras & Morphisms

B=(a.p)F
(a, A)F A
§ F
A (a, A)F
Fmapid f
(0, A)F — P B F A f - B
SAJ {SB SAJ {SB
Fmapid f
A f . B (@, A)F — 2P0 B)F

Initial Algebras & Final Coalgebras
B=(ap)F

weakly initial: exists morphism to any other algebra

initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra

Initial Algebras & Final Coalgebras
B=(ap)F

weakly initial: exists morphism to any other algebra

initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra
final: exists unique morphism from any other coalgebra

> Product of all algebras is weakly initial

» Suffices to consider algebras over types
of certain cardinality

> Minimal subalgebra of weakly initial
algebra is initial

Initial Algebras & Final Coalgebras
B=(ap)F

weakly initial: exists morphism to any other algebra

initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra
final: exists unique morphism from any other coalgebra

> Product of all algebras is weakly initial

» Suffices to consider algebras over types
of certain cardinality

> Minimal subalgebra of weakly initial
algebra is initial

» Construct minimal subalgebra from
below by transfinite recursion

= Have a bound for its cardinality

= (@ IF,fld: (o, @ IF) F — aIF)

Initial Algebras & Final Coalgebras
B=(ap)F

weakly initial: exists morphism to any other algebra

initial: exists unique morphism to any other algebra

weakly final: exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra

> Product of all algebras is weakly initial > Sum of all coalgebras is weakly final

» Suffices to consider algebras over types > Suffices to consider coalgebras over
of certain cardinality types of certain cardinality

> Minimal subalgebra of weakly initial > Quotient of weakly final coalgebra to the
algebra is initial greatest bisimulation is final

» Construct minimal subalgebra from
below by transfinite recursion

= Have a bound for its cardinality

= (@ IF,fld: (o, @ IF) F — aIF)

Initial Algebras & Final Coalgebras
B=(ap)F

weakly initial: exists morphism to any other algebra

initial: exists unique morphism to any other algebra

weakly final: exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra

> Product of all algebras is weakly initial > Sum of all coalgebras is weakly final

» Suffices to consider algebras over types > Suffices to consider coalgebras over
of certain cardinality types of certain cardinality

> Minimal subalgebra of weakly initial > Quotient of weakly final coalgebra to the
algebra is initial greatest bisimulation is final

» Construct minimal subalgebra from » Use concrete weakly final coalgebra
below by transfinite recursion (elements are tree-like structures)

= Have a bound for its cardinality = Have a bound for its cardinality

= (@ IF,fld: (o, @ IF) F — aIF) = (e JF,unf: @ JF — (@, a JF) F)

lteration & Coiteration
B=(a.B)F

» Givens: (a,8)F—=p

lteration & Coiteration
B=(a,B)F

» Givens: (a,8)F—=p

» Obtain unigue morphism iter s
from (a IF, fld) to (Ug, s)

(a/, N IF) E Fmap id (iter s) (a/,,B) £

fid S

o IF iter s ﬁ

lteration & Coiteration
B=(a,B)F

» Givens: (a,8)F—=p » Givens:B8— (a,B)F
» Obtain unigue morphism iter s
from (a IF, fld) to (Ug, s)

F id (it
(a/, N IF) E map id (iter s) (a/,,B) £
fid s

iter s

alF B

lteration & Coiteration
B=(a,B)F

» Givens: (a,8)F—=p

» Obtain unigue morphism iter s
from (a IF, fld) to (Ug, s)

(a/, N IF) E Fmap id (iter s) (a/,,B) £

fld J S

o IF iter s ﬁ

» Givens:f— (a,B8)F

» Obtain unique morphism coiter s
from (Ug, s) to (a JF, unf)

coiter s
B

- a |IF

s{ unf

(a', ﬁ) £ Fmap id (coiter s) (a/’ o |F) E

Preservation of BNF Properties
B=(a.B)F

» IFmap f =iter (fld o Fmap fid)
» |Fset = iter collect, where

collect z=Fset; zU|_J Fset, z

Preservation of BNF Properties
B=(a.B)F

» IFmap f =iter (fld o Fmap fid)
» |Fset = iter collect, where

collect z=Fset; zU|_J Fset, z

Theorem
(IF, IFmap, IFset, 2F9) is a BNF

Preservation of BNF Properties
B=(a.B)F

» IFmap f =iter (fld o Fmap fid) » JFmap f = coiter (Fmap fid o unf)
» |Fset = iter collect, where » JFset x = |J collect; x, where
ieN
collect z=Fset; zU|_J Fset, z collecty x=0

collecti1 x=Fset; (unf x) U J collect; y
y€Fset, (unf x)

Theorem
(IF, IFmap, IFset, 2F9) is a BNF

Preservation of BNF Properties
B=(a.B)F

» IFmap f =iter (fld o Fmap fid) » JFmap f = coiter (Fmap fid o unf)
» |Fset = iter collect, where » JFset x = |J collect; x, where
ieN
collect z=Fset; zU|_J Fset, z collecty x=0

collecti1 x=Fset; (unf x) U J collect; y
y€Fset, (unf x)

Theorem Theorem
(IF, IFmap, IFset, 2M9) is a BNF (JF, JFmap, JFset, Fbd™) is a BNF

	Appendix

