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Inductive definition example: the sublist relation

subl ∶ List(A)→ List(A)→ Bool defined inductively by the
following rules:

⋅

subl [] as
(Nil)

subl as as ′

subl as (a#as ′)
(ConsR)

subl as as ′

subl (a#as) (a#as ′)
(Cons)

The inductive interpretation means:

1. smallest relation closed under the above rules

2. relation provable by the above rules using finite proof trees
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Coiductive definition example: the sub-lazy-list relation1

Given a set A, let LazyList(A) be the set of “lazy lists” (finite or infinite

lists) with elements in A – they have the form [a1, a2, . . . , an] or

[a1, a2, . . .]. We write a#as for the lazy list obtained by consing a to as,

and bs @ as for the concatenation of a (finite) list bs and a lazy list as.

subll ∶ LazyList(A)→ LazyList(A)→ Bool is defined coinductively
by the following rules:

⋅

subll [] as
(Nil)

subll as as ′

subll (a#as) (bs @ (a#as ′))
(Cons)

The coinductive interpretation means:

1. largest relation consistent with (i.e., backwards-closed under)
the above rules

2. relation provable by the above rules using finite or infinite
proof trees

1These rules are a modified version of what I showed at the conference. I
thank Paul Levy for pointing out that my original definition was not correctly
capturing sub-lazy-lists – which is a timely illustration of what Assia Mahboubi
mentioned in her talk: that formality/rigour does not guarantee correctness.
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Fixpoints versus proof trees

The semantic foundations for induction and coinduction are
perfectly dual – via Knaster-Tarski:

● induction: least (pre-)fixpoint

● coinduction: greatest (post-)fipoint

But they have quite different intuitions:

● induction – whatever can be proved using a finite number of
rule applications

● coinduction – whatever can be proved using a finite or
(countably) infinite number of rule applications

Will use Isabelle to prove the equivalence of the two views

Links to the Isabelle theories used in the demo:
https://www.andreipopescu.uk/MFPS_CALCO_2023/Isabelle_files.zip

https://www.andreipopescu.uk/MFPS_CALCO_2023/Isabelle_files.zip
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An (obviously incomplete ,) list of good sources of
learning about induction and coinduction

Jacobs and Rutten 1997. A tutorial on coalgebra and coinduction

Paulson 2000. A fixedpoint approach to (co)inductive and
(co)datatype definitions

Pierce 2002. Types and Programming Languages (Section 21.1.
Induction and Coinduction)

Bertot 2008. CoInduction in Coq

Blanchette, Popescu & Traytel 2015. Witnessing (Co)datatypes

Kozen & Silva 2017. Practical coinduction

Chlipala 2019. Certified Programming with Dependent Types
(Chapter 5. Infinite data and proofs)



Isabelle’s (co)induction and (co)recursion infrastructure
(Co)inductive predicates, initial datatype package

● Paulson 1994. A Fixedpoint Approach to Implementing (Co)Inductive
Definitions.

● Berghofer & Wenzel 1999. Inductive Datatypes in HOL - Lessons
Learned in Formal-Logic Engineering.

Compositional (co)datatypes

● Traytel, Popescu, Blanchette 2012. Foundational, Compositional
(Co)datatypes for Higher-Order Logic

● Blanchette, Hölzl, Lochbihler, Panny, Popescu, Traytel 2014. Truly
Modular (Co)datatypes for Isabelle/HOL

● Blanchette, Meier, Popescu, Traytel 2017. Foundational Nonuniform
(Co)datatypes for Higher-Order Logic.

Expressive corecursion

● Blanchette, Popescu, Traytel 2015. Foundational extensible corecursion:
a proof assistant perspective.

● Blanchette, Bouzy, Lochbihler, Popescu, Traytel 2017. Friends with
Benefits – Implementing Corecursion in Foundational Proof Assistants.

(Co)datatypes with bindings

● Blanchette, Gheri, Popescu, Traytel 2019. Bindings as bounded natural
functors.


