On the exquisite pleasure of doing coinduction and corecursion in Isabelle

Andrei Popescu

University of Sheffield

Special Session on Proof Assistants CALCO & MFPS, 21 June 2023 On the exquisite pleasure of doing coinduction and corecursion in Isabelle Sheffield Bloomington, Indiana

Andrei Popescu

University of Sheffield

Special Session on Proof Assistants CALCO & MFPS, 21 June 2023 On the exquisite pleasure of doing coinduction and corecursion in Isabelle Sheffield Bloomington, Indiana On the terrible pain of doing coinduction and corecursion in Isabelle

Andrei Popescu

University of Sheffield

Special Session on Proof Assistants CALCO & MFPS, 21 June 2023

Inductive definition example: the sublist relation

 $subl : List(A) \rightarrow List(A) \rightarrow Bool defined <u>inductively</u> by the following rules:$

$$\frac{\cdot}{subl [] as} \text{ (Nil)} \qquad \frac{subl as as'}{subl as (a\#as')} \text{ (ConsR)}$$
$$\frac{subl as as'}{subl (a\#as) (a\#as')} \text{ (Cons)}$$

Inductive definition example: the sublist relation

 $subl : List(A) \rightarrow List(A) \rightarrow Bool defined <u>inductively</u> by the following rules:$

$$\frac{\cdot}{subl [] as} (Nil) \qquad \frac{subl as as'}{subl as (a\#as')} (ConsR)$$
$$\frac{subl as as'}{subl (a\#as) (a\#as')} (Cons)$$

The inductive interpretation means:

1. smallest relation closed under the above rules

Inductive definition example: the sublist relation

 $subl : List(A) \rightarrow List(A) \rightarrow Bool defined <u>inductively</u> by the following rules:$

$$\frac{\cdot}{subl [] as} (Nil) \qquad \frac{subl as as'}{subl as (a\#as')} (ConsR)$$
$$\frac{subl as as'}{subl (a\#as) (a\#as')} (Cons)$$

The inductive interpretation means:

- 1. smallest relation closed under the above rules
- 2. relation provable by the above rules using finite proof trees

Coiductive definition example: the sub-lazy-list relation¹

Given a set A, let LazyList(A) be the set of "lazy lists" (finite or infinite lists) with elements in A – they have the form $[a_1, a_2, \ldots, a_n]$ or $[a_1, a_2, \ldots]$. We write a#as for the lazy list obtained by consing a to as, and bs @ as for the concatenation of a (finite) list bs and a lazy list as. $subll : LazyList(A) \rightarrow LazyList(A) \rightarrow Bool$ is defined <u>coinductively</u> by the following rules:

$$\frac{\cdot}{subll [] as} (Nil) \qquad \frac{subll as as'}{subll (a\#as) (bs @ (a\#as'))} (Cons)$$

¹These rules are a modified version of what I showed at the conference. I thank Paul Levy for pointing out that my original definition was not correctly capturing sub-lazy-lists – which is a timely illustration of what Assia Mahboubi mentioned in her talk: that formality/rigour does not guarantee correctness.

Coiductive definition example: the sub-lazy-list relation¹

Given a set A, let LazyList(A) be the set of "lazy lists" (finite or infinite lists) with elements in A – they have the form $[a_1, a_2, \ldots, a_n]$ or $[a_1, a_2, \ldots]$. We write a # as for the lazy list obtained by consing a to as, and bs @ as for the concatenation of a (finite) list bs and a lazy list as. $subll : LazyList(A) \rightarrow LazyList(A) \rightarrow Bool$ is defined <u>coinductively</u> by the following rules:

$$\frac{\cdot}{subll [] as} (Nil) \qquad \frac{subll as as'}{subll (a\#as) (bs @ (a\#as'))} (Cons)$$

The coinductive interpretation means:

- 1. <u>largest</u> relation <u>consistent with</u> (i.e., backwards-closed under) the above rules
- 2. relation provable by the above rules using <u>finite or infinite</u> proof trees

¹These rules are a modified version of what I showed at the conference. I thank Paul Levy for pointing out that my original definition was not correctly capturing sub-lazy-lists – which is a timely illustration of what Assia Mahboubi mentioned in her talk: that formality/rigour does not guarantee correctness.

Fixpoints versus proof trees

The semantic foundations for induction and coinduction are perfectly dual – via Knaster-Tarski:

- induction: least (pre-)fixpoint
- coinduction: greatest (post-)fipoint

But they have quite different intuitions:

- induction whatever can be proved using a <u>finite</u> number of rule applications
- coinduction whatever can be proved using a <u>finite or</u> (countably) infinite number of rule applications

Fixpoints versus proof trees

The semantic foundations for induction and coinduction are perfectly dual – via Knaster-Tarski:

- induction: least (pre-)fixpoint
- coinduction: greatest (post-)fipoint

But they have quite different intuitions:

- induction whatever can be proved using a <u>finite</u> number of rule applications
- coinduction whatever can be proved using a <u>finite or</u> (countably) infinite number of rule applications

Will use Isabelle to prove the equivalence of the two views

Links to the Isabelle theories used in the demo: https://www.andreipopescu.uk/MFPS_CALCO_2023/Isabelle_files.zip

An (obviously incomplete ⁽ⁱⁱⁱ⁾) list of good sources of learning about induction and coinduction

Jacobs and Rutten 1997. A tutorial on coalgebra and coinduction

Paulson 2000. A fixedpoint approach to (co)inductive and (co)datatype definitions

Pierce 2002. Types and Programming Languages (Section 21.1. Induction and Coinduction)

Bertot 2008. Colnduction in Coq

Blanchette, Popescu & Traytel 2015. Witnessing (Co)datatypes

Kozen & Silva 2017. Practical coinduction

Chlipala 2019. Certified Programming with Dependent Types (Chapter 5. Infinite data and proofs)

Isabelle's (co)induction and (co)recursion infrastructure

(Co)inductive predicates, initial datatype package

- Paulson 1994. A Fixedpoint Approach to Implementing (Co)Inductive Definitions.
- Berghofer & Wenzel 1999. Inductive Datatypes in HOL Lessons Learned in Formal-Logic Engineering.

Compositional (co)datatypes

- Traytel, Popescu, Blanchette 2012. Foundational, Compositional (Co)datatypes for Higher-Order Logic
- Blanchette, Hölzl, Lochbihler, Panny, Popescu, Traytel 2014. Truly Modular (Co)datatypes for Isabelle/HOL
- Blanchette, Meier, Popescu, Traytel 2017. Foundational Nonuniform (Co)datatypes for Higher-Order Logic.

Expressive corecursion

- Blanchette, Popescu, Traytel 2015. Foundational extensible corecursion: a proof assistant perspective.
- Blanchette, Bouzy, Lochbihler, Popescu, Traytel 2017. Friends with Benefits Implementing Corecursion in Foundational Proof Assistants.

(Co)datatypes with bindings

• Blanchette, Gheri, Popescu, Traytel 2019. Bindings as bounded natural functors.